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FROM THE PREFACE TO THE 

FIRST ENGLISH EDITION 

The present book is one of the series on Theoretical Physics, in which we 

endeavour to give an up-to-date account of various departments of that science. 

The complete series will contain the following nine volumes: 

1. Mechanics. 2. The classical theory of fields. 3. Quantum mechanics 

{non-relativistic theory). 4. Relativistic quantum theory. 5. Statistical physics. 

6. Fluid mechanics: 7. Theory of elasticity. 8. Electrodynamics of continuous 

media. 9. Physical kinetics. 

Of these, volumes 4 and 9 remain to be written. 

The scope of modern theoretical physics is very wide, and we have, of 

course, made no attempt to discuss in these books all that is now included in 

the subject. One of the principles which guided our choice of material was 

not to deal with those topics which could not properly be expounded without 

at the same time giving a detailed account of the existing experimental results. 

For this reason the greater part of nuclear physics, for example, lies outside the 

scope of these books. Another principle of selection was not to discuss very 

complicated applications of the theory. Both these criteria are, of course, 

to some extent subjective. 

We have tried to deal as fully as possible with those topics that are included. 

For this reason we do not, as a rule, give references to the original papers, 

but simply name their authors. We give bibliographical references only to 

work which contains matters not fully expounded by us, which by their com¬ 

plexity lie “on the borderline” as regards selection or rejection. We have 

tried also to indicate sources of material which might be of use for reference. 

Even with these limitations, however, the bibliography given makes no pre¬ 

tence of being exhaustive. 

We attempt to discuss general topics in such a way that the physical signifi¬ 

cance of the theory is exhibited as clearly as possible, and then to build up the 

mathematical formalism. In doing so, we do not aim at “mathematical 

rigour” of exposition, which in theoretical physics often amounts to self- 

deception. 

The present volume is devoted to non-relativistic quantum mechanics. By 

“relativistic theory” we here mean, in the widest sense, the theory of all 

quantum phenomena which significantly depend on the velocity of light. The 

volume on this subject (volume 4) will therefore contain not only Dirac’s 

relativistic theory and what is now known as quantum electrodynamics, but 

also the whole of the quantum theory of radiation. 

Institute of Physical Problems L. D. Landau 

USSR Academy of Sciences E. M. Lifshitz 

August 1956 



PREFACE TO THE 

SECOND ENGLISH EDITION 

For this second edition the book has been considerably revised and en¬ 

larged, but the general plan and style remain as before. Every chapter has 

been revised. In particular, extensive changes have been made in the sections 

dealing with the theory of the addition of angular momenta and with collision 

theory. A new chapter on nuclear structure has been added; in accordance 

with the general plan of the course, the subjects in question are discussed only 

to the extent that is proper without an accompanying detailed analysis of the 

experimental results. 

We should like to express our thanks to all our many colleagues whose 

comments have been utilized in the revision of the book. Numerous com¬ 

ments were received from V. L. Ginzburg and Ya. A. Smorodinskil. We are 

especially grateful to L. P. Pitaevskix for the great help which he has given in 

checking the formulae and the problems. 

Our sincere thanks are due to Dr. Sykes and Dr. Bell, who not only 

translated excellently both the first and the second edition of the book, but 

also made a number of useful comments and assisted in the detection of 

various misprints in the first edition. 

Finally, we are grateful to the Pergamon Press, which always acceded to 

our requests during the production of the book. 

October 1964 

L. D. Landau 

E. M. Lifshitz 



PREFACE TO THE 

THIRD RUSSIAN EDITION 

The previous edition of this volume was the last book on which I worked 

together with my teacher L. D. Landau. The revision and expansion that 

we then carried out was very considerable, and affected every chapter. 

For the third edition, naturally, much less revision was needed. Never¬ 

theless, a fair amount of new material has been added, including some more 

problems, and relating both to recent research and to earlier results that 

have now become of greater significance. 

Landau’s astonishing grasp of theoretical physics often enabled him to 

dispense with any consultation of original papers: he was able to derive 

results by methods of his own choice. This may have been the reason why 

our book did not contain certain necessary references to other authors. In 

the present edition, I have tried to supply them as far as possible. I have 

also added references to the work of Landau himself where we describe 

results or methods that are due to him personally and have not been 

published elsewhere. 

As when dealing with the revision of other volumes in the Course of 

Theoretical Physics, I have had the assistance of numerous colleagues who 

informed me either of deficiencies in the treatment given previously, or of 

new material that should be added. Many useful suggestions incorporated 

in this book have come from A. M. Brodskii, G. F. Drukarev, I. G. Kaplan, 

V P Krainov, I. B. Levinson, P. E. Nemirovskii, V. L. Pokrovskii, 

I. I. Sobel’man, and 1. S Shapiro. My sincere thanks are due to all of 

these. 

The whole of the work on revising this volume has been done in close 

collaboration with L. P. Pitaevskii. In him I have had the good fortune 

to find a fellow-worker who has passed likewise through the school of 

Landau and is inspired by the same ideals in the service of science. 

Moscow E. M. Lifshitz 

November 1973 



EDITOR’S PREFACE TO THE 
FOURTH RUSSIAN EDITION 

In this edition of Quantum Mechanics some misprints and errors noted 
since the publication of the third edition have been corrected. Some 
small improvements have also been made, and several problems have 
been added. 

I am grateful to all readers who have provided me with comments. 

May 1988 L. P. Pitaevskii 



NOTATION 

Operators are denoted by a circumflex:/ 

dr volume element in coordinate space 

dq element in configuration space 

d3/> element in momentum space 

fnm = f” — <«|/|m> matrix elements of the quantity / (see definition in §11) 

iunm = (En — Em)jh transition frequency 

{/ = fg —gf commutator of two operators 

ii Hamiltonian 

hi phase shifts of wave functions 

Atomic and Coulomb units (see beginning of §36) 

Vector and tensor indices are denoted by Latin letters i, k, l 

end antisymmetric unit tensor (see §26) 

References to other volumes in the Course of Theoretical Physics: 

Mechanics = Yol. 1 (Mechanics, third English edition, 1976). 

Fields = Yol. 2 {The Classical Theory of Fields, fourth English edition, 

1975). 

RQT or Relativistic Quantum Theory — Vol. 4 {Relativistic Quantum Theory, 

first English edition, Part 1, 1971; Part 2, 1974); the second English edition 

appeared in one volume as Quantum Electrodynamics, 1982. 

All are published by Pergamon Press. 



CHAPTER I 

THE BASIC CONCEPTS OF 

QUANTUM MECHANICS 

§1. The uncertainty principle 

When we attempt to apply classical mechanics and electrodynamics to explain 

atomic phenomena, they lead to results which are in obvious conflict with 

experiment. This is very clearly seen from the contradiction obtained on 

applying ordinary electrodynamics to a model of an atom in which the elec¬ 

trons move round the nucleus in classical orbits. During such motion, as in 

any accelerated motion of charges, the electrons would have to emit electro¬ 

magnetic waves continually. By this emission, the electrons would lose their 

energy, and this wrould eventually cause them to fall into the nucleus. Thus, 

according to classical electrodynamics, the atom would be unstable, which 

does not at all agree with reality. 

This marked contradiction between theory and experiment indicates that 

the construction of a theory applicable to atomic phenomena—that is, pheno¬ 

mena occurring in particles of very small mass at very small distances— 

demands a fundamental modification of the basic physical concepts and laws. 

As a starting-point for an investigation of these modifications, it is conveni¬ 

ent to take the experimentally observed phenomenon known as electron 

diffraction.f It is found that, when a homogeneous beam of electrons passes 

through a crystal, the emergent beam exhibits a pattern of alternate maxima 

and minima of intensity, wholly similar to the diffraction pattern observed 

in the diffraction of electromagnetic waves. Thus, under certain conditions, 

the behaviour of material particles—in this case, the electrons—displays 

features belonging to wave processes. 

How markedly this phenomenon contradicts the usual ideas of motion is 

best seen from the following imaginary experiment, an idealization of the 

experiment of electron diffraction by a crystal. Let us imagine a screen 

impermeable to electrons, in which two slits are cut. On observing the 

passage of a beam of electrons J through one of the slits, the other being 

covered, w'e obtain, on a continuous screen placed behind the slit, some pat¬ 

tern of intensity distribution; in the same way, by uncovering the second 

f The phenomenon of electron diffraction was in fact discovered after quantum mechanics 
was invented. In our discussion, however, we shall not adhere to the historical sequence of 
development of the theory, but shall endeavour to construct it in such a way that the con¬ 
nection between the basic principles of quantum mechanics and the experimentally observed 
phenomena is most clearly shown 

J The beam is supposed so rarefied that the interaction of the particles in it plays no part. 

1 



2 The Basic Concepts of Quantum Mechanics §1 

slit and covering the first, we obtain another pattern. On observing the 

passage of the beam through both slits, we should expect, on the basis of 

ordinary classical ideas, a pattern which is a simple superposition of the other 

two: each electron, moving in its path, passes through one of the slits and 

has no effect on the electrons passing through the other slit. The phenomenon 

of electron diffraction shows, however, that in reality we obtain a diffraction 

pattern which, owing to interference, does not at all correspond to the sum 

of the patterns given by each slit separately. It is clear that this result can 

in no way be reconciled with the idea that electrons move in paths. 

Thus the mechanics which governs atomic phenomena—quantum mechanics 

or wave mechanics—must be based on ideas of motion which are fundamentally 

different from those of classical mechanics. In quantum mechanics there is 

no such concept as the path of a particle. This forms the content of what is 

called the uncertainty principle, one of the fundamental principles of quantum 

mechanics, discovered by \Y. Heisenberg in 1927.f 

In that it rejects the ordinary ideas of classical mechanics, the uncertainty 

principle might be said to be negative in content. Of course, this principle 

in itself does not suffice as a basis on which to construct a new mechanics of 

particles. Such a theory must naturally be founded on some positive asser¬ 

tions, which we shall discuss below (§2). However, in order to formulate 

these assertions, we must first ascertain the statement of the problems which 

confront quantum mechanics. To do so, we first examine the special nature 

of the interrelation between quantum mechanics and classical mechanics. A 

more general theory can usually be formulated in a logically complete manner, 

independently of a less general theory which forms a limiting case of it. Thus, 

relativistic mechanics can be constructed on the basis of its owr fundamental 

principles, without any reference to Newtonian mechanics. It is in principle 

impossible, however, to formulate the basic concepts of quantum mechanics 

without using classical mechanics. The fact that an electron J has no definite 

path means that it has also, in itself, no other dynamical characteristics.!! 

Hence it is clear that, for a system composed only of quantum objects, 

it would be entirely impossible to construct any logically independent 

mechanics. The possibility of a quantitative description of the motion of an 

electron requires the presence also of physical objects which obey classical 

mechanics to a sufficient degree of accuracy. If an electron interacts with 

such a “classical object”, the state of the latter is, generally speaking, altered. 

The nature and magnitude of this change depend on the state of the electron, 

and therefore may serve to characterize it quantitatively 

In this connection the “classical object” is usually called apparatus, and 

f It is of interest to note that the complete mathematical formalism of quantum mechanics 
was constructed by \Y. Heisenberg and E. Schrodinger in 1925-6, before the discovery of 
the uncertainty principle, which revealed the physical content of this formalism. 

I In this and the following sections we shall, for brevity, speak of "an electron”, meaning 
in general any object of a quantum nature, i.e. a particle or system of particles obeving 
quantum mechanics and not classical mechanics 

: We refer to quantities which characterize the motion of the electron, and not to those, 
such as the charge and the mass, which relate to it as a particle; these are parameters. 



§1 The uncertainty principle 3 

its interaction with the electron is spoken of as measurement. However, it 

must be emphasized that we are here not discussing a process of measurement 

in which the physicist-observer takes part. By measurement, in quantum 

mechanics, we understand any process of interaction between classical and 

quantum objects, occurring apart from and independently of any observer. 

The importance of the concept of measurement in quantum mechanics was 

elucidated by N. Bohr. 

We have defined “apparatus” as a physical object which is governed, with 

sufficient accuracy, by classical mechanics. Such, for instance, is a body 

of large enough mass. However, it must not be supposed that apparatus is 

necessarily macroscopic. Under certain conditions, the part of apparatus may 

also be taken by an object which is microscopic, since the idea of “with 

sufficient accuracy” depends on the actual problem proposed. Thus, the 

motion of an electron in a Wilson chamber is observed by means of the 

cloudy track which it leaves, and the thickness of this is large compared with 

atomic dimensions; when the path is determined with such low accuracy, 

the electron is an entirely classical object. 

Thus quantum mechanics occupies a very unusual place among physical 

theories: it contains classical mechanics as a limiting case, yet at the same 

time it requires this limiting case for its own formulation. 

We may now formulate the problem of quantum mechanics. A typical 

problem consists in predicting the result of a subsequent measurement from 

the known results of previous measurements. Moreover, we shall see later 

that, in comparison with classical mechanics, quantum mechanics, generally 

speaking, restricts the range of values which can be taken by various physical 

quantities (for example, energy): that is, the values which can be obtained 

as a result of measuring the quantity concerned. The methods of quantum 

mechanics must enable us to determine these admissible values. 

The measuring process has in quantum mechanics a very important pro¬ 

perty: it always affects the electron subjected to it, and it is in principle 

impossible to make its effect arbitrarily small, for a given accuracy of measure¬ 

ment. The more exact the measurement, the stronger the effect exerted by 

it, and only in measurements of very low accuracy can the effect on the mea¬ 

sured object be small. This property of measurements is logically related 

to the fact that the dynamical characteristics of the electron appear only as a 

result of the measurement itself. It is clear that, if the effect of the measuring 

process on the object of it could be made arbitrarily small, this would mean 

that the measured quantity has in itself a definite value independent of the 

measurement. 

Among the various kinds of measurement, the measurement of the co¬ 

ordinates of the electron plays a fundamental part. Within the limits of 

applicability of quantum mechanics, a measurement of the coordinates of an 

electron can always be performed! with any desired accuracy. 

f Once again we emphasize that, in speaking of “performing a measurement”, we refer to 
the interaction of an electron with a classical “apparatus”, which in no way presupposes 
the presence of an external observer. 



4 The Basic Concepts of Quantum Mechanics §1 

Let us suppose that, at definite time intervals At, successive measurements of 

the coordinates of an electron are made. The results will not in general lie 

on a smooth curve. On the contrary, the more accurately the measurements 
are made, the more discontinuous and disorderly will be the variation of 

their results, in accordance with the non-existence of a path of the electron, 
A fairly smooth path is obtained only if the coordinates of the electron are 

measured with a low degree of accuracy, as for instance from the condensa¬ 

tion of vapour droplets in a Wilson chamber. 

If now, leaving the accuracy of the measurements unchanged, we diminish 

the intervals AZ between measurements, then adjacent measurements, of 

course, give neighbouring values of the coordinates. However, the results 

of a series of successive measurements, though they lie in a small region of 

space, will be distributed in this region in a wholly irregular manner, lying on 

no smooth curve. In particular, as AZ tends to zero, the results of adjacent 

measurements by no means tend to lie on one straight line. 

This circumstance shows that, in quantum mechanics, there is no such 

concept as the velocity of a particle in the classical sense of the word, i.e. the 

limit to which the difference of the coordinates at two instants, divided by 

the interval At between these instants, tends as At tends to zero. However, 

we shall see later that in quantum mechanics, nevertheless, a reasonable 

definition of the velocity of a particle at a given instant can be constructed, 

and this velocity passes into the classical velocity as we pass to classical mech¬ 

anics. But whereas in classical mechanics a particle has definite coordinates 

and velocity at any given instant, in quantum mechanics the situation is 

entirely different. If, as a result of measurement, the electron is found to have 

definite coo.dinates, then it has no definite velocity whatever. Conversely, 

if the electron has a definite velocity, it cannot have a definite position in 

space. For the simultaneous existence of the coordinates and velocity would 

mean the existence of a definite path, which the electron has not. Thus, in 
quantum mechanics, the coordinates and velocity of an electron are quantities 

which cannot be simultaneously measured exactly, i.e. they cannot simultane¬ 

ously have definite values. We may say that the coordinates and velocity 

of the electron are quantities which do not exist simultaneously. In what 

follows we shall derive the quantitative relation which determines the pos¬ 

sibility of an inexact measurement of the coordinates and velocity at the same 

instant. 

A complete description of the state of a physical system in classical mech¬ 

anics is effected b\ stating all its coordinates and velocities at a given instant; 

with these initial data, the equations of motion completely determine the 

behaviour of the system at all subsequent instants. In quantum mechanics 

such a description is in principle impossible, since the coordinates and the 

corresponding velocities cannot exist simultaneously. Thus a description 

of the state of a quantum system is effected by means of a smaller number of 

quantities than in classical mechanics, i.e. it is less detailed than a classical 

description. 

A very important consequence follows from this regarding the nature of the 
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predictions made in quantum mechanics. Whereas a classical description 

suffices to predict the future motion of a mechanical system with complete 

accuracy, the less detailed description given in quantum mechanics evidently 

cannot be enough to do this. This means that, even if an electron is in a state 

described in the most complete manner possible in quantum mechanics, its 

behaviour at subsequent instants is still in principle uncertain. Hence quan¬ 

tum mechanics cannot make completely definite predictions concerning the 

future behaviour of the electron. For a given initial state of the electron, a 

subsequent measurement can give various results. The problem in 

quantum mechanics consists in determining the probability of obtaining vari¬ 

ous results on performing this measurement. It is understood, of course, 

that in some cases the probability of a given result of measurement may be 

equal to unity, i.e. certainty, so that the result of that measurement is unique. 

All measuring processes in quantum mechanics may be divided into two 

classes. In one, which contains the majority of measurements, we find those 

which do not, in any state of the system, lead with certainty to a unique 

result. The other class contains measurements such that for every possible 

result of measurement there is a state in which the measurement leads with 

certainty to that result. These latter measurements, which may be called 

predictable, play an important part in quantum mechanics. The quantitative 

characteristics of a state which are determined by such measurements are 

what are called physical quantities in quantum mechanics. If in some state 

a measurement gives with certainty a unique result, we shall say that in this 

state the corresponding physical quantity has a definite value. In future we 

shall always understand the expression “physical quantity” in the sense given 

here. 

We shall often find in what follows that by no means every set of physical 

quantities in quantum mechanics can be measured simultaneously, i.e. can 

all have definite values at the same time. We have already mentioned one 

example, namely the velocity and coordinates of an electron. An important 

part is played in quantum mechanics by sets of physical quantities having 

the following property: these quantities can be measured simultaneously, 

but if they simultaneously have definite values, no other physical quantity 

(not being a function of these) can have a definite value in that state. We 

shall speak of such sets of physical quantities as complete sets. 

Any description of the state of an electron arises as a result of some mea¬ 

surement. We shall now formulate the meaning of a complete description of 

a state in quantum mechanics. Completely described states occur as a result 

of the simultaneous measurement of a complete set of physical quanti¬ 

ties. From the results of such a measurement we can, in particular, deter¬ 

mine the probability of various results of any subsequent measurement, 

regardless of the history of the electron prior to the first measurement. 

From now on (except in §14) we shall understand by the states of a quan¬ 

tum system just these completely described states. 
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§2. The principle of superposition 

The radical change in the physical concepts of motion in quantum 

mechanics as compared with classical mechanics demands, of course, an 

equally radical change in the mathematical formalism of the theory. We 

must therefore consider first of all the way in which states are described in 

quantum mechanics. 

We shall denote by q the set of coordinates of a quantum system, and by dg 

the product of the differentials of these coordinates. This d^ is called an 

element of volume in the configuration space of the system; for one particle, 

d^ coincides with an element of volume dF in ordinary space. 

The basis of the mathematical formalism of quantum mechanics lies in the 

proposition that the state of a system can be described by a definite (in 

general complex) function T(^) of the coordinates. The square of the 

modulus of this function determines the probability distribution of the values 

of the coordinates: |\h'|2d^ is the probability that a measurement performed 

on the system will find the values of the coordinates to be in the element dq 

of configuration space. The function T is called the wave function of the 

system-! 

A knowledge of the wave function allows us, in principle, to calculate the 

probability of the various results of any measurement (not necessarily of the 

coordinates) also. All these probabilities are determined by expressions 

bilinear in T and T*. The most general form of such an expression is 

jj'V(q)'¥*{q')<Kq,q')dqdq', (2.1) 

where the function <j>(q, q’) depends on the nature and the result of the mea¬ 

surement, and the integration is extended over all configuration space. The 

probability 'FT* of various values of the coordinates is itself an expression 

of this type.J 

The state of the system, and with it the wave function, in general varies 

with time. In this sense the wave function can be regarded as a function of 

time also. If the wave function is known at some initial instant, then, from 

the very meaning of the concept of complete description of a state, it is in 

principle determined at every succeeding instant. The actual dependence 

of the wave function on time is determined by equations which will be de¬ 

rived later. 

The sum of the probabilities of all possible values of the coordinates of 

the system must, by definition, be equal to unity. It is therefore necessary 

that the result of integrating |T|2 over all configuration space should be equal 

to unity: 

J>|*dff = l. (2.2) 

f It was first introduced into quantum mechanics by Schrodinger in 1926. 
J It is obtained from (2.1) when <£(?, ?') = S(?—9o) &(q'—Qc), where & denotes the delta 

function, defined in §5 below; $„ denotes the value of the coordinates whose probability 
is required. 
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This equation is what is called the normalization condition for wave functions. 

If the integral of |Yj2 converges, then by choosing an appropriate constant 

coefficient the function Y can always be, as we say, normalized. However, we 

shall see later that the integral of |Y|2 may diverge, and then Y cannot be 

normalized by the condition (2.2). In such cases |Yj2 does not, of course, 

determine the absolute values of the probability of the coordinates, but the 

ratio of the values of |Yj2 at two different points of configuration space deter¬ 

mines the relative probability of the corresponding values of the coordinates. 

Since all quantities calculated by means of the wave function, and having a 

direct physical meaning, are of the form (2.1), in which Y appears multiplied 

by Y*. it is clear that the normalized wave function is determined only to 

within a constant phase factor of the form eu (where a is any real number). 

This indeterminacy is in principle irremovable; it is, however, unimportant, 

since it has no effect upon any physical results 

The positive content of quantum mechanics is founded on a series of 

propositions concerning the properties of the wave function These are as 

follows. 

Suppose that, in a state with wave function Y1(§), some measurement leads 

with certainty to a definite result (result 1), while in a state with Y2(§) it 

leads to result 2. Then it is assumed that every linear combination of Yj 

and Y2, i.e. every function of the form c1Y1+c2Y2 (where cl and c2 are con¬ 

stants), gives a state in which that measurement leads to either result 1 or 

result 2. Moreover, we can assert that, if we know the time dependence of 

the states, which for the one case is given by the function Yj(<7, t), and for the 

other by Y2(<?, f), then any linear combination also gives a possible dependence 

of a state on time. These propositions constitute what is called the principle 

of superposition of states, the chief positive principle of quantum mechanics. 

In particular, it follows from this principle that all equations satisfied by 

wave functions must be linear in Y. 

Let us consider a system composed of two parts, and suppose that the state 

of this system is given in such a way that each of its parts is completely 

described.f Then we can say that the probabilities of the coordinates q\ of 

the first part are independent of the probabilities of the coordinates qo of the 

second part, and therefore the probability distribution for the whole system 

should be equal to the product of the probabilities of its parts. This means 

that the wave function Y12(91, q2) of the system can be represented in the form 

of a product of the wave functions Y^j) and Y2(<?2) of its parts; 

Y12(ffl,ff0=Yl(ffl)Y2(gj). (2.3) 

If the two parts do not interact, then this relation between the wave function 

of the system and those of its parts will be maintained at future instants also, 

t This, of course, means that the state of the whole system is completely described also. 
However, we emphasize that the converse statement is by no means true: a complete descrip¬ 
tion of the state of the whole system does not in general completely determine the states of 
its individual parts (see also §14). 
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i.e. we can write 

Viatel. ?2- 0 = t) 0- (2-4) 

§3. Operators 

Let us consider some physical quantity / which characterizes the state 

of a quantum system. Strictly, we should speak in the following discussion 

not of one quantity, but of a complete set of them at the same time. 

However, the discussion is not essentially changed by this, and for brevity 

and simplicity we shall work below in terms of only one physical quantity. 

The values which a given physical quantity can take are called in quantum 

mechanics its eigenvalues, and the set of these is referred to as the spectrum 

of eigenvalues of the given quantity. In classical mechanics, generally speak¬ 

ing, quantities run through a continuous series of values. In quantum mech¬ 

anics also there are physical quantities (for instance, the coordinates) whose 

eigenvalues occupy a continuous range; in such cases we speak of a continuous 

spectrum of eigenvalues. As well as such quantities, however, there exist in 

quantum mechanics others whose eigenvalues form some discrete set; in 

such cases we speak of a discrete spectrum. 

We shall suppose for simplicity that the quantity / considered here has a 

discrete spectrum; the case of a continuous spectrum will be discussed in §5. 

The eigenvalues of the quantity / are denoted by/n, where the suffix n takes 

the values 0,1, 2, 3,.... We also denote the wave function of the system, in 

the state where the quantity / has the value /„, by Yn, The wave functions 

Yn are called the eigenfunctions of the given physical quantity/. Each of these 

functions is supposed normalized, so that 

J|T„pd2 = l. (3.1) 

If the system is in some arbitrary state with wave function T, a measure¬ 

ment of the quantity / carried out on it will give as a result one of the eigen¬ 

values/„. In accordance with the principle of superposition, we can assert 

that the wave function T must be a linear combination of those eigenfunc¬ 

tions Tn which correspond to the values fn that can be obtained, with prob¬ 

ability different from zero, when a measurement is made on the system and 

it is in the state considered. Hence, in the general case of an arbitrary state, 

the function T can be represented in the form of a series 

T=SCnT„, (3.2) 

where the summation extends over all n, and the an are some constant coeffi¬ 

cients. 

Thus we reach the conclusion that any wave function can be, as we say, 

expanded in terms of the eigenfunctions of any physical quantity. A set of 

functions in terms of which such an expansion can be made is called a complete 

(or closed) set. 

The expansion (3.2) makes it possible to determine the probability of find- 
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ing (i.e. the probability of getting the corresponding result on measurement), 

in a system in a state with wave function Y, any given value fn of the quantity 

/. For, according to what was said in the previous section, these probabili¬ 

ties must be determined by some expressions bilinear in Y and Y#, and 

therefore must be bilinear in an and an*. Furthermore, these expressions 

must, of course, be positive. Finally, the probability of the value /„ must 

become unity if the system is in a state with wave function Y = Yn, and 

must become zero if there is no term containing Yn in the expansion (3.2) 

of the wave function Y. The only essentially positive quantity satisfying 

these conditions is the square of the modulus of the coefficient an. Thus we 

reach the result that the squared modulus |a?l|2 °f each coefficient in the 

expansion (3.2) determines the probability of the corresponding value/„ of 

the quantity / in the state with wave function Y. The sum of the probabi¬ 

lities of all possible values fn must be equal to unity; in other words, the 

relation 

E lcn|2 = 1 (3.31 

must hold. 

If the function Y were not normalized, then the relation (3.3) would not 

hold either. The sum E |«n|2 would then be given by some expression 

bilinear in Y and Y*, and becoming unity when Y was normalized. Only 

the integral J YY* dq is such an expression. Thus the equation 

2 ana* = J YY* dq (3.4) 

must hold. 

On the other hand, multiplying by Y the expansion Y* = 2 «n*Yn* of 

the function Y* (the complex conjugate of Y), and integrating, we obtain 

jYY* d? = 2 fl„*J Y„*Y dq. 

Comparing this with (3.4), we have 

2 ana* =- 2 a* J Y„*Y dq, 

from which we derive the following formula determining the coefficients an 

in the expansion of the function Y in terms of the eigenfunctions Yn: 

«„ = J YY„* dq. (3.5) 

If we substitute here from (3.2), we obtain 

= 2 am f YmY„* dq, 

from which it is evident that the eigenfunctions must satisfy the conditions 

jYmYn*d? = Snm, (3.6) 
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where Bnm = 1 for n — m and Bnm = 0 for n m. The fact that the integrals 

of the products YmYn* with m ^ n vanish is called the orthogonality of the 

functions Yn. Thus the set of eigenfunctions Yn forms a complete set of 

normalized and orthogonal (or, for brevitv, orthonormal) functions. 

We shall now introduce the concept of the mean value f of the quantity / 

in the given state. In accordance with the usual definition of mean values, 

we define / as the sum of all the eigenvalues fn of the given quantity, each 

multiplied by the corresponding probability |cn[2. Thus 

/= 2/rKI2- (3-7) 

We shall write / in the form of an expression which does not contain the 

coefficients an in the expansion of the function Y, but this function itself. 

Since the products anan* appear in (3.7), it is clear that the required expres¬ 

sion must be bilinear in Y and Y* We introduce a mathematical opera¬ 

tor, which we denotef by / and define as follows. Let (/Y) denote the result 

of the operator / acting on the function Y. We define / in such a way that 

the integral of the product of (/'I") and the complex conjugate function Y* 

is equal to the mean value /: 

/= |Y*(/Y)d?. (3.8) 

It is easily seen that, in the general case, the operator / is a linear J 

integral operator. For, using the expression (3.5) for cn, we can rewrite the 

definition (3.7) of the mean value in the form 

/=I/AaB* = |Y*(Ifl„/„Yn)d!. 

Comparing this with (3.8), we see that the result of the operator / acting on 

the function Y has the form 

(/Y) = E anfnY„. (3.9) 

If we substitute here the expression (3.5) for an, we find that /is an integral 

operator of the form 

(/Y) = J K(q, 9')Y(ff') dff'. (310) 

where the function K(q, q') (called the kernel of the operator) is 

K(q, q) = S/nY„*(9')Y„(9). (3.11) 

Thus, for every physical quantity in quantum mechanics, there is a definite 

corresponding linear operator. 

It is seen from (3.9) that, if the function Y is one of the eigenfunctions Yn 

t By convention, we shall always denote operators by letters with circumflexes. 
X An operator is said to be linear if it has the properties 

= {'¥l+fi\ and fdi’) = af¥. 

where T, and 2 ate arbitrary functions and a is an arbitrary constant. 
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(so that all the an except one are zero), then, when the operator / acts on it, 

this function is simply multiplied by the corresponding eigenvalue fn: 

f¥n = /nYn. (3.12) 

(In what follows we shall always omit the parentheses in the expression 

(/Y), where this cannot cause any misunderstanding; the operator is taken 

to act on the expression which follows it.) Thus we can say that the eigen¬ 

functions of the given physical quantity / are the solutions of the equation 

/Y = /Y, 

where / is a constant, and the eigenvalues are the values of this constant for 

which the above equation has solutions satisfying the required conditions. 

As we shall see below, the form of the operators for various physical 

quantities can be determined from direct physical considerations, and then 

the above property of the operators enables us to find the eigenfunctions 

and eigenvalues by solving the equations /Y = /Y. 

Both the eigenvalues of a real physical quantity and its mean value in 

every state are real. This imposes a restriction on the corresponding 

operators. Equating the expression (3.8) to its complex conjugate, we 

obtain the relation 

| Y*(/Y) dg = | Y(/*Y*) dq, (3.13) 

where f* denotes the operator which is the complex conjugate of f.\ This 

relation does not hold in general for an arbitrary linear operator, so that it is 

a restriction on the form of the operator / For an arbitrary operator / we 

can find what is called the transposed operator /, defined in such a way that 

J®(/Y)d? = | Y(/0>) d9, (3.14) 

where Y and ® are two different functions. If we take, as the function $, 

the function Y* which is the complex conjugate of Y, then a comparison with 

(3.13) shows that we must have 

/ = /*■ (3.15) 

Operators satisfying this condition are said to be Hermitian.% Thus the 

operators corresponding, in the mathematical formalism of quantum 

mechanics, to real physical quantities must be Hermitian. 

We can formally consider complex physical quantities also, i.e. those 

whose eigenvalues are complex. Let / be such a quantity. Then we can 

introduce its complex conjugate quantity/*, whose eigenvalues are the com¬ 

plex conjugates of those of /. We denote by /+ the operator corresponding 

to the quantity /*. It is called the Hermitian conjugate of the operator / and. 

t By definition, if for the operator / we have fib = <b, then the complex conjugate operator 
/* is that for which we have/*i/i* = 

J For a linear integral operator of the form (3.10), the Hermitian condition means that 
the kernel of the operator must be such that K(q, q') —K*(q', q). 
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in general, will be different .from the definition of the operator /*: the mean 

value of the quantity /* in a state VF is 

/* = J>*/-Td9. 

We also have 

(7)* = [/ d?]* 

= J T/*T* dq 

= f Y*f*rdq. 

Equating these two expressions gives 

/+=/*, (3 16) 

from which it is clear that/* is in general not the same as/*. 

The condition (3 15) can now be w'ritten 

/ = /-, (317) 

i.e. the operator of a real physical quantity is the same as its Hermitian 

conjugate (Hermitian operators are also called self-conjugate). 

We shall show how the orthogonality of the eigenfunctions of an Hermitian 

operator corresponding to different eigenvalues can be directly proved. Let 

/„ and/„. be two different eigenvalues of the real quantity /, and T“m the 

corresponding eigenfunctions: 

fif = /nT*„, f'¥m = f„'¥m. 

Multiplying both sides of the first of these equations by 'Fm*, and both 

sides of the complex conjugate of the second by 'Fn, and subtracting corre¬ 

sponding terms, we find 

Tm*/Tn-Tn/*Tm* = (fn-fmWn'¥m*- 

We integrate both sides of this equation over q. Since /* = /, by (3.14) the 

integral on the left-hand side of the equation is zero, so that we have 

(/»-/«.) J Vm* dq = 0, 

whence, since fn =£ fm, we obtain the required orthogonality property of the 

functions and T,m. 

We have spoken here of only one physical quantity/, whereas, as we said 

at the beginning of this section, we should have spoken of a complete set 

of simultaneously measurable physical quantities. We should then have 

found that to each of these quantities f,g, ... there corresponds its operator 
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f, g, ... . The eigenfunctions T,, then correspond to states in which all the 

quantities concerned have definite values, i.e. they correspond to definite 

sets of eigenvalues/„, gn, ... , and are simultaneous solutions of the system 

of equations 

/T=/T, £T=£T. 

§4. Addition and multiplication of operators 

If / and g are th operators corresponding to two physical quantities / and 

g, the sum f+g has a corresponding operator f+g. However, the signi¬ 

ficance of adding different physical quantities in quantum mechanics 

depends considerably on whether the quantities are or are not simul¬ 

taneously measurable. If / and g are simultaneously measurable, the 

operators / and g have common eigenfunctions, which are also eigen¬ 

functions of the operator /+g, and the eigenvalues of the latter operator are 

equal to the sums /„ +gn. But if/ and g cannot simultaneously take definite 

values, their sum f+g has a more restricted significance. We can assert only 

that the mean value of this quantity in any state is equal to the sum of the 

mean values of the separate quantities: 

f+g = f+g. (4.1) 

The eigenvalues and eigenfunctions of the operator f+g will not, in general, 

now bear any relation to those of the quantities / and g. It is evident that, 

if the operators / and g are Hermitian, the operator f+g will be so too, so 

that its eigenvalues are real and are equal to those of the new quantity f+g 

thus defined. 

The following theorem should be noted. Let /„ and g0 be the smallest 

eigenvalues of the quantities / and g, and (J+g)0 that of the quantity f +g. 

Then 

(f+g)o >fo+go- (4.2) 

The equality holds if / and g can be measured simultaneously. The proof 

follows from the obvious fact that the mean value of a quantity is always 

greater than or equal to its least eigenvalue. In a state in which the quantity 

f+g has the value (J+g)0 we have f+g = (f+g)0, and since, on the other 

hand, f+g = f+g > fo+go> we arrive at the inequality (4.2). 

Next, let/ and g once more be quantities that can be measured simultane¬ 

ously. Besides their sum, we can also introduce the concept of their product 

as being a quantity whose eigenvalues are equal to the products of those of the 

quantities / and g. It is easy to see that, to this quantity, there corresponds 

an operator whose effect consists of the successive action on the function 

of first one and then the other operator. Such an operator is represented 

mathematically by the product of the operators / and g. For, if Tn are the 
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eigenfunctions common to the operators / and g, we have 

f^n = /(|Y„) = fg$\ = gJVn = gnfnVn 

(the symbol fg denotes an operator whose effect on a function Y consists of 

the successive action first of the operator g on the function Y and then of the 

operator / on the function /Y). We could equally well take the operator gf 

instead of fg, the former differing from the latter in the order of its factors. 

It is obvious that the result of the action of either of these operators on the 

functions Yn will be the same. Since, however, every wave function Y can 

be represented as a linear combination of the functions Yn, it follows that 

the result of the action of the operators fg and gf on an arbitrary function will 

also be the same. This fact can be written in the form of the symbolic 

equation fg = gf or 

/£-£/= °- (4-3) 

Two such operators / and g are said to be commutative, or to commute 

with each other. Thus we arrive at the important result: if two quantities 

/ and g can simultaneously take definite values, then their operators com¬ 

mute with each other. 

The converse theorem can also be proved (§11): if the operators / and g 

commute, then all their eigenfunctions can be taken common to both; 

physically, this means that the corresponding physical quantities can be 

measured simultaneously. Thus the commutability of the operators is a 

necessary and sufficient condition for the physical quantities to be simultane¬ 

ously measurable. 

A particular case of the product of operators is an operator raised to some 

power. From the above discussion we can deduce that the eigenvalues of an 

operator fp (where p is an integer) are equal to the pth powers of the eigen¬ 

values of the operator /. Any function <f>{f) of an operator can be defined 

as an operator whose eigenvalues are equal to the same function <f>( f) of 

the eigenvalues of the operator/ If the function <f>(f) can be expanded as a 

Taylor series, this expresses the effect of the operator <£(/) in terms of those 

of various powers / f. 

In particular, the operator /_1 is called the inverse of the operator f. It is 

evident that the successive action of the operators f and / -1 on any function 

leaves the latter unchanged, i.e. //-1 = f~lf — 1. 

If the quantities / and g cannot be measured simultaneously, the concept 

of their product does not have the same direct meaning. This appears in 

the fact that the operator// is not Hermitian in this case, and hence cannot 

correspond to any real physical quantity. For, by the definition of the 

transpose of an operator we can write 

| Y/i<D dj = J Y/(/<D) dq = J (i<D)(/Y) dq. 

Here the operator/ acts only on the function Y, and the operator g on O, so 

that the integrand is a simple product of two functions/O and/Y. Again 
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using the definition of the transpose of an operator, we can write 

J Vfg® dq - j (j'¥)(g<S>) d5 = J <h|/'F ds. 

Thus we obtain an integral in which the functions T and <J> have changed 

places as compared with the original one. In other words, the operator §j 

is the transpose of fg, and we can write 

<4-4) 

i.e. the transpose of the product fg is the product of the transposes of the 

factors written in the opposite order. Taking the complex conjugate of both 

sides of equation (4.4), we have 

(f§r = tr (4-5) 

If each of the operators / and g is Hermitian, then (/gf — gf. It follows 

from this that the operator fg is Hermitian if and only if the factors f and g 

commute. 

We note that, from the products fg and gf of two non-commuting Hermitian 

operators, we can form an Hermitian operator, the symmetrized product 

i(fg+gfr (4.6) 

It is easy to see that the difference fg—gf is an anti-Hermitian operator 

(i.e. one for which the transpose is equal to the complex conjugate taken with 

the opposite sign). It can be made Hermitian by multiplying by i; thus 

<fg-gf) (4-7) 

is again an Hermitian operator. 

In what follows we shall sometimes use for brevity the notation 

{/>£} =fg~gf, (4-8) 

called the commutator of these operators. It is easily seen that 

{/£. h = if. fyg+fig, h (4-9) 

We notice that, if {/, h) — 0 and {g, ft} = 0, it does not in general follow 

that fandg commute. 

§5. The continuous spectrum 

All the relations given in § §3 and 4, describing the properties of the eigen¬ 

functions of a discrete spectrum, can be generalized without difficulty to the 

case of a continuous spectrum of eigenvalues. 

Let / be a physical quantity having a continuous spectrum. We shall 

denote its eigenvalues by the same letter / simply, and the corresponding 

eigenfunctions by 4’/. Just as an arbitrary wave function XF can be expanded 

in a series (3.2) of eigenfunctions of a quantity having a discrete spectrum, 

it can also be expanded (this time as an integral) in terms of the complete 



16 The Basic Concepts of Quantum Mechanics §5 

set of eigenfunctions of a quantity with a continuous spectrum. This 

expansion has the form 

T(s) = J a/FXff) d/, (5.1) 

where the integration is extended over the whole range of values that can be 

taken by the quantity /. 

The subject of the normalization of the eigenfunctions of a continuous 

spectrum is more complex than in the case of a discrete spectrum. The 

requirement that the integral of the squared modulus of the function should 

be equal to unity cannot here be satisfied, as we shall see below. Instead, 

we try to normalize the functions T/ in such a wav that |<Z/|2 d/ is the prob¬ 

ability that the physical quantity concerned, in the state described by the 

wave function T, has a value between / and /+ d/. Since the sum of the 

probabilities of all possible values of / must be equal to unity, we have 

Jl«,|2d/=1 (5.2) 

(similarly to the relation (3.3) for a discrete spectrum). 

Proceeding in exactly the same way as in the derivation of formula (3.5), 

and using the same arguments, we can write, firstly, 

Jwds = J|fl/|*d/ 

and, secondly, 

J TT* dq = JJ a/*T,*T dfdq. 

By comparing these two expressions we find the formula which determines 

the expansion coefficients, 

«, = / dq, (5.3) 

in exact analogy to (3.5). 

To derive the normalization condition, we now substitute (5.1) in (5.3), 

and obtain 

a, = J ^(JT/F,* dq) df. 

This relation must hold for arbitrary aj, and therefore must be satisfied 

identically. For this to be so, it is necessary that, first of all, the coefficient 

of af. in the integrand (i.e. the integral JT/.T/* d<?) should be zero for 

all /' =£ /. For /' = /, this coefficient must become infinite (otherwise the 

integral over /' would vanish). Thus the integral J dq is a function 

of the difference which becomes zero for values of the argument 

different from zero and is infinite when the argument is zero. We denote 

this function by 

j T,.'?,- dq = S(/'—/). (5.4) 
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The manner in which the function 8(/'—/) becomes infinite for f'—f = 0 

is determined by the fact that we must have 

J §(/'-/) ardf = af. 

It is clear that, for this to be so, we must have 

/ S(/'-/) d/' = 1. 

The function thus defined is called a delta function, and was first used in 
theoretical physics by P. A. M. Dirac. We shall write out once more the 

formulae which define it. They are 

8(*) = 0 for * # 0, 8(0) = oo, (5.5) 
while 

J 8(*) dx = 1. (5.6) 

We can take as limits of integration any numbers such that x = 0 lies between 

them. If f(x) is some function continuous at x — 0, then 

J S(*)/(*) d* =/(0). (5.7) 

This formula can be written in the more general form 

j8(*-fl)/(*)d* =/(*), (5.8) 

where the range of integration includes the point x = a, and f(x) is continuous 

at x = a. It is also evident that 

S(~x) = S(x), (5.9) 

i.e. the delta function is even. Finally, writing 

r “r dy 1 
js<«)d«-J %)-=-, 

we can deduce that 
SM = (1/M) 8(*), (5.10) 

where a is any constant. 

The formula (5.4) gives the normalization rule for the eigenfunctions of a 

continuous spectrum; it replaces the condition (3.6) for a discrete spectrum. 

We see that the functions T/ and T/- with / #/' are, as before, orthogonal. 

However, the integrals of the squared moduli IT/I2 of the functions diverge 

for a continuous spectrum. 

The functions satisfy still another relation similar to (5.4). To derive 

this, we substitute (5.3) in (5.1), which gives 

nq) = J d/) d?', 

whence we can at once deduce that we must have 

j'irAq’W,(q)df=B(q’-q). (5.11) 



§5 18 The Basic Concepts of Quantum Mechanics 

There is, of course, an analogous relation for a discrete spectrum: 

S'Fn*(?')^n(?) = %'-s). (5.12) 

Comparing the pair of formulae (5.1), (5.4) with the pair (5.3), (5.11), we 

see that, on the one hand, the function Y(^) can be expanded in terms of 

the functions ltrf(q) with expansion coefficients a/ and, on the other hand, 

formula (5.3) represents an entirely analogous expansion of the function 

a/ = a(f) in terms of the functions Y/*(g), while the Y(<?) play the part of 

expansion coefficients. The function a(f), like Y((?), completely determines 

the state of the system; it is sometimes called a wave function in the f repre¬ 

sentation (while the function Y(y) is called a wave function in the q representa¬ 

tion). Just as |'F(<7)|8 determines the probability for the system to have co¬ 

ordinates lying in a given interval dq, so \a(f)\2 determines the probability for 

the values of the quantity / to lie in a given interval d/. On the one hand, 

the functions Y/j) are the eigenfunctions of the quantity / in the q representa¬ 

tion; on the other hand, their complex conjugates are the eigenfunctions of 

the coordinate q in the / representation. 

Let <£(/) be some function of the quantity /, such that <f> and / are related in 

a one-to-one manner. Each of the functions 'i'fq) can then be regarded as 

an eigenfunction of the quantity <f>. Here, however, the normalization of 

these functions must be changed: the eigenfunctions Y^(j) of the quantity <j> 

must be normalized by the condition 

J y^y^,* d? = s[#/v&m 

whereas the functions Y/. are normalized by the condition (5.4). The argu¬ 

ment of the delta function becomes zero only for f = f. As f approaches/, 

we have 4>{f)— <£(/) = [d<£(/)/d/] . (/'—/). By (5.10) we can therefore writef 

mn-m] =, * (5-13) 

Comparing this with (5.4), we see that the functions Y$ and Y/ are related 
by 

Y^,= 
y/mmn 

(5.14) 

There are also physical quantities which in one range of values have a 
discrete spectrum, and in another a continuous spectrum. For the eigen¬ 
functions of such a quantity all the relations derived in this and the previous 
sections are, of course, true. It need only be noted that the complete set 
of functions is formed by combining the eigenfunctions of both spectra. 

t in general, if 4>(x) is some one-valued function (the inverse function need 
valued), we have 

si#*)]=y — 
“ I* K)l 

Of are the roots of the equation <£(x) = 0. 

be one- 

(5.13a) 
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Hence the expansion of an arbitrary wave function in terms of the eigenfunc¬ 

tions of such a quantity has the form 

V(q) = S *&&)+ / d/, (5.15) 

where the sum is taken over the discrete spectrum and the integral over the 

whole continuous spectrum. 

The coordinate q itself is an example of a quantity having a continuous 

spectrum. It is easy to see that the operator corresponding to it is simply 

multiplication by q. For, since the probability of the various values of the 

coordinate is determined by the square |T(5)|2, the mean value of the 

coordinate is 

? = J?m2d? = jT*9Td9. 

Comparison of this with the definition (3.8) of an operator shows thatf 

q=q. (5.16) 

The eigenfunctions of this operator must be determined, according to the 

usual rule, by the equation = qo^Qe, where q0 temporarily denotes the 

actual values of the coordinate as distinct from the variable q. Since this 

equation can be satisfied either by 'Fa = 0 or by q = q0, it is clear that the 

eigenfunctions which satisfy the normalization condition arej 

Y,. = S(q—q0). (5.17) 

§6. The passage to the limiting case of classical mechanics 

Quantum mechanics contains classical mechanics in the form of a certain 

limiting case. The question arises as to how this passage to the limit is 

made. 

In quantum mechanics an electron is described by a wave function which 

determines the various values of its coordinates; of this function we so far 

know only that it is the solution of a certain linear partial differential equation. 

In classical mechanics, on the other hand, an electron is regarded as a material 

particle, moving in a path which is completely determined by the equations 

of motion. There is an interrelation, somewhat similar to that between 

quantum and classical mechanics, in electrodynamics between wave optics 

f In future we shall always, for simplicity, write operators which amount to multiplication 
by some quantity in the form of that quantity itself. 

J The expansion coefficients for an arbitrary function 4/ in terms of these eigenfunctions 

\ = I d? = *'(?.,)■ 
The probability that the value of the coordinate lies in a given interval dg0 is 

la,.!* = m?0r dg0. 
it should be. 
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and geometrical optics. In wave optics, the electromagnetic waves are 

described by the electric and magnetic field vectors, which satisfy a definite 

system of linear differential equations, namely Maxwell’s equations In 

geometrical optics, how'ever, the propagation of light along definite paths, or 

rays, is considered. Such an analogy enables us to see that the passage from 

quantum mechanics to the limit of classical mechanics occurs similarly to the 

passage from wave optics to geometrical optics. 
Let us recall how this latter transition is made mathematically (see Fields, 

§53). Let u be any of the field components in the electromagnetic wave. It 

can be written in the form u = ae(with a and <j> real), where a is called the 

amplitude and 4> the phase of the wave (called in geometrical optics the 

eikonal). The limiting case of geometrical optics corresponds to small wave¬ 

lengths ; this is expressed mathematically by saying that 4> varies by a large 

amount over short distances; this means, in particular, that it can be 

supposed large in absolute value. 

Similarly, we start from the hypothesis that, to the limiting case of classical 

mechanics, there correspond in quantum mechanics wave functions of the 

form T = ae'*, where a is a slowly varying function and <f> takes large values. 

As is well known, the path of a particle can be determined in mechanics by 

means of the variational principle, according to which what is called the 

action S of a mechanical system must take its least possible value (the principle 

of least action). In geometrical optics the path of the rays is determined by 

what is called Fermat's principle, according to which the optical path length 

of the ray, i.e. the difference between its phases at the beginning and end of 

the path, must take its least (or greatest) possible value. 

On the basis of this analogy, we can assert that the phase <j> of the wave 

function, in the limiting (classical) case, must be proportional to the mech¬ 

anical action 5 of the physical system considered, i.e. we must have 

5 = constant X f. The constant of proportionality is called Planck's con- 

stantf and is denoted by h. It has the dimensions of action (since f is 

dimensionless) and has the value 

H = 1 054 x 10-*7 erg sec. 

Thus, the wave function of an “almost classical” (or, as we say, quasi- 

classical) physical system has the form 

T = ae^*. (6.1) 

Planck’s constant H plays a fundamental part in all quantum phenomena. 

Its relative value (compared with other quantities of the same dimensions) 

determines the “extent of quantization” of a given physical system. The 

transition from quantum mechanics to classical mechanics, corresponding to 

large phase, can be formally described as a passage to the limit h 0 (just 

t It was introduced into physics by M. Planck in 1900. The constant H, which we use 
everywhere in this book, is, strictly speaking, Planck’s constant divided by 27r; this is Dirac’s 
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as the transition from wave optics to geometrical optics corresponds to a 

passage to the limit of zero wavelength, A -> 0). 

We have ascertained the limiting form of the wave function, but the 

question still remains how it is related to classical motion in a path. In 

general, the motion described by the wave function does not tend to motion 

in a definite path. Its connection with classical motion is that, if at some 

initial instant the wave function, and with it the probability distribution of 

the coordinates, is given, then at subsequent instants this distribution will 

change according to the laws of classical mechanics (for a more detailed dis¬ 

cussion of this, see the end of §17). 

In order to obtain motion in a definite path, we must start from a wave 

function of a particular form, which is perceptibly different from zero only 

in a very small region of space (what is called a wave packet); the dimensions 

of this region must tend to zero with h. Then we can say that, in the quasi- 

classical case, the wave packet will move in space along a classical path of a 

particle. 

Finally, quantum-mechanical operators must reduce, in the limit, simply 

to multiplication by the corresponding physical quantity. 

§7. The wave function and measurements 

Let us again return to the process of measurement, whose properties have 

been qualitatively discussed in §1; we shall show how these properties are 

related to the mathematical formalism of quantum mechanics. 

We consider a system consisting of two parts: a classical apparatus and 

an electron (regarded as a quantum object). The process of measurement 

consists in these two parts’ coming into interaction with each other, as a 

result of which the apparatus passes from its initial state into some other; 

from this change of state we draw conclusions concerning the state of the 

electron. The states of the apparatus are distinguished by the values of some 

physical quantity (or quantities) characterizing it—the “readings of the ap¬ 

paratus”. We conventionally denote this quantity by g, and its eigenvalues 

by gn\ these take in general, in accordance with the classical nature of the 

apparatus, a continuous range of values, but we shall—merely in order to 

simplify the subsequent formulae—suppose the spectrum discrete. The 

states of the apparatus are described by means of quasi-classical wave func¬ 

tions, which we shall denote by C>n(£), where the suffix n corresponds to the 

“reading” gn of the apparatus, and £ denotes the set of its coordinates. The 

classical nature of the apparatus appears in the fact that, at any given instant, 

we can say with certainty that it is in one of the known states <hn with some 

definite value of the quantity g\ for a quantum system such an assertion 

would, of course, be unjustified. 

Let <ho(£) he the wave function of the initial state of the apparatus (before 

the measurement), andT(^) some arbitrary normalized initial wave function 

of the electron (q denoting its coordinates). These functions describe the 

state of the apparatus and of the electron independently, and therefore the 
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initial wave function of the whole system is the product 

Y(?)4>0tf). (7-1) 

Next, the apparatus and the electron interact with each other. Applying the 

equations of quantum mechanics, we can in principle follow the change of 

the wave function of the system with time. After the measuring process it 

may not, of course, be a product of functions of £ and q. Expanding the 

wave function in terms of the eigenfunctions <I>n of the apparatus (which 

form a complete set of functions), we obtain a sum of the form 

XAn{q)®n(£), (7.2) 

where the An(q) are some functions of q. 

The classical nature of the apparatus, and the double role of classical 

mechanics as both the limiting case and the foundation of quantum mechanics, 

now make their appearance. As has been said above, the classical nature of 

the apparatus means that, at any instant, the quantity g (the “reading of the 

apparatus”) has some definite value. This enables us to say that the state 

of the system apparatus -f- electron after the measurement will in actual fact 

be described, not by the entire sum (7.2), but by only the one term which 

corresponds to the “reading” gn of the apparatus, 

^«(?)4>«tf). (7-3) 

It follows from this that An(q) is proportional to the wave function of the 

electron after the measurement. It is not the wave function itself, as is seen 

from the fact that the function An(q) is not normalized. It contains both 

information concerning the properties of the resulting state of the electron 

and the probability (determined by the initial state of the system) of the 

occurrence of the nth “reading” of the apparatus. 

Since the equations of quantum mechanics are linear, the relation between 

An(q) and the initial wave function of the electron T^) is in general given by 

some linear integral operator: 

An{q) = |An(?,e')T(5')ds', (7.4) 

with a kernel Kn{q, q') which characterizes the measurement process con¬ 

cerned. 

We shall suppose that the measurement concerned is such that it gives a 

complete description of the state of the electron. In other words (see §1), 

in the resulting state the probabilities of all the quantities must be indepen¬ 

dent of the previous state of the electron (before the measurement). Mathe¬ 

matically, this means that the form of the functions An(q) must be determined 

by the measuring process itself, and does not depend on the initial wave 

function Y(^) of the electron. Thus the An must have the form 

An(q) = an4>n(q). (7.5) 
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where the 4>n are definite functions, which we suppose normalized, and only 

the constants an depend on vF(i?). In the integral relation (7.4) this corresponds 

to a kernel Kn(q, q') which is a product of a function of q and a function of q’: 

Kn{q,q') = M<lWn*(q'y, (7.6) 

then the linear relation between the constants an and the function T(i?) is 

an = j nqWn*(q) d?i (7.7) 

where the ^(9) are certain functions depending on the process of measure¬ 

ment. 

The functions <£„(<?) are the normalized wave functions of the electron after 

measurement. Thus we see how the mathematical formalism of the theory 

reflects the possibility of finding by measurement a state of the electron 

described by a definite wave function. 

If the measurement is made on an electron with a given wave function 

T(^), the constants an have a simple physical meaning: in accordance with 

the usual rules, \an\2 is the probability that the measurement will give the 

«th result. The sum of the probabilities of all results is equal to unity: 

E K|* = 1. (7.8) 

In order that equations (7.7) and (7.8) should hold for an arbitrary nor¬ 

malized function 'F(g), it is necessary (cf. §3) that an arbitrary function T(g) 

can be expanded in terms of the functions T"n(9). This means that the 

functions T„(9) form a complete set of normalized and orthogonal functions. 

If the initial wave function of the electron coincides with one of the func¬ 

tions Tn(9), then the corresponding constant an is evidently equal to unity, 

while all the others are zero. In other words, a measurement made on an 

electron in the state T^i?) gives with certainty the nth result. 

All these properties of the functions T^/g) show that they are the eigen¬ 

functions of some physical quantity (denoted by /) which characterizes the 

electron, and the measurement concerned can be spoken of as a measurement 

of this quantity. 

It is very important to notice that the functions 'Fn(i?') do not, in general, 

coincide with the functions <f>n(q); the latter are in general not even mutually 

orthogonal, and do not form a set of eigenfunctions of any operator. This 

expresses the fact that the results of measurements in quantum mechanics 

cannot be reproduced. If the electron was in a state 'F„(5)l then a measure¬ 

ment of the quantity / carried out on it leads with certainty to the value /„. 

After the measurement, however, the electron is in a state <f>n(q) different 

from its initial one, and in this state the quantity/ does not in general take 

any definite value. Hence, on carrying out a second measurement on the 

electron immediately after the first, we should obtain for / a value which did 
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not agree with that obtained from the first measurement.f To predict (in the 

sense of calculating probabilities) the result of the second measurement from 

the known result of the first, we must take from the first measurement the 

wave function 4>n(q) of the state in which it resulted, and from the second 

measurement the wave function 'frn(?) of the state whose probability is re¬ 

quired. This means that from the equations of quantum mechanics we deter¬ 

mine the wave function 4>n(q, t) which, at the instant when the first measure¬ 

ment is made, is equal tofn(q)\ the probability of the wzth result of the second 

measurement, made at time t, is then given by the squared modulus of the 

integral j <f>n{q, t)Tm*(q) dq. 

We see that the measuring process in quantum mechanics has a “two- 

faced” character: it plays different parts w’ith respect to the past and future 

of the electron. With respect to the past, it “verifies” the probabilities of the 

various possible results predicted from the state brought about by the previ¬ 

ous measurement. With respect to the future, it brings about a new state 

(see also §44). Thus the very nature of the process of measurement involves 

a far-reaching principle of irreversibility. 

This irreversibility is of fundamental significance. We shall see later (at 

the end of §18) that the basic equations of quantum mechanics are in them¬ 

selves symmetrical w’ith respect to a change in the sign of the time; here 

quantum mechanics does not differ from classical mechanics. The irrever¬ 

sibility of the process of measurement, however, causes the two directions 

of time to be physically non-equivalent, i.e. creates a difference between the 

future and the past. 

f There is. however, an important exception to the statement that results of measurements 
cannot be reproduced: the one quantity the result of whose measurement can be exactly 
reproduced is the coordinate. Two measurements of the coordinates of an electron, made at 
a sufficiently small interval of time, must give neighbouring values; if this were not so, it 
would mean that the electron had an infinite velocity. Mathematically, this is related to the 
fact that the coordinate commutes with the operator of the interaction energy between the 
electron and the apparatus, since this energy is (in non-relativistic theory) a function of the 
coordinates only. 



CHAPTER II 

ENERGY AND MOMENTUM 

§8. The Hamiltonian operator 

The wave function T completely determines the state of a physical system 

in quantum mechanics. This means that, if this function is given at some 

instant, not only are all the properties of the system at that instant described, 

but its behaviour at all subsequent instants is determined (only, of course, to 

the degree of completeness which is generally admissible in quantum mech¬ 

anics). The mathematical expression of this fact is that the value of the deri¬ 

vative d'Fjdt of the wave function with respect to time at any given instant 

must be determined by the value of the function itself at that instant, and, 

by the principle of superposition, the relation between them must be linear. 

In the most general form we can write 

ihd'i'iet = hw, (8.1) 

where H is some linear operator; the factor ih is introduced here for a reason 

that will become apparent. 

Since the integral JT*T d^ is a constant independent of time, we have 

d f fcT* f 

57 /l'1'1’d5=J ir'f’d5+ JT'_srd5=°- 
Substituting here (8.1) and using in the first integral the definition of the 

transpose of an operator, we can write (omitting the common factor i\h) 

| T//*T* dq - | dq = dq - |’T*/TF dq 

= f dq = 0. 

Since this equation must hold for an arbitrary function T, it follows that we 

must have identically H" = H\ the operator H is therefore Hermitian. Let 

us find the physical quantity to which it corresponds. To do this, we use 

the limiting expression (6.1) for the wave function and write 

5T i dS 

~dT~h~dt’ 

the slowly varying amplitude a need not be differentiated. Comparing this 

equation with the definition (8.1), we see that, in the limiting case, the 

operator H reduces to simply multiplying by — dS, dt. This means that 

25 
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- rS ct is the physical quantity into which the Hermitian operator H 

passes. 

The derivative — cS ct is just Hamilton’s function H for a mechanical 

system. Thus the operator H is what corresponds in quantum mechanics 

to Hamilton’s function; this operator is called the Hamiltonian operator or, 

more briefly, the Hamiltonian of the system. If the form of the Hamiltonian 

is known, equation (8.1) determines the wave functions of the physical 

system concerned. This fundamental equation of quantum mechanics is 

called the wave equation 

§9. The differentiation of operators with respect to time 

The concept of the derivative of a physical quantity with respect to time 

cannot be defined in quantum mechanics in the same way as in classical mech¬ 

anics. For the definition of the derivative in classical mechanics involves 

the consideration of the values of the quantity at two neighbouring but 

distinct instants of time. In quantum mechanics, however, a quantity which 

at some instant has a definite value does not in general have definite values at 

subsequent instants; this was discussed in detail in §1. 

Hence the idea of the derivative with respect to time must be differently 

defined in quantum mechanics. It is natural to define the derivative / of a 

quantity f as the quantity whose mean value is equal to the derivative, with 

respect to time, of the mean value /. Thus we have the definition 

/=/ (9-1) 

Starting from this definition, it is easy to obtain an expression for the 

quantum-mechanical operator / corresponding to the quantity /: 

/=/=ljT-/Td5-jT.|Tds+ + 

Here df/dt is the operator obtained by differentiating the operator / with 

respect to time; /may depend on the time as a parameter. Substituting for 

d'Y/dt, d*Y*ldt their expressions according to (8.1), we obtain 

/ = J'*•*!'*• d?+^ | (i?*T*)/Y dq-- |T*/(/?T) dq. 

Since the operator /? is Hermitian, we have 

J (i?*T*)(/T) d? = J Y*l3fY dq: 

thus 

_ Since, on the other hand, we must have, by the definition of mean values, 

/ = J‘T*/'F Aq, it is seen that the expression in parentheses in the inte- 
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grand is the required operator /:f 

f=T+i*V-&)- (92) o t n 

If the operator / is independent of time, / reduces, apart from a constant 

factor, to the commutator of the operator / and the Hamiltonian. 

A very important class of physical quantities is formed by those whose 

operators do not depend explicitly on time, and also commute with the 

Hamiltonian, so that / = 0. Such quantities are said to be conserved. For 

these / = / = 0, that is, / is constant. In other words, the mean value of 

the quantity remains constant in time. We can also assert that, if in a given 

state the quantity / has a definite value (i.e. the wave function is an eigen¬ 

function of the operator/ ), then it will have a definite value (the same one) 

at subsequent instants also. 

§10. Stationary states 

The Hamiltonian of a closed system (and of a system in a constant external 

field) cannot contain the time explicitly. This follows from the fact that, 

for such a system, all times are equivalent. Since, on the other hand, any 

operator of course commutes with itself, we reach the conclusion that 

Hamilton’s function is conserved for systems which are not in a varying 

external field. As is well known, a Hamilton’s function which is conserved 

is called the energy. The law of conservation of energy in quantum mecha¬ 

nics signifies that, if in a given state the energy has a definite value, this 

value remains constant in time. 

f In classical mechanics we have for the total derivative, with respect to time, of a quantity 
/ which is a function of the generalized coordinates qi and momenta pi of the system 

At dt /L Va?7 sp: J 

Substituting, in accordance with Hamilton’s equations, qi = SHIpi and pi = — clljdq,, we 
obtain 

AfiAt = a//a«+[//,/], 

1 Z^\dq, dp, dp,dq,J 

is what is called the Poisson bracket for the quantities / and H (see Mechanics, §42). On 
comparing with the expression (9.2), we see that, as we pass to the limit of classical mechanics, 
the operator H) reduces in the first approximation to zero, as it should, and in the 
second approximation (with respect to ti) to the quantity This result is true also 
for any two quantities / and g; the operator i( fg —gf) tends in the limit to the quantity 
h\_f, g], where [/, g] is the Poisson bracket 

U‘gl Z\dq,dp, dp, dq,)' 

This follows from the fact that we can always formally imagine a system whose Hamiltonian 
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States in which the energy has definite values are called stationary states 

of a system. They are described by wave functions Tn which are the eigen¬ 

functions of the Hamiltonian operator, i.e. which satisfy the equation 

= TnT"n, where En are the eigenvalues of the energy. Correspondingly, 

the wave equation (8.1) for the function Tn, 

ih dYJdt = /?Tn = EnYn 

can be integrated at once with respect to time and gives 

T„ = (10.1) 

where >pn is a function of the coordinates only. This determines the relation 

between the wave functions of stationary states and the time. 

We shall denote by the small letter ip the wave functions of stationary states 

without the time factor. These functions, and also the eigenvalues of the 

energy, are determined by the equation 

ify = E$. (10.2) 

The stationary state with the smallest possible value of the energy is called 

the normal or ground state of the system. 

The expansion of an arbitrary wave function *F in terms of the wave func¬ 

tions of stationary states has the form 

T = S a^WZ^niq)- (10.3) 

The squared moduli |an|2 of the expansion coefficients, as usual, determine 

the probabilities of various values of the energy of the system. 

The probability distribution for the coordinates in a stationary state is 

determined by the squared modulus ITJ2 = |</v|2; we see that it is indepen¬ 

dent of time. The same is true of the mean values 

/=J^*/Tnd$ = 

of any physical quantity / (whose operator does not depend explicitly on the 

time). 

As has been said, the operator of any quantity that is conserved commutes 

with the Hamiltonian. This means that any physical quantity that is con¬ 

served can be measured simultaneously with the energy. 

Among the various stationary states, there may be some which correspond 

to the same value of the energy (the same energy level of the system), but 

differ in the values of some other physical quantities. Such energy levels, 

to which several different stationary states correspond, are said to be 

degenerate. Physically, the possibility that degenerate levels can exist is 

related to the fact that the energy does not in general form by itself a com¬ 

plete set of physical quantities. 

If there are two conserved physical quantities / and g whose operators do 

not commute, then the energy levels of the system are in general degenerate. 

For, let >jj be the wave function of a stationary state in which, besides the 
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energy, the quantity / also has a definite value. Then we can say that the 

function gip does not coincide (apart from a constant factor) with ifr, if it did, 

this would mean that the quantity g also had a definite value, which is 

impossible, since / and g cannot be measured simultaneously. On the other 

hand, the function gip is an eigenfunction of the Hamiltonian, corresponding 

to the same value E of the energy as f- 

fiat) =$fit=mt). 

Thus we see that the energy E corresponds to more than one eigenfunction, 

i.e. the energy level is degenerate. 

It is clear that any linear combination of wave functions corresponding 

to the same degenerate energy level is also an eigenfunction for that value of 

the energy. In other words, the choice of eigenfunctions of a degenerate 

energy level is not unique. Arbitrarily selected eigenfunctions of a degener¬ 

ate energy level are not, in general, orthogonal. By a proper choice of linear 

combinations of them, however, we can always obtain a set of orthogonal 

(and normalized) eigenfunctions (and this can be done in infinitely many 

ways; for the number of independent coefficients in a linear transformation 

of n functions is «2, while the number of normalization and orthogonality 

conditions for n functions is |w(w + l), i.e. less than n2). 

These statements concerning the eigenfunctions of a degenerate energy 

level relate, of course, not only to eigenfunctions of the energy, but also to 

those of any operator. Oply those functions are automatically orthogonal 

which correspond to different eigenvalues of the operator concerned; 

functions which correspond to the same degenerate eigenvalue are not in 

general orthogonal. 

If the Hamiltonian of the system is the sum of two (or more) parts, 

fi = fi! + fi2, one of which contains only the coordinates <71 and the other 

only the coordinates <72, then the eigenfunctions of the operator fi can be 

written down as products of the eigenfunctions of the operators H\ and Ho, 

and the eigenvalues of the energy are equal to the sums of the eigenvalues of 

these operators. 

The spectrum of eigenvalues of the energy may be either discrete or 

continuous. A stationary state of a discrete spectrum always corresponds to 

a finite motion of the system, i.e. one in which neither the system nor any 

part of it moves off to infinity. For, with eigenfunctions of a discrete spec¬ 

trum, the integral J |T"|2 d<7, taken over all space, is finite. This certainly 

means that the squared modulus |T|2 decreases quite rapidly, becoming 

zero at infinity. In other words, the probability of infinite values of the co¬ 

ordinates is zero; that is, the system executes a finite motion, and is said to 

be in a bound state. 

For wave functions of a continuous spectrum, the integral J ITI2 d^ diverges. 

Here the squared modulus |Y|2 of the wave function does not directly deter¬ 

mine the probability of the various values of the coordinates, and must be 

regarded only as a quantity proportional to this probability. The divergence 

of the integral J |Y|2 d<7 is always due to the fact that |T"|2 does not become 
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zero at infinity (or becomes zero insufficiently rapidly). Hence we can say 

that the integral J |T|2 dq, taken over the region of space outside any arbi¬ 

trarily large but finite closed surface, will always diverge. This means that, 

in the state considered, the system (or some part of it) is at infinity. For a 

wave function which is a superposition of the wave functions of various 

stationary states of a continuous spectrum, the integral J I'Ll2 dq may 

converge, so that the system lies in a finite region of space. However, in the 

course of time, this region moves unrestrictedly, and eventually the system 

moves off to infinity. This can be seen as follows. Any superposition of 

wave functions of a continuous spectrum has the form 

T = J aEe-»l^^E{q) dE. 

The squared modulus ofT can be written in the form of a double integral: 

|T|2 = JJ a EaE+d*mE'-E)t ^E,*^ dEdE'_ 

If we average this expression over some time interval T, and then let T tend 

to infinity, the mean values of the oscillating factors e^!h^E' ~E'>t, and there¬ 

fore the whole integral, tend to zero in the limit. Thus the mean value, 

with respect to time, of the probability of finding the system at any given 

point of configuration space tends to zero. This is possible only if the 

motion takes place throughout infinite space.fThus the stationary states of 

a continuous spectrum correspond to an infinite motion of the system. 

§11. Matrices 

We shall suppose for convenience that the system considered has a discrete 

energy spectrum; all the relations obtained below can be generalized at once 

to the case of a continuous spectrum. Let T = be the expansion of 

an arbitrary wave function in terms of the wave functions Yn of the stationary 

states. If we substitute this expansion in the definition (3.8) of the mean 

value of some quantity /, we obtain 

j = VZan*amfnm{t), (1U) 

where fnm(t) denotes the integral 

fnm{t) = j'¥n*/Vmdq. (11.2) 

The set of quantities/Mm(/) with all possible n and m is called the matrix of the 

t Note that, for a function 'F which is a superposition of functions of a discrete spectrum, 
we should have 

i.e. the probability density remains finite on averaging over time. 
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quantity/, and each of the/nm(f) is called the matrix element corresponding 
to the transition from state m to state w.f 

The dependence of the matrix elements fnm(t) on time is determined (if 

the operator / does not contain the time explicitly) by the dependence of the 

functions Tn on time. Substituting for them the expressions (10.1), we find 

that j 

= /„m*<“--t, (11.3) 

where 

t»nn. = {En-Em)lh (11.4) 

is what is called the transition frequency between the states n and m, and the 

quantities 

/„» = d? (11.5) 

form the matrix of the quantity / which is independent of time, and which 

is commonly used.}; 

The matrix elements of the derivative / are obtained by differentiating the 

matrix elements of the quantity / with respect to time; this follows directly 

from the fact that 

}=f=YLan*amfnm{t). (11.6) 

From (11.3) we thus have for the matrix elements of / 

/»»(*) = *«W»»(0 (11.7) 

or (cancelling the time factor e'Wnmt from both sides) for the matrix elements 

independent of time 

(/)»« = ™nmfnm = mPn-EJfnm. (11.8) 

To simplify the notation in the formulae, we shall derive all our relations 

below for the matrix elements independent of time; exactly similar relations 

hold for the matrices which depend on the time. 

For the matrix elements of the complex conjugate/* of the quantity/we 

obtain, taking into account the definition of the Hermitian conjugate operator, 

(/*)»m = J 'Pn*f+'Pm d? = J d? = J dq 

or 

(/*)»» = (A»»)*- (11-9) 

For real physical quantities, which are the only ones we usually consider, 

f The matrix representation of physical quantities was introduced by Heisenberg in 1925, 
before Schrodinger’s discovery of the wave equation “Matrix mechanics” was later de¬ 
veloped by M. Born, \V. Heisenberg and P Jordan. 

J Because of the indeterminacy of the phase factor m normalized wave functions (see §2), 
the matrix elements fnm (and fnm(t)) also are determined only to within a factor of the form 

Here again this indeterminacy has no effect on any physical results. 
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we consequently have 

fnm =/-' (11.10) 

(/mn* stands for (fmn)*). Such matrices, like the corresponding operators, 

are said to be Hermitian. 

Matrix elements with n = m are called diagonal elements. These are 

independent of time, and (11.10) shows that they are real. The element fnn 

is the mean value of the quantity / in the state iJj„ 

It is not difficult to obtain the ‘multiplication rule” for matrices To do 

so, we first observe that the formula 

tin = $fmn4>m (11.11) 

holds. This is simply the expansion of the function tin in terms of the func¬ 

tions ipm, the coefficients being determined in accordance with the general 

formula (3.5). Remembering this formula, let us write down the result of 

the product of two operators acting on the function 

Bn = f(&n) = fZgkn4k = 

Since, on the other hand, we must have 

Bn = 2 (Jg)mn'Pm, 

we arrive at the result that the matrix elements of the product/f are deter¬ 

mined bv the formula 
Ug)m n=£fmkgkn. (11.12) 

This rule is the same as that used in mathematics for the multiplication of 

matrices: the rows of the first matrix in the product are multiplied by the 

columns of the second matrix 

If the matrix is given, then so is the operator itself. In particular, if the 

matrix is given, it is in principle possible to determine the eigenvalues of the 

physical quantity concerned and the corresponding eigenfunctions. 

We shall now consider the values of all quantities at some definite instant, 

and expand an arbitrary wave function T (at that instant) in terms of the 

eigenfunctions of the Hamiltonian, i.e. of the wave functions >pm of the 

stationary states (these wave functions are independent of time). 

T=Zcm/m, (11.13) 

where the expansion coefficients are denoted by cm. We substitute this expan¬ 

sion in the equation /T = /T which determines the eigenvalues and eigen¬ 

functions of the quantity/. We have 

Zcm(//m)=/Zcm/m. 

We multiply both sides of this equation by /„* and integrate over q. Each 

of the integrals J 4>n*tim dq on the left-hand side of the equation is the cor¬ 

responding matrix element fnm. On the right-hand side, all the integrals 

J 4>n*4Jm d? m n vanish by virtue of the orthogonality of the functions 
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ipm, and J ifjn*ipn d§ = 1 by virtue of their normalization.f Thus 

=fc„, (11-14) 

or 

s(/„m-ys„m)Cm = o, 

where 8nm = 0 for m n and = 1 for m = n. 

Thus we have obtained a system of homogeneous algebraic equations of 

the first degree (with the cm as unknowns). As is well known, such a system 

has solutions different from zero only if the determinant formed by the 

coefficients in the equations vanishes, i.e. only if 

|/»ra-A.J=0. (11.15) 

The roots of this equation (in which / is regarded as the unknown) are the 

possible values of the quantity/. The set of values cm satisfying the equations 

(11.14) when /is equal to any of these values determines the corresponding 

eigenfunction. 

If, in the definition (11-5) of the matrix elements of the quantity/, we take 

as ipn the eigenfunctions of this quantity, then from the equation //„ =/n 

we have 

/»« = J &.*/*« d? = /» J dq. 

By virtue of the orthogonality and normalization of the functions this 

gives fnm = 0 for n ^ m and fmm — fm. Thus only the diagonal matrix 

elements are different from zero, and each of these is equal to the correspond¬ 

ing eigenvalue of the quantity /. A matrix with only these elements different 

from zero is said to be put in diagonal form. In particular, in the usual 

representation, with the wave functions of the stationary states as the functions 

fny the energy matrix is diagonal (and so are the matrices of all other physical 

quantities having definite values in the stationary states). In general, the 

matrix of a quantity /, defined with respect to the eigenfunctions of some 

operator g, is said to be the matrix of / in a representation in which g is diagonal. 

We shall always, except where the subject is specially mentioned, understand 

in future by the matrix of a physical quantity its matrix in the usual repre¬ 

sentation, in which the energy is diagonal. Everything that has been said 

above regarding the dependence of matrices on time refers, of course, only 

to this usual representation. X 

f In accordance with the general rule (§5), the set of coefficients cn in the expansion (11.13) 
can be considered as the wave function in the “energy representation” (the variable being 
the suffix n that gives the number of the energy eigenvalue). The matrix fnm here acts as 
the operator / in this representation, the action of which on the wave function is given by 
the left-hand side of (11.14) The formula / = TX c*(fnmcm) then corresponds to the general 
expression for the mean value of a quantity in terms of its operator and the wave function of 

t Bearing in mind the diagonalitv of the energy matrix, it is easy to see that equation (11.8) 
is the operator relation (9 2) written in matrix form 
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By means of the matrix representation of operators we can prove the 

theorem mentioned in §4: if two operators commute with each other, they 

have their entire sets of eigenfunctions in common. Let / and g be two 

such operators. From fg — gf and the matrix multiplication rule (11.12), 

it follows that 

^ fmkSkn = jp gmkfkn¬ 

it we take the eigenfunctions of the operator / as the set of functions tpn with 

respect to which the matrix elements are calculated, we shall have fmh — 0 

for m =£ k, so that the above equation reduces to fmmgmn = £mn/n„, or 

g mn(/m fn) = 0. 

If all the eigenvalues/n of the quantity / are different, then for all m / n we 

have fm—fn ¥= 0, so that we must have gmn = 0. Thus the matrix gmn is 

also diagonal, i.e. the functions tpn are eigenfunctions of the physical quantity 

g also. If, among the values /„, there are some which are equal (i.e. if there 

are eigenvalues to which several different eigenfunctions correspond), then 

the matrix elements gmn corresponding to each such group of functions ipn 

are, in general, different from zero. However, linear combinations of the 

functions ipn which correspond to a single eigenvalue of the quantity / are 

evidently also eigenfunctions of/; one can always choose these combinations 

in such a way that the corresponding non-diagonal matrix elements gmn are 

zero, and thus, in this case also, we obtain a set of functions which are 

simultaneously the eigenfunctions of the operators / and g. 

The following formula is rseful.in applications: 

(dH/d X)nn = dEnjd A, (11.16) 

where A is a parameter on which the Flamiltonian /? (and therefore the 

energy eigenvalues En) depends. It is proved as follows. Differentiating 

the equation (H-En)4>n = 0 with respect to A and then multiplying on the 

left by ipn*, we obtain 

V K dX \dX 8Xr 

On integration with respect to q, the left-hand side gives zero, since 

J ^(H-E^dq = tf-EnW dq, 

the operator H being Hermitian. The right-hand side gives the required 

equation. 

A widely used notation (introduced by Dirac) in recent literature is that 
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which denotes the matrix elements fnm byf 

<"l/l«>- (11-17) 

This symbol is written so that it may be regarded as “consisting” of the 

quantity / and the symbols |m> and <«| which respectively stand for the 

initial and final states as such (independently of the representation of the 

wave functions of the states). With the same symbols we can construct 

notations for the expansion coefficients of wave functions: if there is a 

complete set of wave functions corresponding to the states |«i>, |«2>, , 

the coefficients in the expansion in terms of these of the wave function of a 

state |my are denoted by 

<«i|wz> = J d^. (11.18) 

§12. Transformation of matrices 

The matrix elements of a given physical quantity can be defined with 

respect to various sets of wave functions, for example the wave functions of 

stationary states described by various sets of physical quantities, or the wave 

functions of stationary states of the same system in various external fields. 

The problem therefore arises of the transformation of matrices from one 

representation to another. 

Let tpn(q) and fn'(q) (« = 1, 2, ...) be two complete sets of orthonormal 

functions, related by some linear transformation: 

fn=VSmn*m, (12.1) 

which is simply an expansion of the function fn' in terms of the complete set 

of functions fn. This transformation may be conventionally written in the 

operator form 
4>n = Sfn. (12.2) 

The operator S must satisfy a certain condition in order that the functions 

ipn should be orthonormal ;f the functions ipn are. Substituting (12.2) in 

the condition 

J >Pm'*4,n dq = 8mn, 

and using the definition of the transposed operator (3.14), we have 

J (§<pn)£*4im* df = J ipm*S*Sipn dq = 8mn. 

If these equations hold for all m and n, we must have §*S = 1, or 

= §+ = S~\ (12.3) - 

t Both notations are used in the present book. The form (11.17) is especially convenient 
when each suffix has to be written as several letters. 
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i.e. the inverse operator is equal to the Hermitian conjugate operator. 

Operators having this property are said to be unitary. Owing to this property, 

the transformation ipn = *§_1i/<n' inverse to (12.1) is given by 

= I Snm*<pm\ (12.4) 

Writing the equations .§+S = 1 and SS+ = 1 in matrix form, we obtain 

the following forms of the unitarity condition: 

E Sim*Sin = 8„n, (12.5) 

2 Sml*Snl = Bmn. (12.6) 

Let us now consider some physical quantity/ and write down its matrix 

elements in the “new” representation, i.e. with respect to the functions ipn'- 

These are given by the integrals 

J 4>m *fon dq = J dq 

= [ ibm*$*fS<pn dq 

= J 4im*S-lfSfa dq. 

Hence we see that the matrix of the operator / in the new representation is 

equal to the matrix of the operator 

/' = S~i/S (12.7) 

in the old representation.f 

The sum of the diagonal elements of a matrix is called the trace or spur\ 

of the matrix and denoted by tr j: 

tr f=$fnn. (12.8) 

It may be noted first of all that the trace of a product of two matrices is 

independent of the order of multiplication: 

tr (fs) = tr (£/)> (12.9) 

"1 If {/,§} = —ihc is the commutation rule for two operators/and g, the transformation 
(12.7) gives {/', g ) = —ihc', i.e. the rule is unchanged. We have shown in the footnote 
in §9 that c is the quantum analogue of the classical Poisson bracket [/,£]. In classical 
mechanics, however, the Poisson brackets are invariant under canonical transformations of 
the variables (generalized coordinates and mc-ienta); see Mechanics, §45. In this sense we 
can say that unitary transformations in quant ,n mechanics play a role analogous to that of 
canonical transformations in classical mecha- cs. 

I From the German word Spur. The no in sp/ is also used. The trace can be defined, 
of course, only if the sum over n is convert 
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since the rule of matrix multiplication gives 

tr (fg) = E 'Lfnkgkn = £ £ gknfnk = tr (gf). 

Similarly we can easily see that, for a product of several matrices, the trace 

is unaffected by a cyclic permutation of the factors; for example, 

tr {Jgh) = tr (hfg) = tr (ghf). (12.10) 

An important property of the trace is that it does not depend on the choice 

of the set of functions with respect to which the matrix elements are defined, 

since 
(tr/)' = tr (5-i/S) = tr (SS^f) = tr/. (12.11) 

A unitary transformation leaves unchanged the sum of the squared 

moduli of the functions that are transformed: from (12.6) we have 

£ I’pi'l2 = £ Sici’fikSu*>pi* = £ = £ l</'*l2- (12.12) 
i k,l,i k,l k 

Any unitary operator may be writtenras 

S = A, (12.13) 

where R is an Hermitian operator: since R+ = R, we have 

S+ = e-^+ = = 5-1. 

The expansion 

/' = + ... (12.14) 

is easily verified by a direct expansion of the factors exp ( ± iR) in powers of 

R. This expansion may be useful when R is proportional to a small para¬ 

meter, so that (12.14) becomes an expansion in powers of the parameter. 

§13. The Heisenberg representation of operators 

In the mathematical formalism of quantum mechanics described here, the 

operators corresponding to various physical quantities act on functions of the 

coordinates and do not usually depend explicitly on time. The time depen¬ 

dence of the mean values of physical quantities is due only to the time 

dependence of the wave function of the state, according to the formula 

f{t) = J T*($, t)Mq, t) dq. (13.1) 

The quantum-mechanical treatment can, however, be formulated also in a 

somewhat different but equivalent form, in which the time dependence is 

transferred from the wave functions to the operators. Although we shall not 

use this Heisenberg representation (as opposed to the Schrodinger represen¬ 

tation) of operators in the present volume, a statement of it is given here with 
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a view to applications in the relativistic theory. 

We define the operator (which is unitary; see (12.13)) 

5 = exp[-(ilh)Ht], (13.2) 

where i? is the Hamiltonian of the system. By definition, its eigenfunctions 

are the same as those of the operator//, i.e. the stationary-state wave functions 

<£«(?)> where 

SMQ) = e-'WE«yn(q). (13.3) 

Hence it follows that the expansion (10.3) of an arbitrary wave function 

T in terms of the stationary-state wave functions can be written in the 

operator form 

%') = %»), (13.4) 

i.e. the effect of the operator .§ is to convert the wave function of the system 

at some initial instant into the wave function at an arbitrary instant. 
Defining, as in (12.7), the time-dependent operator 

f(t) = S-i/S, (13.5) 
we have 

At) = j 0)/(OT($, 0) d9, (13.6) 

and thus obtain the formula (3.8) for the mean value of the quantity / in a 

form in which the time dependence is entirely transferred to the operator (for 

our definition of an operator rests on formula (3.8)). 

It is evident that the matrix elements of the operator (13.5) with respect 

to the stationary-state wave functions are the same _:s the time-dependent 

matrix elements fnm{t) defined by formula (11.3). 

Finally, differentiating the expression (13.5) with respect to time (assuming 

that the operators / and // do not themselves involve t), we obtain 

- ft)#]. (13-7) 
ct n 

which is similar in form to (9.2) but has a somewhat different significance: 

the expression (9.2) defines the operator / corresponding to the physical 

quantity/, w'hile the left-hand side of equation (13.7) is the time derivative 

of the operator of the quantity / itself. 

§14. The density matrix 

The description of a system by means of a wave function is the most 

complete description possible in quantum mechanics, in the sense indicated 

at the end of §1. 

States that do not allow- such a description are encountered if we consider 

a system that is part of a larger closed system. We suppose that the closed 

system as a w-hole is in some state described by the w'ave function '/‘(f, x), 

w-here x denotes the set of coordinates of the system considered, and q the 

remaining coordinates of the closed system. This function in general does 
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not fall into a product of functions of x and of q alone, so that the system 

does not have its own wave function.-}- 

Let / be some physical quantity pertaining to the system considered. Its 

operator therefore acts only on the coordinates x, and not on q. The mean 

value of this quantity in the state considered is 

/=JJ'F*(?,*)/'F(?,.r)d?d*. (14.1) 

We introduce the function p(x, *') defined by 

p(x, x') = J T($, .v)T*(?, x) dq, (14.2) 

where the integration is extended only over the coordinates q; this function 

is called the density matrix of the system. From the definition (14.2) it is 

evident that the function is “Hermitian”: 

p*{x,x)=p{x',x). (14.3) 

The “diagonal elements” of the density matrix 

p{x,x) = J PF(?,x)|2d? 

determine the probability distribution for the coordinates of the system. 

Using the density matrix, we can write the mean value / in the form 

/=J[/p(*. *')]*•-* d*. (14.4) 

Here/ acts only on the variables v in the function p(x, .v'); after calculating 

the result of its action, we put x' = x. We see that, if we know the density 

matrix, we can calculate the mean value of any quantity characterizing the 

system. It follows from this that, by means of p(x, x'), we can also determine 

the probabilities of various values of the physical quantities in the system. 

Thus the state of a system which does not have a wave function can be 

described by means of a density matrix. This does not contain the co¬ 

ordinates q which do not belong to the system concerned, though, of course, 

it depends essentially on the state of the closed system as a whole. 

The description by means of the density matrix is the most general form 

of quantum-mechanical description of the system. The description by means 

of the wave function, on the other hand, is a particular case of this, cor¬ 

responding to a density matrix of the form p(x, x') = 'F(x)T*(x'). The 

following important difference exists between this particular case and the 

general one.+ For a state having a wave function there is always a complete 

f In order that 't’iq, x) should (at a given instant) fall into such a product, the measurement 
as a result of which this state was brought about must completely describe the system con¬ 
sidered and the remainder of the closed system separately. In order that 'F(g, x) should 
continue to have this form at subsequent instants, it is necessarv in addition that these parts of 
the closed system should not interact (see §2). N'either of these conditions is now assumed. 

t States having a wave function are called "pure" states, as distinct from “mixed” states, 
which are described by a density matrix. 
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set of measuring processes such that they lead with certainty to definite 

results (mathematically, this means that T is an eigenfunction of some opera¬ 

tor). For states having only a density matrix, on the other hand, there is no 

complete set of measuring processes whose result can be uniquely predicted. 

Let us now suppose that the system is closed, or became so at some instant. 

Then we can derive an equation giving the change in the density matrix with 

time, similar to the wave equation for the T" function. The derivation can be 

simplified by noticing that the required linear differential equation for 

p(x, x', t) must be satisfied in the particular case where the system has a wave 

function, i.e. 

p{x, x\ t) = T(x, t)T*(x', t). 

Differentiating with respect to time and using the wave equation (8.1), we 

have 

dp 8Y(x, t) dxV*(x', t) 
ih— = t)—-—-+ih'V(x, t)—-—- 

dt v ' 0/ dt 

= T*(x', t)HY(x, t)-T(x, t)H'*Y*(x\ t), 

where Z? is the Hamiltonian of the system, acting on a function of x, 

and Z?-' is the same operator acting on a function of x'. The functions 

T*(x', t) and T(x, t) can obviously be placed behind the respective operators 

Z? and Z?', and we thus obtain the required equation: 

ih £p(x, x', t)j£t = (Z? — ZZ'*)p(x, x , t). (14.5) 

Let Tw(x, t) be the wave functions of the stationary states of the system, 

i.e. the eigenfunctions of its Hamiltonian. We expand the density matrix 

in terms of these functions; the expansion consists of a double series in the 

form 

P{x, x\ t)='Z,T,amnx¥n*(x',t)x¥m{x,t) 

= 22 amn4,n*(x')<},m{x)dil^En-^Jt. (14.6) 

For the density matrix, this expansion plays a part analogous to that of the 

expansion (10.3) for wave functions. Instead of the set of coefficients an, 

we have here the double set of coefficients amn. These clearly have the pro¬ 

perty of being “Hermitian”, like the density matrix itself: 

= <W (14.7) 

For the mean value of some quantity / we have, substituting (14.6) in (14.4), 

fr= £2 amn J Tn*(x, t)pVm(x, t) dx, 

or 

/= 2Xamnfnm(t) = SZ arnrifnmdilME’‘~E^)t, (14.8) 
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where fnm are the matrix elements of the quantity /. This expression is 

similar to formula (ll.l).f 

The quantities amn must satisfy certain inequalities. The “diagonal 

elements” p(x, x) of the density matrix, which determine the probability 

distribution for the coordinates, must obviously be positive quantities. It 

therefore follows from the expression (14.6) (with x' = x) that the quadratic 

form 
ZS amJn*£m 

constructed with the coefficients amn (where the are arbitrary complex 

quantities) must be positive. This places certain conditions, known from the 

theory of quadratic forms, on the quantities anm. In particular, all the 

“diagonal” quantities must clearly be positive: 

a-nn > 0, (14.9) 

and any three quantities ann, amm and amn must satisfy the inequality 

annamm > |cmn|2. (14.10) 

To the “pure” case, where the density matrix reduces to a product of 

functions, there evidently corresponds a matrix amn of the form 

(14.11) 

We shall indicate a simple criterion which enables us to decide, from the 

form of the matrix Omn, whether we are concerned with a “pure” or a 

“mixed” state. In the pure case we have 

(a2)m„ = 2 amkakn 

= 2 ak*aman*ak 

= aman* Z | <2*12 

= aman*, 
or 

(«2)ran = flram (14.12) 

i.e. the density matrix is equal to its own square. 

§15. Momentum 

Let us consider a closed system of particles not in an external field. Since 

all positions in space of such a system as a whole are equivalent, we can say, 

in particular, that the Hamiltonian of the system does not vary when the 

system undergoes a parallel displacement over any distance. It is sufficient 

that this condition should be fulfilled for an arbitrary small displacement. 

An infinitely small parallel displacement over a distance 8r signifies*a trans¬ 

formation under which the radius vectors ra of all the particles (a being the 

number of the particle) receive the same increment 8r : rQ -> rQ + 8r. An 

t The quantities amn form the density matrix in the energy representation. The description 
of the states of a system bv means of this matrix was introduced independently by L. Landau 
and F Bloch in 1927. 
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arbitrary function tp(ri, r2, ...) of the coordinates of the particles, under 

such a transformation, becomes the function 

^(rj+Sr.rjj+Sr,...) = ip(rlt r2,... )+Sr . E VQ^ 

= (1+Sr. E Va)^(rltr„...) 

(Va denotes the operator of differentiation with respect to ra). The expression 

l+8r . E VQ 

is the operator of an infinitely small displacement, which converts the 

function ip(ri, r2, ...) into the function 

ip(r1+Sr, r2+8r, ...). 

The statement that some transformation does not change the Hamiltonian 

means that, if we make this transformation on the function flip, the result is 

the same as if we make it only on the function <p and then apply the operator fl. 

Mathematically, this can be written as follows. Let 0 be the operator which 

effects the transformation in question. Then we have 0(fhp) = fl(0<p), whence 

on-no = o, 

i.e. the Hamiltonian must commute with the operator 0. 
In the case considered, the operator 0 is the operator of an infinitely 

small displacement. Since the unit operator (the operator of multiplying 

by unity) commutes, of course, with any operator, and the constant factor 8r 

can be taken in front of /?, the condition On~nO = 0 reduces here to 

(E V0)tf-tf(E V0) = 0. (15.1) 

As we know, the commutability of an operator (not containing the time 

explicitly) with 7? means that the physical quantity corresponding to that 

operator is conserved. The quantity whose conservation for a closed system 

follows from the homogeneity of space is the momentum of the system (cf. 

Mechanics, §7). Thus the relation (15.1) expresses the law of conservation 

of momentum in quantum mechanics; the operator E Va must correspond, 

apart from a constant factor, to the total momentum of the system, and 

each term Va of the sum to the momentum of an individual particle. 

The coefficient of proportionality between the operator p of the momentum 

of a particle and the operator V can be determined by means of the passage 

to the limit of classical mechanics, and is — ih: 

p = -ihV, (15.2) 

or, in components, 

px = —ihd/dx, pv — —ikd/dy, pz = —ihdjdz. 

Using the limiting expression (6.1) for the wave function, we have 

pT = -ih(ijh) TVS = TV 5, 
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i.e. in the classical approximation the effect of the operator p reduces to 

multiplication by VS. The gradient VS of the action is the classical 

momentum p of the particle (see Mechanics, §43). 

It is easy to see that the operator (15.2) is Hermitian, as it should be. 

For, with arbitrary functions ip(x) and fi(x) which vanish at infinity, we have 

J 'frpx'P dx = —ih J" 4>-^- dx = ih J" dx = J" *ppx*<j> dx, 

and this is the condition that the operator should be Hermitian. 

Since the result of differentiating functions with respect to two different 

variables is independent of the order of differentiation, it is clear that the 

operators of the three components of momentum commute with one another: 

jy>v-M, = o, AA-A£, = o, Pvf>z-f>zPv = o. (i5.3) 

This means that all three components of the momentum of a particle can 

simultaneously have definite values. 

Let us find the eigenfunctions and eigenvalues of the momentum operators. 

They are determined by the vector equation 

— ihVifi = pifi. (15.4) 

The solutions are of the form 

p = c<p/n)p-r, (15.5) 

where C is a constant. If all three components of the momentum are given 

simultaneously, we see that this completely determines the wave function 

of the particle. In other words, the quantities px,py, pz form one of the poss¬ 

ible complete sets of physical quantities for a particle. Their eigenvalues 

form a continuous spectrum extending from — oo to + oo. 

According to the rule (5.4) for normalizing the eigenfunctions of a con¬ 

tinuous spectrum, the integral J <P*p-<Pp dF taken over all space (dF = dx 

dy d*r) must be equal to the delta function 8(p' -p).f However, for reasons 

that will become clear from subsequent applications, it is more natural to 

normalize the eigenfunctions of the particle momentum by the delta function 

of the momentum difference divided by 2nh: 

or, equivalently, 

J ^P *>ApdF = (2*Kp S(p'-p) (15.6) 

(since each of the three factors in the three-dimensional delta function 

is 8[(p’x—px)j2TTh\ = 2-nh S(p'x-px), and so on). 

t The three-dimensional function S(a) of a vector a is defined as a product of delta functions 
of the components of the vector a: S(a) = S{az)S(ay)S(az). 
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The integration is effected by means of the formulaf 

^ J df = «(«)■ (15.7) 

This shows that the constant in (15.5) is equal to unity if the normalization 

is according to (15.6):J 
</<p = e(iM)P-r (15.8) 

The expansion of an arbitrary wave function </<(r) of a particle in terms 

of the eigenfunctions of its momentum operator is simply the expansion 

as a Fourier integral: 

M = J °<P)Mr)^ = J «P<15-9’ 
(where d3p = dpxdpydpz). The expansion coefficients a(p) are, according 

to formula (5.3), 

a(p) = J 0(«-)0t>*(r) dF == J ^(r)r(»'rdF. (15.10). 

The function a(p) can be regarded (see §5) as the wave function of the 

particle in the “momentum representation”; |<z(p)|2 d3pl(2-nh)3 is the proba¬ 

bility that the momentum has a value in the interval d3p. 

Just as the operator p corresponds to the momentum, determining its 

eigenfunctions in the coordinate representation, we can introduce the 

operator r of the coordinates of the particle in the momentum represen¬ 

tation. It must be defined so that the mean value of the coordinates can be 

represented in the form 

fl*(p)ffl(p); 
{2-rrhf 

(15.11) 

On the other hand, this mean value is determined from the wave function 

0(r) by 

? = J n/rdF. 

f The conventional meaning of this formula is that the function on the left-hand side has 
the property (5.8) of the delta function. Substituting &(x—a) in the form (15.7), we obtain 
from (5.8) the well-known Fourier integral formula 

/(«) - J //(*)*'«*-» d* df/2tt 

J Note that with this normalization the probability density |i/i|2 = 1, i.e. the function is 
normalized to “one particle per unit volume”. This agreement of normalizations is, of 
course, no accident; see the last footnote to §48. 



§16 Uncertainty relations 45 

Substituting </<(r) in the form (15.9) we have (integrating by parts) 

r0(r) = (2t7^)-3 J ra(p)^'/«p-r d3/> 

= (2t7^)-3 J ihe«i»p-T[da(p)/dp] d*p. 

Using this expression and (15.10), we find 

r = (2t7^)-3 J J <p*(r)ih[da(p)ldp]e,i^p-T d^pdV 

= | ^*(p)[da(p)/dp]^|- 

Comparing with (15.11), we see that the radius vector operator in the 

momentum representation is 

r = midp. (15.12) 

The momentum operator in this representation reduces simply to multipli¬ 

cation by p. 

Finally, we shall express in terms of p the operator of a parallel displace¬ 

ment in space over any finite (not only infinitesimal) distance a. By the 

definition of this operator (Tf) we must have 

t4(r) = Mr+a). 

Expanding the function i/<(r+a) in a Taylor series, we have 

^(r+a) = vHr)+a . d^(r)/0r+ ..., 

or, introducing the operator p = — z71V, 

lA(r+a) = [l+U -P+\(^ • p)2+ - ]l«r). 

The expression in brackets is the operator 

fa = e(i/«a-p. (15.13) 

This is the required operator of the finite displacement. 

§16. Uncertainty relations 

Let us derive the rules for commutation between momentum and co¬ 

ordinate operators. Since the result of successively differentiating with 

respect to one of the variables x, y, z and multiplying by another of them 

does not depend on the order of these operations, we have 

Pxy~ypx = 0, pxz-zpx = 0, 

and similarly for py, f>z. 

(16.1) 
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To derive the commutation rule for px and x, we write 

(pzx—xpx)ip — —ih d(xip)ldx+ikx dip/dx 

= — iliip. 

We see that the result of the action of the operator pxx—xpx reduces to 

multiplication by —ih; the same is true, of course, of the commutation of py 

with y and pz with z. Thus vve havef 

pxX—xpz — —ih, pvy—ypv = —ih, pIz—zpI = —ih. (16.2) 

All the relations (16.1) and (16.2) can be written jointly in the form 

pfxk—xkpi — — ih§ik (i,k = x,y,z). (16.3) 

Before going on to examine the physical significance of these relations and 

their consequences, we shall set down tu’O formulae u’hich u’ill be useful 

later. Let /(r) be some function of the coordinates. Then 

P/«-/(r)p = -ikS7f. (16.4) 

For 

(P/-/PW = -*‘*[V(/i»-/Vifl - -iWVf. 

A similar relation holds for the commutator of r with a function of the 

momentum operator: 

/(P)r-r/(p) = —ihdf/cp. (16.5) 

It can be derived in the same w-ay as (16.4) if w-e calculate in the momentum 

representation, using the expression (15.12) for the coordinate operators. 

The relations (16.1) and (16.2) show- that the coordinate of a particle along 

one of the axes can have a definite value at the same time as the components 

of the momentum along the other tu’O axes; the coordinate and momentum 

component along the same axis, however, cannot exist simultaneously. In 

particular, the particle cannot be at a definite point in space and at the same 

time have a definite momentum p. 

Let us suppose that the particle is in some finite region of space, whose 

dimensions along the three axes are (of the order of magnitude of) Ax, Ay, Az. 

Also, let the mean value of the momentum of the particle be p0. Mathe¬ 

matically, this means that the wave function has the form tp — u(r)e<‘ /A>p°-r, 

where u(r) is a function which differs considerably from zero only in the 

region of space concerned. We expand the function <p in terms of the eigen¬ 

functions of the momentum operator (i.e. as a Fourier integral). The co¬ 

efficients a(p) in this expansion are determined by the integrals (15.10) of 

functions of the form u(r)e<i/R><Pt~p>-r. If this integral is to differ consider¬ 

ably from zero, the periods of the oscillatory factor e(i/A)(p»-p)-r must not be 

small in comparison with the dimensions Ax, Ay, Az of the region in which 

the function u(r) is different from zero. This means that a(p) will be con- 

f These relations, discovered in matrix form by Heisenberg in 1925, formed the genesis of 
quantum mechanics. 
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siderably different from zero only for values of p such that (llh)(p0x—px)Ax < 

1, etc. Since |«(p)|2 determines the probability of the various values of the 

momentum, the ranges of values of px, py, pz in which o(p) differs from zero 

are just those in which the components of the momentum of the particle may 

be found, in the state considered. Denoting these ranges by Apx, Apy, Apz, 

we thus have 

Apjlx ~ h, ApvAy ~ h, Ap2Az ~ h. (16.6) 

These relations, known as the uncertainty relations, were obtained by 

Heisenberg in 1927. 

We see that, the greater the accuracy with which the coordinate of the 
particle is known (i.e. the less Ax), the greater the uncertainty Apx in the 

component of the momentum along the same axis, and vice versa. In parti¬ 

cular, if the particle is at some completely definite point in space (Ax = 

Ay — Az = 0), then Apx = Apy = Apz = co. This means that all values 

of the momentum are equally probable. Conversely, if the particle has a 

completely definite momentum p, then all positions of it in space are equally 

probable (this is seen directly from the wave function (15.8), whose squared 

modulus is quite independent of the coordinates). 

If the uncertainties of the coordinates and momenta are specified by the 

standard deviations 

Sx = V[(*-x)2], 8px = ViCP^p-xfl 

we can specify exactly the least possible value of their product (H. Weyl). Let 

us consider the one-dimensional case of a wave packet with wave function 

>p(x) depending on only one coordinate, and assume for simplicity that the 

mean values of x and px in this state are zero. We consider the obvious 

inequality 

where a is an arbitrary real constant. On calculating this integral, noticing 

that 

we obtain 

2(Sx)2-a + (l/^2)(S^)2 3s 0. 
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If this quadratic (in a) trinomial is positive for all a, its discriminant must be 

negative, which gives the inequality 

8x hpx ^ \h. (16.7) 

The least possible value of the product is \h, and occurs for wave packets with 

wave functions of the form 

0 = (2tt)i/4 V(8*) exp (hPaX ~ 4(S^)’ (16’8) 

w’here po and bx are constants. The probabilities of the various values of the 

coordinates in such a state are 

\<p\2 = ---exp (--—V 
V(2tt) ,8x F V 2(8x)2J 

and thus have a Gaussian distribution about the origin (the mean value x = 0) 

with standard deviation 8x. The wave function in the momentum represen¬ 

tation is 

a(px) = 0(*)c-«/»>»-* d*. 

Calculation of the integral gives 

a{px) = constant x exp |~ — ^ 

The distribution of probabilities of values of the momentum, \a(px)\2, is also 

Gaussian about the mean value gTx = po, with standard deviation 8px = 

fr/28x, so that the product 8px8x is indeed bh. 

Finally, w-e shall derive another useful relation. Let/andg be two physical 

quantities w'hose operators obey the commutation rule 

-M, (16:9) 

where c is the operator of some physical quantity c. On the right-hand side 

of the equation the factor h is introduced in accordance with the fact that in 

the classical limit (i.e. as h -> 0) all operators of physical quantities reduce 

to multiplication by these quantities and commute with one another. Thus, 

in the “quasi-classical” case, we can, to a first approximation, regard the right- 

hand side of equation (16.9) as being zero. In the next approximation, the 

operator c can be replaced by the operator of simple multiplication by the 

quantity c. We then have 

fg-gl = -the. 
This equation is exactly analogous to the relation jpxX—xjp,. = —ih, the only 
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difference being that, instead of the constant h, we havef the quantity he. 

We can therefore conclude, by analogy with the relation AxApx — H, that 

in the quasi-classical case there is an uncertainty relation 

AfAg ~ he (16.10) 

for the quantities / and g. 

In particular, if one of these quantities is the energy (/=f?) and the 

operator (g) of the other does not depend explicitly on the time, then by 

(9.2) c = g, and the uncertainty relation in the quasi-classical case is 

AEAg ~ hg. (16.11) 

f The classical quantity c is the Poisson bracket of the quantities / and g] see the footnote 
in §9. 



CHAPTER III 

SCHRODINGER’S EQUATION 

§17. Schrodinger’s equation 

The form of the wave equation of a physical system is determined by its 

Hamiltonian, which is therefore of fundamental significance in the whole 

mathematical formalism of quantum mechanics. 

The form of the Hamiltonian for a free particle is established by the 

general requirements imposed by the homogeneity and isotropy of space and 

by Galileo’s relativity principle. In classical mechanics, these requirements 

lead to a quadratic dependence of the energy of the particle on its momentum: 

E = p2j2m, where the constant m is called the mass of the particle (see 

Mechanics, §4). In quantum mechanics, the same requirements lead to a 

corresponding relation for the energy and momentum eigenvalues, these 
quantities being conserved and simultaneously measurable (for a free 

particle). 

If the relation E = p2j2m holds for every eigenvalue of the energy and 

momentum, the same relation must hold for their operators also: 

El = (112m){f>2+f>*+f>2). (17.1) 

Substituting here from (15.2), we obtain the Hamiltonian of a freely moving 

particle in the form 

= -(£2/2m)A, (17.2) 

where A = d2jdx2+d2jdy2 + d2jdzl is the Laplacian operator. 

The Hamiltonian of a system of non-interacting particles is equal to the 

sum of the Hamiltonians of the separate particles: 

8 = -p2£(l/mQ)AQ (17.3) 

(the suffix a is the number of the particle; A0 is the Laplacian operator in 

which the differentiation is with respect to the coordinates of the ath particle). 

In classical (non-relativistic) mechanics, the interaction of particles is 

described by an additive term in the Hamiltonian, the potential energy of the 

interaction U{ri, r2,...), which is a function of the coordinates of the particles. 

By adding a similar function to the Hamiltonian of the system, the interaction 

of particles can be represented in quantum mechanics :f 

8 = -iff £ Aa/ma+U(rltr2,...). (17.4) 

f This statement is, of course, not a logical consequence of the basic principles of quantum 
mechanics, and is to be regarded as a deduction from experiment. 

50 
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The first term can be regarded as the operator of the kinetic energy and the 

second as that of the potential energy. In particular, the Hamiltonian for a 

single particle in an external field is 

8 = p2j2m+ U(x,y, z) = -(/i2/2m) A + U(x,y, z), (17.5) 

where U(x, y, z) is the potential energy of the particle in the external field. 

Substituting the expressions (17.2) to (17.5) in the general equation (8.1), 

we obtain the wave equations for the corresponding systems. We shall write 

out here the wave equation for a particle in an external field: 

ih d'F/dt = — (/z2'2m)AT+ U{x,y, z)'F. (17.6) 

The equation (10.2), which determines the. stationary states, takes the form 

(h2/2m) A0 +[E- U(x,y, z)]p = 0. (17.7) 

The equations (17.6) and (17.7) were obtained by Schrodinger in 1926 and 

are called Schrodinger’s equations. 

For a free particle, equation (17.7) has the form 

(/t2/2m)A0+Ey< = O. (17.8) 

This equation has solutions finite in all space for any positive value of the 

energy E. For states with definite directions of motion, these solutions are 

eigenfunctions of the momentum operator, with E = p2<2m. The complete 

(time-dependent) wave functions of such stationary states are 

Y = constant />»e-r (17.9) 

Each such function, a plane wave, describes a state in which the particle has a 

definite energy E and momentum p. The angular frequency of this wave is 

E/h and its wave vector k = p/H; the corresponding wavelength 277/i/p is 

called the de Broglie wavelength of the particle.f 

The energy spectrum of a freely moving particle is thus found to be con¬ 

tinuous, extending from zero to +00. Each of these eigenvalues (except 

E = 0) is degenerate, and the degeneracy is infinite. For there corresponds 

to every value of E, different from zero, an infinite number of eigenfunctions 

(17.9), differing in the direction of the vector p, which has a constant absolute 

magnitude. 

Let us enquire how the passage to the limit of classical mechanics occurs 

in Schrodinger’s equation, considering for simplicity only a single particle 

in an external field. Substituting in Schrodinger’s equation (17.6) the limit¬ 

ing expression (6.1) for the wave function, Y = «e(, /B>s, we obtain, on per¬ 

forming the differentiation, 

dS da a ih ih h2 
a-ih-1-—(VS)2--a AS-VS . Vo-&a+Ua = 0. 

3t dt 2m 2m m 2m 

t The idea of a wave related to a particle was first introduced by L. de Broglie in 1924. 
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In this equation there are purely real and purely imaginary terms (we recall 

that 5 and a are real); equating each separately to zero, we obtain two 

equations 
dS 1 h2 
—+-(V5)H U-—£a = 0, 
dt 2m 2 ma 

da 1 

Neglecting the term containing h2 in the first of these equations, we obtain 

SS 
-+-(V5)2+17=0, (17.10) 

that is; the classical Hamilton-Jacobi equation for the action 5 of a particle, 

as it should be. We see, incidentally, that, as h ->-0, classical mechanics is 

valid as far as quantities of the first (and not only the zero) order in h inclusive. 

The second equation obtained above, on multiplication by 2a, can be re¬ 

written in the form 
da2 / VS\ 
—+div(«2—-J = 0. (17.11) 

This equation has an obvious physical meaning: a2 is the probability density 

for finding the particle at some point in space (|T|2 = a2); VS/m = pjm 

is the classical velocity v of the particle. Hence equation (17.11) is simply 

the equation of continuity, which shows that the probability density “moves” 

according to the laws of classical mechanics with the classical velocity v at 

every point. 

PROBLEM 
Find the transformation law for the wave function in a Galilean transformation. 
Solution. Let us apply the transformation to the wave function for free motion of a 

particle (a plane wave). Since any function Y can be expanded in plane waves, this will also 
give the transformation law for any wave function. 

The plane waves in the frames of reference K and K’ (JC moving with velocity V relative 
to K) are 

*F(r, t) - constant xe<(/'» (p-r-E1>, 

Y'(r', 0 = constant xe<!"'>lp ■’ ~E <>, 

where r = r' + Vt; the particle momenta and energies in the two frames are related by 

p = p' + mV, E = F'+V.p' + imF^ 

(see Mechanics, §8). Substitution of these expressions in gives 

T(r, f) = 'i"(r\ t) exp ^(mV.r’ + 

= T'(r-Vt, t) exp [i (^V.r- ^T^J. (1) 

This formula does not contain the parameters of the free motion of the particle, and gives the 
required general transformation law for the wave function of any state of the particle. For a 
system of particles, the exponent in (1) contains a summation over the particles. 
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§18. The fundamental properties of Schrodinger’s equation 

The conditions which must be satisfied by solutions of Schrodinger’s 

equation are very general in character. First of all, the wave function must 

be single-valued and continuous in all space. The requirement of continuity 

is maintained even in cases where the field U(x, y, z) itself has a surface of 

discontinuity. At such a surface both the wave function and its derivatives 

must remain continuous. The continuity of the derivatives, however, does 

not hold if there is some surface beyond which the potential energy U becomes 

infinite. A particle cannot penetrate at all into a region of space where 

U = co, i.e. we must have <p = 0 everywhere in this region. The continuity 

of tp means that ip vanishes at the boundary of this region; the derivatives of 

ip, however, in general are discontinuous in this case. 

If the field U(x, y, z) nowhere becomes infinite, then the wave function 

also must be finite in all space. The same condition must hold in cases where 

U becomes infinite at some point but does so only as 1 /r* with r < 2 (see 

also §35). 

Let f/min be the least value of the function U(x, y, z). Since the Hamil¬ 

tonian of a particle is the sum of two terms, the operators of the kinetic 

energy (T) and of the potential energy, the mean value E of the energy in any 

state is equal to the sum T+C. But all the eigenvalues of the operator T 
(which is the Hamiltonian of a free particle) are positive; hence the mean 

value T > 0. Recalling also the obvious inequality V > U^, we find that 

E > Umin. Since this inequality holds for any state, it is clear that it is valid 

for all the eigenvalues of the energy: 

En > U^. (18.1) 

Let us consider a particle moving in an external field which vanishes at 

infinity; we define the function U(x, y, z), in the usual way, so that it vanishes 

at infinity. It is easy to see that the spectrum of negative eigenvalues of the 

energy will then be discrete, i.e. all states with E < 0 in a field which vanishes 

at infinity are bound states. For, in the stationary states of a continuous 

spectrum, which correspond to infinite motion, the particle reaches infinity 

(see §10); however, at sufficiently large distances the field may be neglected, 

the motion of the particle may be regarded as free, and the energy of a freely 

moving particle can only be positive. 

The positive eigenvalues, on the other hand, form a continuous spectrum 

and correspond to an infinite motion; for E > 0, Schrodinger’s equation 

in general has no solutions (in the field concerned) for which the integral 

/ dF converges.f 

Attention must be drawn to the fact that, in quantum mechanics, a particle 

in a finite motion may be found in those regions of space where E < U\ 

the probability \ip\2 of finding the particle tends rapidly to zero as the distance 

into such a region increases, yet it differs from zero at all finite distances. 

f However, it must be mentioned that, for some particular mathematical forms of the 
function U(x, y, z) (which have no physical significance), a discrete set of values may be 
absent from the otherwise continuous spectrum. 
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Here there is a fundamental difference from classical mechanics, in which 

a particle cannot penetrate into a region where U > E. In classical mechanics 

the impossibility of penetrating into this region is related to the fact that, 

for E < U, the kinetic energy would be negative, that is, the velocity would 
be imaginary. In quantum mechanics, the eigenvalues of the kinetic energy 

are likewise positive; nevertheless, we do not reach a contradiction here, 

since, if by a process of measurement a particle is localized at some definite 

point of space, the state of the particle is changed, as a result of this process, 

in such a way that it ceases in general to have any definite kinetic energy. 

If U(x,y, z) > 0 in all space (and U -> 0 at infinity), then, by the inequality 

(18.1), we have En > 0. Since, on the other hand, for E > 0 the spectrum 

must be continuous, we conclude that, in this case, the discrete spectrum 

is absent altogether, i.e. only an infinite motion of the particle is possible. 

Let us suppose that, at some point (which we take as origin), U tends to 

— oo in the manner 

U x -or-* (a > 0). (18.2) 

We consider a wave function finite in some small region (of radius r0) about 

the origin, and equal to zero outside this region. The uncertainty in the 

values of the coordinates of a particle in such a wave packet is of the order 

of r0; hence the uncertainty in the value of the momentum is ~ h/r0. The 

mean value of the kinetic energy in this state is of the order of hzlmr0z, and 

the mean value of the potential energy is ~ — a/r0*. Let us first suppose 

that s > 2. Then the sum 

fi2lmro2 a/ro8 

takes arbitrarily large negative values for sufficiently small r0. If, however, 

the mean energy can take such values, this always means that the energy has 

negative eigenvalues which are arbitrarily large in absolute value. The mo¬ 

tion of the particle in a very small region of space near the origin corresponds 

to the energy levels with large |£|. The “normal” state corresponds to a 

particle at the origin itself, i.e. the particle “falls” to the point r = 0. 

If, however, r < 2, the energy cannot take arbitrarily large negative values. 

The discrete spectrum begins at some finite negative value. In this case the 

particle does not fall to the centre. It should be mentioned that, in classical 

mechanics, the fall of a particle to the centre would be possible in principle 

in any attractive field (i.e. for any positive s). The case s = 2 will be specially 

considered in §35. 

Next, let us investigate how the nature of the energy spectrum depends on 

the behaviour of the field at large distances. We suppose that, as r -* oo, 

the potential energy, which is negative, tends to zero according to the power 

law (18.2) (r is now large in this formula), and consider a wave packet “filling” 

a spherical shell of large radius r0 and thickness Ar <5 r0. Then the order 

of magnitude of the kinetic energy is again ^2/»z(Ar)2, and of the potential 

energy, — a/ro'. We increase ro, at the same time increasing Ar, in such a 

way that Ar increases proportionally to r0. If i < 2, then the sum hzjm(Ar)z — 

o.jrt‘ becomes negative for sufficiently large r0. Hence it follows that there 
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are stationary states of negative energy, in which the particle may be found, 

with a fair probability, at large distances from the origin. This, however, 

means that there are levels of arbitrarily small negative energy (it must be 

recalled that the wave functions rapidly tend to zero in the region of space 

where U > E). Thus, in this case, the discrete spectrum contains an infinite 

number of levels, which become denser and denser towards the level E — 0. 

If the field diminishes as — l/rJ at infinity, with i > 2, then there are not 

levels of arbitrarily small negative energy. The discrete spectrum terminates 

at a level with a non-zero absolute value, so that the total number of levels is 

finite. 

Schrodinger’s equation for the wave functions tp of stationary states is real, 

as are the conditions imposed on its solution. Hence its solutions can always 

be taken as real.f The eigenfunctions of non-degenerate values of the energy 

are automatically real, apart from the unimportant phase factor. For <p* 

satisfies the same equation as ip, and therefore must also be an eigenfunction 

for the same value of the energy; hence, if this value is not degenerate, tp and 

xp* must be essentially the same, i.e. they can differ only by a constant factor 

(of modulus unity). The wave functions corresponding to the same de¬ 

generate energy level need not be real, however, but by a suitable choice of 

linear combinations of them we can always obtain a set of real functions. 

The complete (time-dependent) wave functions T are determined by an 

equation in whose coefficients i appears. This equation, however, retains the 

same form if we replace t in it by — t and at the same time take the complex 

conjugate.! Hence we can always choose the functions T in such a way that 

T and VF* differ only by the sign of the time. 

As is well known, the equations of classical mechanics are unchanged by 

time reversal, i.e. when the sign of the time is reversed. In quantum mechanics, 

the symmetry with respect to the two directions of time is expressed, as we 

see, in the invariance of the wave equation when the sign of t is changed and 

T is simultaneously replaced by T*. However, it must be recalled that this 

symmetry here relates only to the equation, and not to the concept of 

measurement itself, which plays a fundamental part in quantum mechanics 

(as we have explained in detail in §7). 

§19. The current density 

In classical mechanics the velocity v of a particle is related to its momentum 

by p = mv. A similar relation holds between the corresponding operators 

in quantum mechanics, as we should expect. This is easily shown by cal¬ 

culating the operator v = r by the general rule (9.2) for the differentiation 

of operators with respect to time: 

$ = {ilh){Rr-rti). 

t These assertions are not valid for systems in a magnetic field 
t It is assumed that the potential energy U does not depend explicitly on the time: the 

system is either closed or in a constant (non-magnetic) field. 
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Using the expression (17.5) for fL and formula (16.5), we obtain 

v=P(19.1) 

Similar relations will clearly hold between the eigenvalues of the velocity 

and momentum, and between their mean values in any state. 

The velocity, like the momentum of a particle, cannot have a definite value 

simultaneously with the coordinates. But the velocity multiplied by an 

infinitely short time interval dt gives the displacement of the particle in the 

time dt. Hence the fact that the velocity cannot exist at the same time as 

the coordinates means that, if the particle is at a definite point in space at 

some instant, it has no definite position at' an infinitely close subsequent 

instant. 

We may notice a useful formula for the operator / of the derivative, with 

respect to time, of some quantity/(r) which is a function of the radius vector 

of the particle. Bearing in mind that/commutes with U(r), we find 

/= mifif-fl) = (i'2mh)(p2f-fp2). 

Using (16.4), we can write 

P2/ = P • (./P-ifi V/). 

/P2 = (P/+^v/).p. 

Thus we obtain the required expression: 

/=(l/2m)(p. V/+V/-P). (19.2) 

Next, let us find the acceleration operator. We have 

ir = (i//l)(f?v - vf?) = = (ijmh)(Up - pU} 

Using formula (16.4), we find 

mir = — y U. (19.3) 

This operator equation is exactly the same in form as the equation of motion 

(Newton’s equation) in classical mechanics. 

The integral J |T|2 dV, taken over some finite volume V, is the probability 

of finding the particle in this volume. Let us calculate the derivative of this 

probability with respect to time. We have 

I* |T|2 dV = J dV ~ J (Ttf*T*-T*f?'F) dV. 

Substituting here 

n = = ~(fi2l2rn)A + U(x,y,z) 

and using the identity 

= div ('FVT*-¥*V'F), 
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J |T|2dF = - J divj dV, 

where j denotes the vector} 

j = (t7i/2m)('f'VT*-T*VT). (19.4) 

= i-^p^+^pT). 
2m 

The integral of divj can be transformed by Gauss’s theorem into an integral 

over the closed surface which bounds the volume V: 

It is seen from this that the vector j may be called the probability current density 

vector, or simply the current density. The integral of this vector over a surface 

is the probability that the particle-will cross the surface during unit time. 

The vector j and the probability density |*F|2 satisfy the equation 

d|T|2/dl + divj = 0, (19.6) 

which is analogous to the classical equation of continuity. 

The wave function of free motion (the plane wave (17.9)) can be normalized 

so as to describe a flow of particles with unit current density (in which, on 

average, one particle crosses a unit cross-section of the flow per unit time). 

This function is then 

T = _L_e-tt/«<£t-i>-r>i (19-7) 
■\/v 

where v is the velocity of the particle, since substitution of this in (19.4) gives 

j = pjmv, i.e. a unit vector in the direction of the motion. 

It is useful to show how the orthogonality of the wave functions of 

states with different energies follows immediately from Schrodinger’s 

equation. Let ipm and ifin be two such functions; they satisfy the equations 

-(&l2m)&4>m+U4>m = Em$m, 

-(/i2/2m)A./.n*-f W/-n* = Enipn*. 

We multiply the first of these by <//„* and the second by <pm and subtract 

corresponding terms; this gives 

(.Em-En)4,m>pn* = (£a/2m)(0mA0n*-0n*A0m) 

= (£2/2m) div (^Wn'-^VW- 

t If i/i is written as \<)i\eia, then 

j = (hjm) |0|*V*. (19.4a) 
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If we now integrate both sides of this equation over all space, the right-hand 

side, on transformation by Gauss’s theorem, reduces to zero, and we obtain 

(Em — En) J l/'m'/'n* dF = 0, 

whence, by the hypothesis Em # En, there follows the required orthogonality 

relation 

J 'Pm'Pn* dV = 0. 

§20. The variational principle 

Schrodinger’s equation, in the general form Hip = Eip, can be obtained 

from, the variational principle 

8 J dq = 0. (20.1) 

Since ip is complex, we can vary ip and ip* independently. Varying ip*, we 

have 

J 8<p*{fi-E)4> dq = 0, 

whence, because Sip* is arbitrary, we obtain the required equation Hip = Eip. 
The variation of tp gives nothing different. For, varying ip and using the 

fact that the operator F? is Hermitian, we have 

J >p*(fi—E)hip Aq = J mn*-E)4>* dq = 0, 

from which we obtain the complex conjugate equation fi*ip* = Eip*. 
The variational principle (20.1) requires an unconditional extremum of 

the integral. It can be stated in a different form by regarding £ as a Lagran- 

gian multiplier in a problem with the conditional extremum requirement 

8 J t*8>P dq = 0, (20.2) 

the condition being 

J W dq = 1. (20.3) 

The least value of the integral in(20.2) (with the condition (20.3)) is the first 

eigenvalue of the energy, i.e. the energy E0 of the normal state. The func¬ 

tion ip which gives this minimum is accordingly the wave function ipo of the 

normal state.f The wave functions ipn [n > 0) of the other stationary states 

correspond only to an extremum, and not to a true minimum of the integral. 

In order to obtain, from the condition that the integral in (20.2) is a mini¬ 

mum, the wave function i/a and the energy E\ of the state next to the normal 

one, we must restrict our choice to those functions ip which satisfy not only the 

t In the rest of this section we shall suppose the wave functions i/i to be real; they can 
always be so chosen (if there is no magnetic field). 
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normalization condition (20.3) but also the condition of orthogonality with 

the wave function ipo of the normal state: J tp'Po dq = 0. In general, if the 

wave functions tp0, ipi,... , tn-i °f the first n states (arranged in order of in¬ 

creasing energy) are known, the wave function of the next state gives a mini¬ 

mum of the integral in (20.2) with the additional conditions 

j ifp dq = \, J#radff = 0 {m = 0,1,2,..., n— 1). (20.4) 

We shall give here some general theorems which can be proved from the 

variational principle.f 

The wave function to of the normal state does not become zero (or, as we 

say, has no nodes) for any finite values of the coordinates.! In other words, 

it has the same sign in all space. Hence, it follows that the wave functions 

ifin (n > 0) of the other stationary states, being orthogonal to ip0, must have 

nodes (if tfin is also of constant sign, the integral J ip0tn dq cannot vanish). 

Next, from the fact that to has no nodes, it follows that the normal energy 

level cannot be degenerate. For, suppose the contrary to be true, and let 

i/i0, ip0' be two different eigenfunctions corresponding to the level E0. Any 

linear combination cifj0+c'tp0' will also be an eigenfunction; but by choosing 

the appropriate constants c, c', we can always make this function vanish at 

any given point in space, i.e. we can obtain an eigenfunction with nodes. 

If the motion takes place in a bounded region of space, we must have 

t = 0 at the boundary of this region (see §18). To determine the energy 

levels, it is necessary to find, from the variational principle, the minimum 

value of the integral in (20.2) with this boundary condition. The theorem that 

the wave function of the normal state has no nodes means in this case that 

i}j0 does not vanish anywhere inside this region. 

We notice that, as the dimensions of the region containing the motion 

increase, all the energy levels En decrease; this follows immediately from 

the fact that an extension of the region increases the range of functions which 

can make the integral a minimum, and consequently the least value of the 

integral can only diminish. 

The expression 

j $ fit dq = f [~ % (h2'2ma)tAat+ U<pz] dq 

for the states of the discrete spectrum of a particle system may be transformed 

into another expression which is more convenient in practice. In the first 

term of the integrand we write 

tAat = diva(^Va^)-(Va^)2- 

f The proof of theorems concerning the zeros of eigenfunctions (see also §21) is given by 
M. A. Lavrent’ev and L. A. Lyustermk, The Calculus of Variations (Kurs variatsionnogo 
ischisleniya), 2nd edition, chapter IX, Moscow, 1950; R. Courant and D. Hilbert, Methods of 
Mathematical Physics, volume I, chapter VI, Interscience, New York, 1953. 

I This theorem and its consequences are not in general valid for the wave functions of 
systems consisting of several identical particles (see the end of §63). 
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The integral of diva (i/fVa’/O over all space is transformed into an integral 

over an infinitely distant closed surface, and since the wave functions of the 

states of a discrete spectrum tend to zero sufficiently rapidly at infinity, this 

integral vanishes. Thus 

J dq = J [S (tfil2ma)[VaW+ Ufa] dff. (20.5) 

§21. General properties of motion in one dimension 

If the potential energy of a particle depends on only one coordinate (x), 

then the wave function can be sought as the product of a function of y and z 

and a function of x only. The former of these is determined by Schrodinger’s 

equation for free motion, and the second by the one-dimensional Schrodin¬ 

ger’s equation 

d hp 2m 
-L+-[E-U(xW = 0. (21.1) 
dx* n2 

Similar one-dimensional equations are evidently obtained for the problem of 

motion in a field whose potential energy is U(x, y, z) = Ui(x) + U%{y) + Us(z), 

i.e. can be written as a sum of functions each of which depends on only one 

of the coordinates. In §§22-24 we shall discuss a number of actual examples 

of such “one-dimensional” motion. Here we shall obtain some general 

properties of the motion. 

We shall show first of all that, in a one-dimensional problem, none of the 

energy levels of a discrete spectrum is degenerate. To prove this, suppose 

the contrary to be true, ana let ipl and ifa be two different eigenfunctions 

corresponding to the same value of the energy. Since both of these satisfy 

the same equation (21.1), we have 

fa" I fa = (2 mlh*){U-E) = fa"/fa, 

or fa" fa — fa fa" = 0 (the prime denotes differentiation with respect to x). 

Integrating this relation, we find 

fa fa— fafa = constant. (21.2) 

Since fa = fa = 0 at infinity, the constant must be zero, and so 

fa'fa-fa fa’ = 0, 

or fa'j fa = fa'I fa- Integrating again, we obtain fa = constant x fa, i.e. the 

two functions are essentially identical. 

The following theorem (called the oscillation theorem) may be stated for the 

wave functions <fin(x) of a discrete spectrum. The function <pn(x) correspond¬ 

ing to the (n + l)th eigenvalue En (the eigenvalues being arranged in order of 

magnitude), vanishes n times (for finitef values of x). 

f If the particle can be found only on a limited segment of the x-axis, we must consider 
the zeros of V'n(x) within that segment. 
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We shall suppose that the function U(x) tends to finite limiting values as 

x -> i oo (though it need not be a monotonic function). We take the limiting 

value U( + co) as the zero of energy (i.e. we put U( + co) = 0), and we denote 

U(—co) by U0, supposing that U0 > 0. The discrete spectrum lies in the 

range of energy values for which the particle cannot move off to infinity; for 

this to be so, the energy must be less than both limiting values L(±oo), 

i.e. it must be negative: 

E < 0, (21.3) 

and we must, of course, have in any case E > Umin, i.e. the function U(x) 

must have at least one minimum with Umin < 0. 

Let us now consider the range of positive energy values less than U0: 

0 < E < U0. (21.4) 

In this range the spectrum will be continuous, and the motion of the particle 

in the corresponding stationary states will be infinite, the particle moving off 

towards x = + oo. It is easy to see that none of the eigenvalues of the energy 

in this part of the spectrum is degenerate either. To show this, it is sufficient 

to notice that the proof given above (for the discrete spectrum) still holds if 

the functions iplt ip2 are zero at only one infinity (in the present case they tend 

to zero as x -> — oo). 

For sufficiently large positive values of x, we can neglect U(x) in Schro- 

dinger’s equation (21.1): 

f"+(2 m!W-)Ef = 0. 

This equation has real solutions in the form of a stationary plane wave 

f = a cos(fcc+S), (21.5) 

where a and S are constants, and the wave number k = pjh = y/{2mE)jh. 

This formula determines the asymptotic form (for x -»-+oo) of the wave 

functions of the non-degenerate energy levels in the range (21.4) of the 

continuous spectrum. For large negative values of x, Schrodinger’s equation 

is 

ip”—(2m//i2)( U0— E)ip = 0. 

The solution which does not become infinite as x -> — oo is 

<P = where k = -f[2m{UQ-E)\lh. (21.6) 

This is the asymptotic form of the wave function as x -*■ — oo. Thus the 

wave function decreases exponentially in the region where E < U. 

Finally, for 

E>U0 (21.7) 

the spectrum will be continuous, and the motion will be infinite in both 

directions. In this part of the spectrum all the levels are doubly degenerate. 
This follows from the fact that the corresponding wave functions are deter- 
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mined by the second-order equation (21.1), and both of the two independent 

solutions of this equation satisfy the necessary conditions at infinity (whereas, 

for instance, in the previous case one of the solutions became infinite as 

x -* — oo, and therefore had to be rejected). The asymptotic form of the 

wave function as .v -* + oo is 

0 = aieikx+a2e-ikx, (21 8) 

and similarly for jc -* — oo. The term elkx corresponds to a particle moving 

to the right, and e~ikx corresponds to one moving to the left. 

Let us suppose that the function U(x) is even [£/(— x) = £/(*)]. Then 

Schrodinger’s equation (21.1) is unchanged when the sign of the co¬ 

ordinate is reversed. It follows that, if 0(x) is some solution of this equation, 

then ip(—x) is also a solution, and coincides with >L(x) apart from a constant 

factor: 0(—x) = cip(x). Changing the sign of x again, we obtain >p(x) = 

c2ip(x), whence c = ±1. Thus, for a potential energy which is symmetrical 

(relative to x = 0), the wave functions of the stationary states must be either 

even [0( — x) = 0(a:)] or odd [0 — (x) = — </'(^)]-t In particular, the wave 

function of the ground state is even, since it cannot have a node, while an 

odd function always vanishes for x = 0 [0(0) = —0(0) = 0]. 

To normalize the wave functions of one-dimensional motion (in a continu¬ 

ous spectrum), there is a simple method of determining the normalization 

coefficient directly from the asymptotic expression for the wave function for 

large values of |jc|. 

Let us consider the wave function of a motion infinite in one direction, 

x-> + co. The normalization integral diverges as x -* co (as x -* — co, the 

function decreases exponentially, so that the integral rapidly converges). 

Hence, to determine the normalization constant, we can replace 0 by its 

asymptotic value (for large positive v), and perform the integration, taking as 

the lower limit any finite value of x, say zero; this amounts to neglecting a 

finite quantity in comparison with an infinite one. We shall show that the 

wave function normalized by the condition 

[ 0p#0* d* = = 2-nh S(p-p'l (21.9) 

wherep is the momentum of the particle at infinity, must have the asymptotic 

form (21.5) with a = 2: 

0p « 2 cos (kx + 8) = +g-t(fc2+i). (21.10) 

Since we do not intend to verify the orthogonality of the functions corre- 

t In this discussion it is assumed that the stationary state is not degenerate, i.e. the motion 
is not infinite in both directions. Otherwise, when the sign of * is changed, two wave functions 
belonging to the energy level concerned may be transformed into each other. In this case, 
however, although the wave functions of the stationary states need not be even or odd, they 
can alw ays be made so (by choosing appropriate linear combinations of the original functions). 
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sponding to different/), on substituting the functions (21.10) in the normali¬ 

zation integral we shall suppose the momenta p and p' to be arbitrarily 

close; we can therefore put S = S' (in general S is a function ofp). Next, we 

retain in the integrand only those terms which diverge for p = p'; in other 

words, we omit terms containing the factor g±«fc+*')*. Thus we obtain 

f ipp*ipp. dx = J ei(-k _fc>:rdx+ J e-i(k'-k)x dx = J ei(k'-k)z d*, 
0 0 — co 

which, from (15.7), is the same as (21.9). 

The change to normalization by the delta function of energy is effected, in 

accordance with (5.14), by multiplying iftp by 

/d(p/2^)\i/2 = 1 

V dE ) V(2 «■*»)’ 

where v is the velocity of the particle at infinity. Thus 

<AE 
1 

V(2 nhv) 
tv 

_:_fehfca: +4) , e -i(kz +«n 
V(2 Trhvf ’’ 

(21.11) 

The current density is \j2irh in each of the travelling waves that make up the 

stationary wave (21.11). Thus we can formulate the following rule for the 

normalization of the wave function for a motion infinite in one direction by 

the delta function of energy: having represented the asymptotic expression 

for the wave function in the form of a sum of two plane waves travelling in 

opposite directions, we must choose the normalization coefficient in such a 

way that the current density in the wave travelling towards (or away from) 

the origin is 1/2tt/j. 

Similarly, we can obtain an analogous rule for normalizing the wave func¬ 

tions of a motion infinite in both directions. The wave function will be 

normalized by the delta function of energy if the sum of the probability cur¬ 

rents in the waves travelling towards the origin from x = -f-oo and x = — co 

is \j2-nh. 

§22. The potential well 

As a simple example of one-dimensional motion, let us consider motion in 

a square potential well, i.e. in a field where U(x) has the form shown in Fig. 1 

(p. 64): U(x) = 0 for 0 < x < a, U(x) = U0 for x < 0 and x > a. It is 

evident a priori that for E < Uo the spectrum will be discrete, while for 

E > [/o we have a continuous spectrum of doubly degenerate levels. 
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U(x) 

-u. -- 

Fig. 1 

In the region 0 < x < a we have Schrodinger’s equation 

4>"+{2m'h*)E4j = 0 (22.1) 

(the prime denotes differentiation with respect to x), while in the region 

outside the well 

0" + (2m/ft*)(£-EW = O (22.2) 

For x = 0 and x = a the solutions of these equations must be continuous 

together with their derivatives, while for x = ±oo the solution of equation 

(22.2) must remain finite (for the discrete spectrum when E < U0, it must 

vanish). 

For E < U0, the solution of equation (22.2) which vanishes at infinity is 

>jj = constant xe-where k = v'[(2m//z2)([/0-E)]; (22.3) 

the signs — and + in the exponent refer to the regions x > a and x < 0 

respectively. The probability |i/f|2 of finding the particle decreases exponen¬ 

tially in the region where E < U(x). Instead of the continuity of ip and ip' 

at the edge of the potential well, it is convenient to require the continuity of 

ip and of its logarithmic derivative ip'jip. Taking account of (22.3), we obtain 

the boundary condition in the form 

P'hp = (22.4) 

We shall not pause here to determine the energy levels in a well of arbitrary 

depth U0 (see Problem 2), and shall analyse fully only the limiting case of 

infinitely high walls (U0 -* co). 

For L'0 = oo, the motion takes place only between the points x = 0 and 

x = a and, as was pointed out in §18, the boundary condition at these points 

<1 = 0. (22.5) 

(It is easy to see that this condition is also obtained from the general condition 

(22.4). For, when U0 -+ oo, we have also k -* oo and hence ip'/ip -> co; 

since <p' cannot become infinite, it follows that ip = 0.) We seek a solution 

of equation (22.1) inside the well in the form 

ip = c sin(fcc+S), where k = V(2mEjft2). (22.6) 
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The condition ip — 0 for x = 0 gives S = 0, and then the same condition for 
x = a gives sin ka = 0, whence ka = mr, n being a positive integer,f or 

En = (tT*fl*/2maV. n = 1,2,3,.... (22.7) 

This determines the energy levels of a particle in a potential well. The 

normalized wave functions of the stationary states are 

-An = V(2la) sin{-rmxla). (22.8) 

From these results we can immediately write down the energy levels for a 

particle in a rectangular “potential box”, i.e. for three-dimensional motion 

in a field whose potential energy U = 0 for 0 < x < a,0 < y < b,0 < z < c 

and U = oo outside this region. In fact, these levels are given by the sums 

E„ 
n2h2 /n? ^ n22 

2m \ a2 o2 
-) K>: 1,2,3,...), (22.9) 

and the corresponding wave functions by the products 

I 8 7r«1 rm2 im3 
= / — sin-x sin—y sin-ar. 

N abc a b c 
(22.10) 

It may be noted that the energy Eq of the ground state is, by (22.7) or 

(22.9), of the order of h2jml2, where l is the linear dimension of the region 

in which the particle moves. This result is in accordance with the uncertainty 

relation; '\hen the uncertainty in the coordinate is the uncertainty in 

the momentum, and therefore the order of magnitude of the momentum 

itself, is ~ h/l. The corresponding energy is ~ (^/7)2/m. 

PROBLEMS 

Problem 1. Determine the probability distribution for various values of the momentum 
for the normal state of a particle in an infinitely deep square potential well. 

Solution. The coefficients a(p) in the expansion of the function i/r, (22.8) in terms of the 
eigenfunctions of the momentum are 

a(p) = j dx = ^ J sin d.v. 

Calculating the integral and squaring its modulus, we obtain the required probability distri¬ 
bution : 

I4MI2 
dp 

_^h3a - cos* £5 dp 
(pW—nWf Ih * 

Problem 2. Determine the energy levels for the potential well shown in Fig. 2 (p. 66). 
Solution. The spectrum of energy values E < Ult which we shall consider, is discrete. 

In the region x < 0 the wave function is 

0 = where 

f For n = 0 we should have 0 = 0 identically. 
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\UM 

Fig. 2 

while in the region x > a 

4, = c2e--z, where «2 = ^[(2m,h-){L\-E)}. 

Inside the well (0 < x < a) we look for 4 in the form 

i/i = c sin(fcx+8), where k=\\2mEiti1). 

The condition of the continuity of i/i'/t/i at the edges of the well gives the equations 

* cot 8 = K, = \'[(2m h2)L\—k2], k cot(Aa+S) = -*2 = - v [(2m 

sin 8 = kti ■v/(2m£7J), sin(Aa+8) = -kh V(2mU2). 

Eliminating S, we obtain the transcendental equation 

ha = n,T-sin-‘[WI,\/(2miyi)]-sin->[AAlA/(2miy2)] (1) 

(where n = 1, 2, 3.and the values of the inverse sine are taken between 0 and £jt), whose 
roots determine the energy levels E = A2fi!/2m. For each n there is in general one root; 
the values of n number the levels in order of increasing energy. 

Since the argument of the inverse sine cannot exceed unity, it is clear that the values of k 
can lie only in the range from 0 to H‘). The left-hand side of equation (1) increases 
monotonically with k, and the right-hand side decreases monotonically. flence it is neces¬ 
sary, for a root of equation (1) to exist, that for k = v/(2m£/j/fi2) the right-hand side should 
be less than the left-hand side. In particular, the inequality 

a\'{2mUi),h > (»-sirrV(t\ t'2). (2) 

which is obtained for n — 1, is the condition that at least one energy level exists in the well. 
We see that for given and unequal Ult C7S there are always widths a of the well which are so 
small that there is no discrete energy level. For C72 = Lra, the condition (2) is evidently always 
satisfied. 

For Ui = Ut = Uc (a symmetrical well), equation (1) reduces to 

sin '[hh V(2mU„)] = (3) 

Introducing the variable ( = \ka, we obtain for odd n the equation 

COS ( = ±ri, where v = (h *h '(2 (4) 

and those roots of this equation must be taken for which tan { > 0. For even n we obtain 
the equation 

sin f = ±yf, (5) 

and we must take those roots for which tan f < 0. The roots of these two equations deter¬ 
mine the energy levels E = 2£2h2 ma2. The number of levels is finite when y ^ 0. 

In particular, for a shallow well in which Uo<^. h2ima2, we have y 1 and equation (5) 
has no root. Equation (4) has one root (with the upper sign on the right-hand side), 
f = 1 'y —l/2y3. Thus the well contains only one energy level, 

Eq ~ t/o-(ma2/2*2)t/02, 

which is near the top of the well. 
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Problem 3. Determine the pressure exerted on the walls of a rectangular “potential 
box” by a particle inside it. 

Solution. The force on the the wall perpendicular to the x-axis is the mean value of the 
derivative —dH\da of the Hamilton’s function of the particle with respect to the length of 
the box in the direction of the x-axis. The pressure is obtained by dividing this force by the 
area be of the wall. According to the formula (11.16), the required mean value is found by 
differentiating the eigenvalue (22.9) of the energy. The result is 

pu) — ~2h2r ^Ina-oc. 

§23. The linear oscillator 

Let us consider a particle executing small oscillations in one dimension 

(what is called a linear oscillator). The potential energy of such a particle 

is \mu>2x2, where u> is, in classical mechanics, the characteristic (angular) 

frequency of the oscillations. Accordingly, the Hamiltonian of the oscillator 

is 

tt p2jm+^moj2x2. (23.1) 

Since the potential energy becomes infinite for x = ± oo, the particle can 

have only a finite motion, and the energy eigenvalue spectrum is entirely 

discrete. 

Let us determine the energy levels of the oscillator, using the matrix 

methodf. We shall start from the equations of motion in the form (19.3); 

in this case they give 

x+u>2x = 0. (23.2) 

In matrix form, this equation reads 

(£)mn + CU2*mn = 0. 

For the matrix elements of the acceleration we have, according to (11.8), 

(x)mn = icomn(x)mn — —comn2xmn. Hence we obtain 

(WmB*-«*)*mn = 0. 

Hence it is evident that all the matrix elements xmn vanish except those for 

which ajmn = oj or ojmn = — a>. We number all the stationary states so that 

the frequencies ± oj correspond to transitions n n+ 1, i.e. = ± tu. 

Then the only non-zero matrix elements are %,„±i. 

We shall suppose that the wave functions <pn are taken real. Since a: is a real 

quantity, all the matrix elements xmn are real. The Hermitian condition 

(11.10) now shows that the matrix xmn is symmetrical: 

To calculate the matrix elements of the coordinate which are different 

f This was done by Heisenberg in 1925, before Schrodinger’s discovery of the wave 
equation. 
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from zero, we use the commutation rule 

£x—x& = —ihjm, 

written in the matrix form 

(xx)mn—(xx)mn = —{ihjm)hmn. 

By the matrix multiplication rule (11.12) we hence have for m = n 

i £ {uinlXnlXln — XniwinXin) = 2i E w„iX„i2 = — tVl/ra. 

In this sum, only the terms with / = n ± 1 are different from zero, so that 

we have 

(*n+i,«)2-(*n.n-i)a = */2m«. (23.3) 

From this equation we deduce that the quantities (xM+i n)2 form an arith¬ 

metic progression, which is unbounded above, but is certainly bounded 

below, since it can contain only positive terms. ‘ Since we have as yet fixed 

only the relative positions of the numbers n of the states, but not their abso¬ 

lute values, we can arbitrarily choose the value of n corresponding to the first 

(normal) state of the oscillator, and put this value equal to zero. Accordingly 

jc0 _! must be regarded as being zero identically, and the application of equa¬ 

tions (23.3) with n = 0, 1, ... successively leads to the result 

(xn,n-i)2 = nhjlmoj. 

Thus we finally obtain the following expression for the matrix elements of 

the coordinate which are different from zero :f 

x„.n-i - xn~i.n = \'{nhl2mu>). (23.4) 

The matrix of the operator ft is diagonal, and the matrix elements Hnn 

are the required eigenvalues En of the energy of the oscillator. To calculate 

them, we write 

Hnn = En = M(*2)nn+“V)™] 

= M £ iwnlxntiajlnxln+w* £ 

=£mE (oj2+a>ni2)xin2. 

In the sum over /, only the terms with / = n± 1 are different from zero; 

substituting (23.4), we obtain 

En = (n+i)hu>, n = 0,1, 2. (23.5) 

Thus the energy levels of the oscillator lie at equal intervals of hco from 

one another. The energy of the normal state (n = 0) is \hw, we call atten¬ 

tion to the fact that it is not zero. 

f \\ e choose the indeterminate phases an (see the second footnote to §11) so as to obtain the 
plus sign in front of the radical in all the matrix elements (23.41. Such a choice is always 
possible for a matrix in which only those elements are different from zero which correspond 
to transitions between states with adjacent numbers 



§23 The linear oscillator 69 

The result (23.5) can also be obtained by solving Schrodinger’s equation. 

For an oscillator, this has the form 

dV 2m 
= 0. (23.6) 

dx2 ft2 

Here it is convenient to introduce, instead of the coordinate x, the dimension¬ 

less variable £ by the relation 

£ = \/{mu>lh)x. (23.7) 

Then we have the equation 

0"+[(2E/M-**W = 0; (23.8) 

here the prime denotes differentiation with respect to £. 

For large £, we can neglect lEjhco in comparison with £2; the equation 

tp” — £2tp has the asymptotic integrals tp = e±i(t (for differentiation of this 

function gives tp" = £2<fi on neglecting terms of order less than that of the 

term retained). Since the wave function tp must remain finite as £ ->±co, 

the index must be taken with the minus sign. It is therefore natural to make 

in equation (23.8) the substitution 

>A = «-f,'2x(£). (23.9) 

For the function x(£) we obtain the equation (with the notation (2Ejha>) —1 = 

2n; since we already know that E > 0, we have n > — £) 

x"-2fr'+2«x = 0, (23.10) 

where the function x must be finite for all finite f, and for £ ->±co must not 

tend to infinity more rapidly than every finite power of £ (in order that the 

function tp should tend to zero). 

Such solutions of equation (23.10) exist only for positive integral (and 

zero) values of n (see §a of the Mathematical Appendices); this gives the 

eigenvalues (23.5) for the energy, which we know already. The solutions of 

equation (23.10) corresponding to various integral values of n are x = con¬ 

stant X//„(£)> where Hn(£) are what are called Hermite polynomials; these 

are polynomials of the nth degree in £, defined by the formula 

Hn(0 = (-lf/d^/df. (23.11) 

Determining the constants so that the functions tpn satisfy the normalization 

condition 

J d* = 1, 

we obtain (see (a.7)) 

1 

2»/V(»l) 
*/™Hn{xy/[mojlh]). (23.12) 



70 Schrodinger s Equation 

Thus the wave function of the normal state is 

<A0(*) = (23.13) 

It has no zeros for finite x, which is as it should be. 

By calculating the integrals J <pnipm£ d£, we can determine the matrix ele¬ 

ments of the coordinate; this calculation leads, of course, to the same values 

(23.4). 

Finally, we shall show how the wave functions ipn may be calculated by the 

matrix method. We notice that, in the matrices of the operators tfizcox, 

the only elements different from zero are 

(*-«**)_!,„ = -(x+i^)^ = -iy/tlwhnjm). (23.14) 

Using the general formula (11.11), and taking into account the fact that 

tp-i = 0, we conclude that 

(X—iurx)tp0 = 0. 

After substituting the expression x = — z(^/m)d/dx, we obtain the equation 

dtpo/dx = — (mojjh)xipQ, 

whose normalized solution is (23.13). And, since 

(x-f-Zo>x)t/i7!_i = (xJri<JJx)n,n-lllJn = zy/(2oihnjni)\pnt 

we obtain the recurrence formula 

<pn = \/{ml2ojhn)[ — (hjTn) dldx + ojx]ipn-i 

1 A ■ 1 
\/(2n)\ d^ 

d 
—(e-w 

4 0-i); 

when this is applied n times to the function (23.13), we obtain the expression 

(23.12) for the normalized functions tpn. 

PROBLEMS 

Problem 1. Determine the probability distribution of the various values of the momentum 
for an oscillator. 

Solution. Instead of expanding the wave function of the stationary state in terms of the 
eigenfunctions of momentum, it is simpler in the case of the oscillator to start directly from 
Schrodinger’s equation in the momentum representation. Substituting in (23.1) the coordi¬ 
nate operator x = ihd/dp (15.12), we obtain the Hamiltonian in the p representation, 

H = ipZim-lmwW-dZldp*. 

The corresponding Schrodinger’s equation Ha(p) = Ea(p) for the wave function a{p) in the 
momentum representation is 

d_^+_i_f£_^fl(P) = o. 
dp1 >nw*h‘\ 2m) 

This equation is of exactly the same form as (23.6); hence its solutions can be written down 
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The mean energy of the oscillator in a coherent state is 

E = £L+!,mcuW 

u(,7. 

(4) 

the quantity n is the mean “number” of quanta hcj in the state. We see that the coherent 
state is completely specified by the function 5c(t) satisfying the classical equation (2). The 
general form of this, function may be given as 

TtHjjX + ip 

s/(2mhw) 
(5) 

The function (3) can be expanded in wave functions of the stationary states of the oscillator: 

'I' = X 

T„(x, t) = v&n(x) exp {-1'0 + 

The coefficients in this expansion are (cf. §41, Problem 1) 

an=_JV„*Vd*. (6) 

The probability for the oscillator to be in the nth state is therefore 

«>„ = |a„|2 = «-*»*/»!, (7) 

the Poisson distribution. 

Fig. 3 

Problem 4. Determine the energy levels for a particle moving it 
(Fig. 3) 

V(x) = 

(P. M. Morse). 

field of potential energy 

Solution. The spectrum of positive eigenvalues of the energy is continuous (and the levels 
are not degenerate), while the spectrum of negative eigenvalues is discrete. 

Schrodinger’s equation reads 

dV/d*s+(2m/fi2)(£-^«-s“+2We-“)v(, = 0. 

We introduce a new variable 

(2mA) 
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(taking values from 0 to co) and the notation (we consider the discrete spectrum, so that 
E < 0) 

r = V(-2mE)laJi, n = V(2m^)/oJ5-(s+J) (1) 

Schrodinger’s equation then takes the form 

r+f+(-i+n-±j^-~y = o- 

As £ -*■ oo, the function ip behaves asymptotically as e - if, while as £ -*■ 0 it is proportional to 
f ±*. From considerations of finiteness we must choose the solution which behaves as e'if 
as £ -*■ oo and as £s as £ -> 0. We make the substitution 

<!> = 

arid obtain for zo the equation 

(2) 

which has to be solved with the conditions that w is finite as £ -> 0, while as £ -*■ oo, ic tends 
to infinity not more rapidly than every finite power of £. Equation (2) is the equation for a 
confluent hypergeometric function (see §d of the Mathematical Appendices): 

v> = F{-n, 2i+l,f). 

A solution satisfying the required conditions is obtained for non-negative integral n (when 
the function F reduces to a polynomial). According to the definitions (1), we thus obtain 
for the energy levels the values 

-E„ = ^1-(n+$)l , L V(2*A) J 

where n takes positive integral values from zero to the greatest value for which iJ(2mA) ',3.h > 
n+ £ (so that the parameter s is positive in accordance with its definition) Thus the discrete 
spectrum contains only a limited number of levels. If < £, there is no discrete 
spectrum at all. 

Problem 5. The same as Problem 4, but with U = — C70/cosh2 a* (Fig. 4). 

Solution. The spectrum of positive eigenvalues of the energy is continuous, while that of 
negative values is discrete; we shall consider the latter. Schrodinger’s equation is 

dV 2m/ UD \ 

dx2 fr\ cosh %xx) 
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We put £ = tanh ax and use the notation 

< = V(-2mE)IHx, 2mU<>jaW = j(j+ 1). 

-(-Vt-SO)- 

§24 

obtaining 

5[(l -^1 - - °- 

This is the equation of the associated Legendre polynomials; it can be brought to hyper- 
geometric form by making the substitution if1 = (1 —f2)'/2 tv(£) and temporarily changing 
the variable to u = £(1 — £): 

«(1 - «K + (c + 1 )(1 - 2u)w - (c -1)(< +i+ 1 )to = 0. 

The solution finite for £ = 1 (i.e. for x = co) is 

+ = (i *+i+i,€+i, «i -«]. 

If <!> remains finite for £ = —1 (i.e. for x = — oo), we must have c—r = —n, where 
n = 0, 1,2,...; then F is a polynomial of degree n, which is finite for £ = —1. 

Thus the energy levels are determined by s — t = n, or 

£ = -l^[-(1+2n)+y(,+^r)j- 
There is a finite number of levels, determined by the condition c > 0, i.e. n < j. 

§24. Motion in a homogeneous field 

Let us consider the motion of a particle in a homogeneous external field. 

We take the direction of the field as the axis of x; let F be the force acting 

on the particle in this field. In an electric field of intensity E, this force is 

F = eE, where e is the charge on the particle. 

The potential energy of the particle in the homogeneous field is of the 

form U = — .Fx-hconstant; choosing the constant so that U = 0 for x = 0, 

we have U = — Fx. Schrodinger’s equation for this problem is 

d24lldxi+(2mjh2)(E+ Fx)ip = 0. (24.1) 

Since U tends to + oo as x — oo, and vice versa, it is clear that the energy 

levels form a continuous spectrum occupying the whole range of energy 

values E from — oo to +co. None of these eigenvalues is degenerate, and 

they correspond to motion which is finite towards x = — co and infinite to¬ 

wards x = +co. 

Instead of the coordinate x, we introduce the dimensionless variable 

f = (x+ElF){2mFlh2Y'K (24.2) 

Equation (24.1) then takes the form 

P+tt - o. (24.3) 
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This equation does not contain the energy parameter. Hence, if we obtain a 

solution of it which satisfies the necessary conditions of finiteness, we at 

once have the eigenfunction for arbitrary values of the energy. 

The solution of equation (24.3) which is finite for all x has the form (see 

§b of the Mathematical Appendices) 

m = (24.4) 

where 

$(£) - - f cos^+uf) du 
VnJ 

is called the Airy function, while A is a normalization factor which we shall 

determine below. 

As £ —co, the function *//(£) tends exponentially to zero. The asymp¬ 

totic expression which determines </<(£) for large negative values of f is (see 

(b.4)) 

m (24-5) 

For large positive values of £, the asymptotic expression for </<(£) is (see 

(b.5))t 
= A£-'/* sin(if>/*+j7r)- (24.6) 

Using the general rule (5.4) for the normalization of eigenfunctions of a 

continuous spectrum, let us reduce the function (24.4) to the form normalized 

by the delta function of energy, for which 

j'mm d* = S(£'-£). (24.7) 

In §21 we gave a simple method of determining the normalization coefficient 

by means of the asymptotic expression for the wave functions. Following 

this method, we represent the function (24.6) as the sum of two travelling 

waves: 

>A(0 ~i^-1/4exp(i[f^/2_i7r])+^-i/4 exp(-i[§p/2-H). 

The current density, calculated from each of these two terms, is 

w(i4/2£i/4)2 = x/[2(E + Fx)lm]{Al2p*)2 = A2(2hF)V 3/4w2/3> 

and equating this to 112-nh we find 

A (2w)1/3 

^1/2^1/6/22/3- 
(24.8) 

f It may be noted, by way of anticipation, that the asymptotic expressions (24.5) and (24.6) 
correspond to the quasi-classical expressions for the wave function in the classically inacces¬ 
sible and accessible regions (§47). 



76 Schrodinger’s Equation §25 

PROBLEM 
Determine the wave functions in the momentum representation for a particle in a homo¬ 

geneous field. 
Solution. The Hamiltonian in the momentum representation is 

ft = p- Im-ihFd dp, 

so that Schrodinger’s equation for the wave function a(p) has the form 

-*4H£-£>=" 

Solving this equation, we find the required functions 

«£(P) = (2 

These functions are normalized by the condition 

J OE-(p)flE-(p) dp = «(£■-£). 

§25. The transmission coefficient 

Let us consider the motion of particles in a field of the type shown in 

Fig. 5: U(x) increases monotonically from one constant limit (U = 0 as 

x -j- — co) to another (V = U0 as x + co). According to classical mech¬ 

anics, a particle of energy E < U0 moving in such a field from left to right, 

on reaching such a “potential wall”, is reflected from it, and begins to move 

in the opposite direction; if, however, E > U0, the particle continues to 

move in its original direction, though with diminished velocity. In quantum 

mechanics, a new phenomenon appears: even for E > U0, the particle may 

be reflected from the potential wall. The probability of reflection must in 

principle be calculated as follows. 

.i/U) 

Fig. 5 

Let the particle be moving from left to right. For large positive values of 

x, the wave function must describe a particle which has passed “above the 

wall” and is moving in the positive direction of x, i.e. it must have the asymp¬ 

totic form 

for * - oo, 0 a Aeik'x, where k2 = (\lh)x/[2m(E- U0)] (25.1) 

and A is a constant. To find the solution of Schrodinger’s equation which 

satisfies this boundary condition, we calculate the asymptotic expression for 
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x -> — oo; it is a linear combination of the two solutions of the equation of 

free motion, i.e. it has the form 

for x —*■ — .co, tp x eik‘x+Be~ik'x, where kx — -y/(2mE)jh. (25.2) 

The first term corresponds to a particle incident on the wall (we suppose 

ip normalized so that the coefficient of this term is unity); the second term 

represents a particle reflected from the wall. The probability current 

density in the incident wave is kx, in the reflected wave fcjl-Bl2, and in the 

transmitted wave k2\A\2. We define the transmission coefficient D of the par¬ 

ticle as the ratio of the probability current density in the transmitted wave 

to that in the incident wave: 

D = (WI^P- (25.3) 

Similarly we can define the reflection coefficient R as the ratio of the density 

in the reflected wave to that in the incident wave. Evidently R — 1 —D: 

H = |B|*=1-(WI2 (25.4) 

(this relation between A and B is automatically satisfied). 

If the particle moves from left to right with energy E < U0, then k2 is 

purely imaginary, and the wave function decreases exponentially as* ->■ +oo. 

The reflected current is equal to the incident one, i.e. we have “total reflec¬ 

tion” of the particle from the potential wall. We emphasize, however, that 

in this case the probability of finding the particle in the region where E < TJ 

is still different from zero, though it diminishes rapidly as x increases. 

In the general case of an arbitrary stationary state (with energy E > Uo), 

the asymptotic form of the wave function is given, both for x -*■— oo and for 

x -> + oo, by a sum of waves propagated in each direction: 

ip = Aietk*x+Biertkix for 

ip = A2etklX+B2e^tklX for 
} (25.5) 

Since these expressions are asymptotic forms of the same solution of a linear 

differential equation, there must be a linear relation between the coefficients 

Ai, B\ and A2, -62- Let A2 = aAi+flBi, where a, /? are constants (in general 

complex) which depend on the specific form of the field U(x). The corres¬ 
ponding relation for B2 can then be written down from the fact that Schro- 

dinger’s equation is real. This shows that, if ip is a solution of a given 

Schrodinger’s equation, the complex conjugate function ip* is also a solution. 

The asymptotic forms 

ip* = Ai*e~tk'x+Bi*etkix for *->-00, 

ip* = A2*e-ik‘x+B2*etk‘x for x->+oo 

differ from (25.5) only in the nomenclature of the constant coefficients; we 

therefore have B2* = a.Bi* + fiAi* or B2 - a*.Bi +[3*Ai. Thus the coefficients 
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in (25.5) are related by equations of the form 

A.2 = ou4i+|SZ?i, B2 = |S*.<4 j.+a*Bi. (25.6) 

The condition of constant current along the x-axis leads to the relation 

HlAtf-tftf) = k2(\A2\2-\Btf). 

Expressing A2, B2 in terms of A\, B\ by (25.6), we find 

|a|2-|/S|2 = ki/k2. (25.7) 

Using the relation (25.6), we can show, in particular, that the reflection 

coefficients are equal (for a given energy E > Uq) for particles moving in the 

positive and negative directions of the x-axis; the former case corresponds to 

putting B2 = 0 in (25.5), and the latter case to A\ = 0. In these two cases, 

Bi/Ai = -/3*/a* and A2IB2 = /3/a* respectively. The corresponding re¬ 

flection coefficients are 

= |£iW = |/3*/a*|*. 

R2 = \A2jB2\2 = |/3/«*|2, 

whence it is clear that R\ = R2. 

It is natural to call ByjAy — —/5*/a* and A2jB2 = /5/a* the reflection 

amplitudes for motion in the positive and negative directions respectively. 

They are equal in modulus but may have different phase factors. 

PROBLEMS 

Problem 1. Determine the reflection coefficient of a particle from a rectangular potential 
wall (Fig. 6); the energy of the particle E > U0. 

| tAx) 

Fig. 6 

Solution. Throughout the region x > 0, the wave function has the form (25.1), while in 
the region x < 0 its form is (25.2). The constants A and B are determined from the condi¬ 
tion that 4> and dipldx are continuous at x = 0: 

L 1+B - A, A,(l-B) = k,A. 
whence 

A = 2M*i+*2). B = (*,-*,)/(*,+*,). 

The reflection coefficient t is (25.4) 

For E = U„ (k, = 0), R becomes unity, while for E -*■ oo it tends to zero as (^/0/4£'),. 

t In the limiting case of classical mechanics, the reflection coefficient must become zero. 
The expression obtained here, however, does not contain the quantum constant at all. This 
apparent contradiction is explained as follows. The classical limiting case is that in which 
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Problem 2. Determine the transmission coefficient for a rectangular potential barrier(Fig. 7). 

|(/U) 

Uo 

Fig. 7 

Solution. Let E be greater than t/0, and suppose that the incident particle is moving from 
left to right. Then we have for the wave function in the different regions expressions of the 
form 

for x < 0, \jj = eik‘x+Ae~ik,1, 

for 0 < x < a, 0 = Be‘k.x+B'e-'k.1, 

for x > a, ifi = Ceikix 

(on the side x > a there can be only the transmitted wave, propagated in the positive direc¬ 
tion of x). The constants A, B, B‘ and C are determined from the conditions of continuity 
of <l> and dtp/dx at the points x = 0 and a. The transmission coefficient is determined as 
D — = |C|S. On calculating this, we obtain 

(V-A,=)2 sin2<iL-t-4*fL2' 

For E < U<s, kt is a purely imaginary quantity; the corresponding expression for D is 
obtained by replacing kt by i«a, where hxi = \/[2m(U0—E)]: 

D 
(A^+k,2)2 sinh2CK„+4/i,2K,2 

Problem 3. Determine the reflection coefficient for a potential wall defined by the formula 
U(x) = (/0/(l +e-01) (Fig. 5); the energy of the particle is E > U0. 

Solution. Schrodinger’s equation is 

d20 2m 

dX2 + A2 

We have to find a solution which, as x -> +oo, has the form 

We introduce a new variable 

(which takes values from — oo to 0), and seek a solution of the form 

■A = 

the de Broglie wavelength of the particle X~hjp is small in comparison with the characteristic 
dimensions of the problem, i.e. the distances over which the field U(x) changes noticeably. 
In the schematic example considered, however, this distance is zero (at the point x = 0), so 
that the passage to the limit cannot be effected. 
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where zt>(f) tends to a constant as f ->■ 0 (i.e. as x -*■ oo). For we find an equation of 
hypergeometric type: 

f(l-0»,' + (l-2iAI'*)(l-fla:- + (A1=-A,V *= = 0, 

which has as its solution the hypergeometric function 

® ^ ,-2ft2/«+l,f) 

(we omit a constant factor). As f -*■ 0, this function tends to 1, i.e. it satisfies the condition 
imposed. 

The asymptotic form of the function ^ as f -*■ — co (i.e. x -* — co) is t 

r(-2rt1/q)r(-2.At/q+l) 

r(-.(*l+*2)wr(-i(Ai+*2)M+i)’ 

r(2iA1/a)r(-2^./q+l) 

The required reflection coefficient is f? = |C./C\|2; on calculating it by means of the well 
known formula 

r(*)r(l-*) =ir/sinir*. 

_ /sinh[ir(*,—*2)/q] N 

" Unh[2K*i+*2)/«] i 

For E = U0 (kt = 0), R becomes unity, while for E ->■ oo it tends to zero as 

In the limiting case of classical mechanics, R becomes zero, as it should. 

Problem 4. Determine the transmission coefficient for a potential barrier defined by the 
formula 

£/(*) = £/0/cosh*« 

(Fig. 8); the energy of the particle is E < Us. 

,UM 

Fig. 8 

t See formula (e.6), in each of whose two terms we mi^st take only the first term 
expansion, i.e. replace the hypergeometric functions of 1/z by unity. 

of the 
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Solution. The Schrodinger’s equation is the same as that obtained in the solution of 
Problem 5, §23; it is necessary merely to alter the sign of (/„ and to regard the energy E 
now as positive. A similar calculation gives the solution 

4 = (1-f-*/«+»+1. -*/«+ l.i(l-f)]. 

where 
f = tanh ax, k = y/(2mE)lb, 

7D-S?])- 
This solution satisfies the condition that, as x -*oo (i.e. as£ -* 1, (1—£) «; 2e-2ai), the wave 
function should include only the transmitted wave The asymptotic form of the 
wave function as x -*■ — co (f -*■ — 1) is found by transforming the hypergeometric function 
with the aid of formula (e.7): 

^r(,*.-«)r(ir(-.A/g)r(i-rtig) 
r(-or(i+f) r(-*;«-i)r(-.-*/« + !+1) 

Taking the squared modulus of the ratio of coefficients in this function, 
ing expression for the transmission coefficient D = 1 — R: 

(if 8mUolti2a2<i), 

D 
sinh2(rr*/a) 

suih2(irA/a) + cos2[j7T v'(l-8mt/0/A=x2)] 

sinh2(irA/a) 

sinh2(wA/a)+cosh2[£„ V&mUjhW-1)] 

: obtain the follow- 

(if 8mUolti2a2 >1). The first of these formulae holds also for the case Uo < 0, i.e. when 
the particle is passing over a potential well instead of a potential barrier. It is interesting to 
note that in that case D = 1 if 1 +8m!(7ol/fi2a2 = (2n +1)2; thus, for certain values of the 
depth I C/ol of the well, particles passing over it are not reflected. This is evident from equation 
(2), where the term in e~tkx vanishes for positive integral s. 

Problem 5. Determine how the transmission coefficient lends lo zero as /■ -» 0, assuming lhat 
die potential energs f v decreases rapidly at distances |.t | a. where a is the dimension of the 

Solution. For distances k \x | 1, E can be neglected in Schrbdinger’s equation. If also \x | a, 
the potential energv can also be neglected, and the equation becomes — ifc2/2mj d2t/t/dx2 = 0; the 
solution of this mav be written as 

4 = a, + b,x fbrxCO. tj/=a, + b2x for x > 0. 1 

The relation between at, b, and a2, b2 can be found by solving the equation at distances \x\~ a. 

at=pa2 + pb2, A| = va2 + TA2. (2 

The coefficients p, p, v and T are real and independent of the energy, which does not appear in the 
equation.+ The solution 1 must be the same as the first two terms in the expansion of (25.1; and 
25.2 in powers of r. so that 

o,= l+B, b, = iky\-B at = A, b2 = ikA. 

Substituting these in ,2) and solving for .1, we gel, for small k, A 2ikjv, whence D * 4i2/v2 ~ E. 
The transmission coefficient thus tends to zero in proportion to the particle energy. This is of course 
true for the examples in Problems 2 and 4. 

Since the flu> t, pr - pv = 



CHAPTER IV 

ANGULAR MOMENTUM 

§26. Angular momentum 

In §15, to derive the law of conservation of momentum, we have made use 

of the homogeneity of space relative to a closed system of particles. Besides 

its homogeneity, space has also the property of isotropy: all directions in it 

are equivalent. Hence the Hamiltonian of a closed system cannot change 

when the system rotates as a whole through an arbitrary angle about an 

arbitrary axis. It is sufficient to require the fulfilment of this condition for an 

infinitely small rotation. 

Let 8tp be the vector of an infinitely small rotation, equal in magnitude 

to the angle 8<f> of the rotation and directed along the axis about which the 

rotation takes place. The changes 8ra (in the radius vectors rn of the par¬ 

ticles) in such a rotation are 

An arbitrary function tp{rv r2,... ) is thereby transformed into the function 

^(rj+Srj.rjj+Srj,...) =■ yj(ri>r2> ...)+2 Sr„. 

= r2,...)+ 2 8q> x r„. 

= (l+Sq,.2r0xV0)^(r1,r2,...). 

The expression 

l+8q>.2r0x V„ 

is the operator of an infinitely small rotation. The fact that an infinitely small 

rotation does not alter the Hamiltonian of the system is expressed (cf. §15) by 

the commutability of the “rotation operator” with the operator H. Since 

8<p is a constant vector, this condition reduces to the relation 

(2 r„ x Vo)i?-/?(2 r0 x Vc) = 0, (26.1) 

which expresses a certain law of conservation. 

The quantity whose conservation for a closed system follows from the 

property of isotropy of space is the angular momentum of the system (cf. 

Mechanics, §9). Thus the operator 2 raxV„ must correspond exactly, 

apart from a constant factor, to the total angular momentum of the system, 

and each of the terms r0 x V0 of this sum corresponds to the angular momen¬ 

tum of an individual particle. 

82 



83 §26 Angular momentum 

The coefficient of proportionality must be put equal to —ih\ then the 

expression for the angular momentum operator of a particle is — ihr x V = 

rxp and corresponds exactly to the classical expression r xp Hencefor¬ 

ward we shall always use the angular momentum measured in units of h. The 

angular momentum operator of a^ particle, so defined, will be denoted by 1, 

and that of the whole system by L. Thus the angular momentum operator 

of a particle is 

h\ = rxp = -ihrxV, (26.2) 

or, in components, 

hlx = ypz — Zpy, hiv = zpx—xpz, hlz — xpv—ypx. 

For a system which is in an external field, the angular momentum is in 

general not conserved. However, it may still be conserved if the field has a 

certain symmetry. Thus, if the system is in a centrally symmetric field, all 

directions in space at the centre are equivalent, and hence the angular momen¬ 

tum about this centre will be conserved. Similarly, in an axially symmetric 

field, the component of angular momentum along the axis of symmetry is 

conserved. All these conservation laws holding in classical mechanics are 

valid in quantum mechanics also. 

In a system where angular momentum is not conserved, it does not have 

definite values in the stationary states. In such cases the mean value of the 

angular momentum in a given stationary state is sometimes of interest. It is 

easily seen that, in any non-degenerate stationary state, the mean value of the 

angular momentum is zero. For, when the sign of the time is changed, the 

energy does not alter, and, since only one stationary state corresponds to a 

given energy level, it follows that when t is changed into —t the state of the 

system must remain the same. This means that the mean values of all 

quantities, and in particular that of the angular momentum, must remain 

unchanged. But when the sign of the time is changed, so is that of the angular 

momentum, and we have L = — L, whence it follows that L = 0. The same 

result can be obtained by starting from the mathematical definition of the 

mean value L as being the integral of The wave functions of non¬ 

degenerate states are real (see the end of §18). Hence the expression 

L = —ih J </<*(Xra x\7a)i/jdq 

is purely imaginary, and since L must, of course, be real, it is evident that 

L = 0. 
Let us derive the rules for commutation of the angular momentum operators 

with those of coordinates and linear momenta. By means of the relations 

(16.2) we easily find 

{/*,*} =0, {Ly}=iz, {Lz} = —iy, ] 

{lv,y}=0, {/„,*} = ix, {/„,*} = -nr, 

{tz,z} = 0, {/„*} = iy, {tIty} = -ix. > 

(26.3) 
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For instance, 

Angular Momentum §26 

lxy-ylx = (i lfi){yp*-4v)y-y{ypz-4v)0-lh) 

= -(*lh){pv,y} = »>■ 

All the relations (26.3) can be written in tensor form as follows: 

{/***}=»« «*., (26.4) 

where eihl is the antisymmetric unit tensor of rank three,f and summation is 

implied over those suffixes which appear twice (called dummy suffixes). 

It is easily seen that a similar commutation rule holds for the angular 

momentum and linear momentum operators: 

{Lh) = "oak (26.5) 

By means of these formulae, it is easy to find the rules for commutation of 

the operators !x, lv, tz with one another. We have 

h{ljy-tvlx) = lx{zpx-xpx)-{zpx-xpSx 

= (l^-ztxjk-^Lpz-pzL) 

= —iypx+ixPv = ML- 

Thus 

{/„/,}= i!„ {/„/«} =»/„ (4, /„} = ilz> (26.6) 

or 

{44} =ieikll (26.7) 

Exactly the same relations hold for the operators Lx, Lv, Lz of the total 

angular momentum of the system. For, since the angular momentum oper¬ 

ators of different individual particles commute, we have, for instance, 

z4vz4z-242z/ov = |(4v/m-L4v) = *£/«. 

Thus 

{Lv,L,}=iLx, {Lz,Lx}=iLy, {Lx, Lv} = ilt. (26.8) 

The relations (26.8) show that the three components of the angular momen¬ 

tum cannot simultaneously have definite values (except in the case where all 

three components simultaneously vanish: see below'). In this respect the 

angular momentum is fundamentally different from the linear momentum, 
whose three components are simultaneously measurable. 

t The antisymmetric unit tensor of rank three, ena (also called the unit axial tensor), is 
defined as a tensor antisymmetric in all three suffixes, with f123 = 1. It is evident that, of 
its 27 components, only 6 are not zero, namely those in which the suffixes t, k, l form some 
permutation of 1, 2, 3. Such a component is + 1 if the permutation i, k, l is obtained from 
1, 2, 3 by an even number of transpositions of pairs of figures, and is —1 if the number of 
transpositions is odd. Clearly emeikm = 2&im, eucieu-i = 6. The components of the vector 
C = A X B which is the vector product of the two vectors A and B can be written by means 
of the tensor eua in the form 

C, = e(iciAtBi. 
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From the operators Lx, Ly, Lz we can form the operator of the square of 

the modulus of the angular momentum vector, and which we denote by L2: 

Lz = L*+Lv*+L,\ (26.9) 

This operator commutes with each of the operators Lx, Lv, Lz: 

{L“, Z*} *= 0. {LZ,X,„} = 0, {Lz,4}=0. (26.10) 

Using (26.8), we have 

{lx\lz} = Lx{lx,Lz}+{Lx, LZ}LX 

= -i(txlv+lvlx), 

{LV2,LZ} = i(LxLv-\-LvLx), 

{LZ\LZ} =o. 

Adding these equations, we have {Lz, Lz} = 0. Physically, the relations 

(26.10) mean that the square of the angular momentum, i.e. its modulus, can 

have a definite value at the same time as one of its components. 

Instead of the operators Lx, Ly it is often more convenient to use the 

complex combinations 

L+ = Lx+ily, L_ = lx-ily. (26.11) 

It is easily verified by direct calculation using (26.8) that the following 

commutation rules hold: 

{£+,£_} = 2l„ {Lz, £+}=£+, ) 
' > (26.12) 

{£„£_} =-Z_, / 

and it is also not difficult to see that 

Lz= L+L-+lz*-Lz 

= l-L++Lz*+Lz. (26.13) 

Finally, we shall give some frequently used expressions for the angular 

momentum operator of a single particle in spherical polar coordinates. 

Defining the latter by means of the usual relations 

x — r sin 6 cos <f>, y = r sin 8 sin <f>, z = r cos 8, 

we have after a simple calculation 

h = -i—, (26.14) 

l± = + (26.15) 
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Substitution in (26.13) gives the squared angular momentum operator of the 

particle: 

r 1 S2 1 8 / e\-i 
12 = --+-(sin#—) . (26.16) 

Lsin20 ctf sin 8 88 \ 88 J J 

It should be noticed that this is, apart from a factor, the angular part of the 

Laplacian operator. 

§27. Eigenvalues of the angular momentum 

In order to determine the eigenvalues of the component, in some direction, 

of the angular momentum of a particle, it is convenient to use the expression 

for its operator in spherical polar coordinates, taking the direction in question 

as the polar axis. According to formula (26.14), the equation /z</< = lzip can 

be written in the form 

-ifyldf (27.1) 

Its solution is 

* =f(r,8)e^, 

where/(r, 8) is an arbitrary function of r and 8. If the function is to be single¬ 

valued, it must be periodic in <f>, with period 2tt. Hence we findf 

4 = m, where m = 0, ±1,± 2,.... (27.2) 

Thus the eigenvalues lz are the positive and negative integers, including 

zero. The factor depending on <f>, which characterizes the eigenfunctions of 

the operator ls, is denoted by 

= (2w)-w«*»*. (27.3) 

These functions are normalized so that 

J d<f> = Smrn-. (27.4) 

The eigenvalues of the z-component of the total angular momentum of the 

system are evidently also equal to the positive and negative integers: 

Lz = M, where M = 0,± 1, ±2,... (27.5) 

(this follows at once from the fact that the operator Lz is equal to the sum of 

the commuting operators lz for the individual particles). 

Since the direction of the z-axis is in no way distinctive, it is clear that the 

same result is obtained for Lx, Ly and in general for the component of the 

angular momentum in any direction: they can all take integral values only. 

At first sight this result may appear paradoxical, particularly if we apply 

it to two directions infinitely close to each other. In fact, however, it must 

t The customary notation for the eigenvalues of the angular momentum component is m, 
which also denotes the mass of a particle, but this should not lead to any confusion 
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be remembered that the only common eigenfunction of the operators 

Lx, Ly, Lz corresponds to the simultaneous values 

Lx = Lv = L, = 0; 

in this case the angular momentum vector is zero, and consequently so is its 

projection upon any direction. If even one of the eigenvalues Lx, Ly, Lt is 

not zero, the operators Lx, Ly, Lz have no common eigenfunctions. In other 

words, there is no state in which two or three of the angular momentum 

components in different directions simultaneously have definite values differ¬ 

ent from zero, so that we can say only that one of them is integral. 

The stationary states of a system which differ only in the value of M have 

the same energy; this follows from general considerations, based on the 

fact that the direction of the sr-axis is in no way distinctive. Thus the 

energy levels of a system whose angular momentum is conserved (and is not 

zero) are always degenerate.! 

Let us now look for the eigenvalues of the square of the angular momen¬ 

tum. We shall show how these values may be found, starting from the 
commutation rules (26.8) only. We denote by the wave functions of the 

stationary states with the same value of L2, belonging to one degenerate 

energy level, and distinguished by the value of M.| 

First of all we note that, since the two directions of the 2-axis are physically 

equivalent, for every possible positive value M — \M\ there is a correspond¬ 

ing negative value M = —\M\. Let L (a positive integer or zero) denote the 

greatest possible value of \M\ for a given L2. The existence of this upper 

limit follows because L2 — Lz2 = Lx2 + Ly2 is the operator of the essentially 

positive physical quantity Lx2 + Ly2, and its eigenvalues therefore cannot be 

negative. 

Applying the operator LZL± to the eigenfunction ipM of the operator Lz 

and using the commutation rule {Lz, L±} = ± L ± (26.12), we obtain 

LzLJ>m = (M± 1 )L^U- (27.6) 

Hence we see that the function L ±i(jm is (apart from a normalization constant) 

the eigenfunction corresponding to the value M ± 1 of the quantity Lz: 

>Pm+i = constant x L+ipyj, i/w-i = constant x L4m- (27.7) 

t This is a particular case of the general theorem, mentioned in §10, which states that the 
levels are degenerate when two or more conserved quantities exist whose operators do not 
commute. Here the components of the angular momentum are such quantities. 

J Here it is supposed that there is no additional degeneracy leading to the same value of 
the energy for different values of the squared angular momentum. This is true for a discrete 
spectrum (except for the case of what is called accidental degeneracy in a Coulomb field; see 
§36) and in general untrue for the energy levels of a continuous spectrum. However, even 
when such additional degeneracy is present, we can always choose the eigenfunctions so that 
they correspond to states with definite values of L2, and then we can choose from these the 
states with the same values of E and L2. This is mathematically expressed by the fact that the 
matrices of commuting operators can always be simultaneously brought into diagonal form. 
In what follows we shall, in such cases, speak, for the sake of brevity, as if there were no 
additional degeneracy, bearing in mind that the results obtained do not in fact depend on 
this assumption, by what we have just said. 
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If we put M = L in the first of these equations, we must have identically 

L4l = 0, (27.8) 

since there is by definition no state with M > L. Applying the operator L- 
to this equation and using the relation (26.13), we obtain 

L-L+ipL = (L2— Lz2— Lz)i)jl — 0. 

Since, however, the are common eigenfunctions of the operators L2 and 

Lz, we have 

L2ipL = L2ipLt = U'lpL, LztpL = LipL, 

so that the equation found above gives 

L2 = L(L+l). (27.9) 

Formula (27.9) determines the required eigenvalues of the square of the 

angular momentum; the number L takes all positive integral values, including 

zero. For a given value of L, the component Ls — M of the angular momen¬ 

tum can take the values 

M = L,L—\,... ,—L, (27.10) 

i.e. 2L + 1 different values in all. The energy level corresponding to the 

angular momentum L thus has (2L + l)-fold degeneracy; this is usually 

called degeneracy with respect to the direction of the angular momentum. 

A state with angular momentum L = 0 (when all three components are also 

zero) is not degenerate. The wave function of such a state is spherically 

symmetric, as is evident from the fact that the change in it under any in¬ 

finitesimal rotation, given by Li/«, is in this case zero. 

We shall often, for the sake of brevity, and in accordance with custom, 

speak of the “angular momentum” L of a system, understanding by this an 

angular momentum whose square is L[L + 1); the ^-component of the angular 

momentum is usually called just the “angular momentum component”. 

The angular momentum of a single particle is denoted by the small letter 

l, for which formula (27.9) becomes 

12=Z(/+1). (27.11) 

Let us calculate the matrix elements of the quantities Lx and Ly in a 

representation in which Lz and L2, as well as the energy, are diagonal 

(M. Born, W. Heisenberg and P. Jordan 1926). First of all, we note that, 

since the operators Lx and Ly commute with the Hamiltonian, their matrices 

are diagonal with respect to the energy, i.e. all matrix elements for transitions 

between states of different energy (and different angular momentum L) 
are zero. Thus it is sufficient to consider the matrix elements for transitions 

within a group of states with different values of M, corresponding to a single 

degenerate energy level. 

It is seen from formulae (27.7) that, in the matrices of the operators 

L+ and L-, only those elements are different from zero which correspond 
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to transitions M-l -»■ M and M M-1 respectively. Taking this into 

account, we find the diagonal matrix elements on both sides of the equation 

(26.13), obtaining! 

L(L+ 1) = <M|L+|M— 1><M— \ \L-\My + M2 — M. 

Noticing that, since the operators Lx and Lv are Hermitian, 

<M— \\L-\My = <M|L+|M-1>*, 

we can rewrite this equation in the form 

whencej 

\(M\L+\M — 1>|2 = L(L+l)—M(M—l) 

= (L-M+1)(L+M), 

<M|L+|M-1> = <M-1|L_|M> 

= V[(L+M)(L-M+!)]. (27.12) 

Hence we have for the non-zero matrix elements of the quantities Lx and Ly 

themselves 

<M\LX\M- 1> = <A/-1|L*|M> = iV[(L + M)(L-M+ 1)], j 

(M\Ly\M-1> = -<M-1|L2/|M> = -liV[(L + M){L-M+l)].y'U) 

The diagonal elements in the matrices of the quantities Lx and Ly are zero. 

Since a diagonal matrix element gives the mean value ^f the quantity in the 

corresponding state, it follows that the mean values Lx and Ly are zero in 

states having definite values of Lz. Thus, if the angular-momentum com¬ 

ponent in a given direction in space has a definite value, the vector L itself is 

in that direction. 

§28. Eigenfunctions of the angular momentum 

The wave function of a particle is not completely determined when the 

values of l and m are prescribed. This is seen from the fact that the expres¬ 

sions for the operators of these quantities in spherical polar coordinates 

contain only the angles 8 and f, so that their eigenfunctions can contain an 

arbitrary factor depending on r. We shall here consider only the angular 

part of the wave function which characterizes the eigenfunctions of the 

angular momentum, and denote this by Yim(8, $), with the normalization 

condition 

j | Flm|a do = 1, 

where do = sin 8 d8df is an element of solid angle. 

■(■In the symbols for the matrix elements, we omit for brevity all suffixes with respect to 
which they are diagonal (including L). 

J The choice of sign in this formula corresponds to the choice of the phase factors in the 
eigenfunctions of the angular momentum. 
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We shall see that the problem of determining the common eigenfunctions 

of the operators l2 and lz admits of separation of the variables 8 and <j>, and 

these functions can be sought in the form 

Ylm = $n,(^)©lm(0). (28.1) 

where are the eigenfunctions of the operator tz, which are given by 

formula (27.3). Since the functions are already normalized by the condi¬ 

tion (27.4), the Qim must be normalized by the condition 

J|0,jssin0d0 = 1. (28.2) 

The functions Ylm with different l or m are automatically orthogonal: 

J J Fj-m'* Yi„, sin 6 d6d<f> = S„-Smtn., (28.3) 

as being the eigenfunctions of angular momentum operators corresponding 

to different eigenvalues. The functions <bm(<£) separately are themselves 

orthogonal (see (27.4)), as being the eigenfunctions of the operator iz cor¬ 

responding to different eigenvalues m of this operator. The functions ©lm(0) 

are not themselves eigenfunctions of any of the angular momentum operators; 

they are mutually orthogonal for different l, but not for different m. 

The most direct method of calculating the required functions is by directly 

solving the problem of finding the eigenfunctions of the operator l2 written 

in spherical polar coordinates (formula (26.16)). The equation l2tp = l2ip is 

IS/ 8iP\ 1 S20 
-(sin0_:)+-—+Z(Z+1)0 =o. 
sin 6 86\ 86J sin*6 8$* 

Substituting in this equation the form (28.1) for ip, we obtain for the function 

©l7l the equation 

1 d / d©Im\ m2 
-( sin^-)-©Im+Z(/+l)0,m = 0. (28.4) 
sine de\ de ) sin2e K ’ ’ 

This equation is well known' in the theory of spherical harmonics. It has 

solutions satisfying the conditions of finiteness and single-valuedness for 

positive integral values of l ^ \m\, in agreement with the eigenvalues of the 

angular momentum obtained above by the matrix method. The correspond¬ 

ing solutions are what are called associated Legendre polynomials Pj(cos 8) 
(see §c of the Mathematical Appendices). Using the normalization condition 

(28.2), we findf 

©lm(0) =(-ir,V[i(2/+l)(/-m)!/(/+m)!]Pr(cos0). (28.5) 

f The choice of the phase factor is not, of course, determined by the normalization condi¬ 
tion. The definition (28.5) used in this book is the most natural from the viewpoint of the 
theory of addition of angular momenta. It differs by a factor il from the one usually adopted. 
The advantages of this choice will be clear from the footnotes in §§60, 106 and 107. 
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Here it is supposed that m ^ 0. For negative m, we use the definition 

©i-i-i =(-ir©nmi- (28.6) 

In other words, ©im for m < 0 is given by (28.5) with \m\ instead of m and 

the factor (- \)m omitted. 

Thus the angular momentum eigenfunctions are mathematically just 

spherical harmonic functions normalized in a particular way. For reference, 

the complete expression embodying the above definitions is 

Yim{6, <f>) = (-1 Ym +|Wi|>'2 (/-H)r|1/2pti?ni (cos epm*. (28.7) 
L (*+M)U 

In particular, 

Yio = il /—1 Pi{cos 6). (28.8) 
V 477 

It is evident that the functions differing in the sign of m are related by 

(-1 y-™Ylt-m = Ylm*. (28.9) 

For / = 0 (so that m — 0 also) the spherical harmonic function reduces to 

a constant. In other words, the wave functions of the states of a particle with 

zero angular momentum depend only on r, i.e. they have complete spherical 

symmetry, in agreement with the general statement in §27. 

For a given m, the values of / starting from \m\ denumerate the successive 

eigenvalues of the quantity l2 in order of increasing magnitude. Hence, from 

the general theory of the zeros of eigenfunctions (§21), we can deduce that the 

function ©Im becomes zero for l—\m\ different values of the angle 6; in 

other words, it has as nodal lines l—\m\ “lines of latitude” on the sphere. If 

the complete angular functions are taken with the real factors cos mf or 

sin m<f> instead off e±i''ml*, they have as further nodal lines \m\ “lines of longi¬ 

tude”; the total number of nodal lines is thus /. 

Finally, we shall show how the functions ©Im may be calculated by the 

matrix method. This is done similarly to the calculation of the wave func¬ 

tions of an oscillator in §23. We start from the equation (27.8): 

t+Yu = 0. 

Using the expression (26.15) for the operator /+ and substituting 

Yn = (277)'V'*©n(0), we obtain for ®n the equation 

d0jj/d0—/ cot# 0j, = 0, 

whence ®n = constant X sin*#. Determining the constant from the normali¬ 

zation condition, we find 

©„ = (-*)» v[i(2/+ 1)!]2-'(1/Z!) sin*#. (28.10) 

| Each such function corresponds to a state in w 
can have the values ± m with equal probability. 

i-hich U does have a definite value, but 
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Next, using (27.12), we write 

LYi,m+i =(Z-)m.m+1KIm 

= VlO-m){l+m+l)]Ylm. 

A repeated application of this formula gives 

V[(Z-m)!/(Z+m)!]Flrn = [(2l)[]-^{Lf-^Yu. 

The right-hand side of this equation is easily calculated by means of the 

expression (26.15) for the operator /-. We have 

L\j{ey™<t>] = sini-^e d(/sin'«0)/d(cos 6). 

A repeated application of this formula gives 

{l_)i-memQll = eirm d'-m(sin' 6.0ii)/d(cos 8)'~™. 

Finally, using these relations and the expression (28.10) for Qu, we obtain 

the formula 

©Im(0) = 

which is the same as (28.5). 

/r(2Z+l)(Z+m)!-] 1 df-m 
= (_z)i / k ^ T ’-sin*B, (28.11) 

VL 2(Z—m)! J 2!Z! sinm6 d(cos 8f~m 

§29. Matrix elements of vectors 

Let us again consider a closed system of particles ;f let / be any scalar 

physical quantity characterizing the system, and /the operator corresponding 

to this quantity. Every scalar is invariant with respect to rotation of the 

coordinate system. Hence the scalar operator / does not vary when acted 

on by a rotation operator, i.e. it commutes with a rotation operator. We know, 

however, that the operator of an infinitely small rotation is the same, apart 

from a constant factor, as the angular momentum operator, so that 

{/, L} = 0. (29.1) 

From the commutability of / with the angular momentum operator it 

follows that the matrix of / with respect to transitions between states with 

definite values of L and M is diagonal with respect to these suffixes. More¬ 

over, since the specification of M defines only the orientation of the system 

relative to the axes of coordinates, and the value of a scalar is independent of 

this orientation, we can say that the matrix elements (n'LM\ f \nLM} are 

independent of the value of M; n conventionally denotes all the quantum 

numbers other than L and M which define the state of the system. A formal 

t All the results in this section are valid also for a particle in a centralK symmetric field 
(and in general whenever the total angular momentum of the system is conserved). 
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proof of this assertion can be obtained from the commutativity of the 

operators/and L^\ 

fLr-L+f= 0. (29.2) 

Let us write down the matrix element of this equation corresponding to the 

transition n, L, M -> n , L, M+ 1. Taking into account the fact that the 

matrix of the quantity L+ has only elements with n, L, M n, L, M + 1, we 

obtain 

in', L, M+\\f\n, L, M+ 1> <», L, M+l\L+\n, L, M> = 

<»', L, M+l\L+\n', L, My in', L, M\f\n, L, My, 

and since the matrix elements of the quantity L+ are independent of the suffix 

n, we find . 

in, L, M+\\f\n, L, \I +1> = in, L, M\f\n, L, My, (29.3) 

whence it follows that all the quantities in', L, M\ f \n, L, My for different M 

(the other suffixes being the same) are equal. 

If we apply this result to the Hamiltonian itself, we obtain our previous 

result that the energy of the stationary states is independent of M, i.e. that 

the energy levels have (2L + l)-foId degeneracy. 

Next, let A be some vector physical quantity characterizing a closed 

system. When the system of coordinates is rotated (and, in particular, in 

an infinitely small rotation, i.e when the angular momentum operator 

is applied), the components of a vector are transformed into linear functions 

of one another. Hence, as a result of the commutation of the operators Lt 

with the operators At, we must again obtain components of the same vector, 

Ai. The exact form can be found by noticing that, in the particular case 

where A is the radius vector of the particle, the formulae (26.4) must be 

obtained. Thus we find the commutation rules 

{U, Ak} = iemA,. (29.4) 

These relations enable us to obtain several results concerning the form 

of the matrices of the components of the vector A (M. Born, W. Heisenberg 

and P. Jordan 1926). First of all, it is possible to derive selection rules which 

determine the transitions for which the matrix elements can be different 

from zero. We shall not go through the fairly lengthy calculations here, 

however, since it will appear later (§107) that these rules are actually a direct 

consequence of the general transformation properties of vector quantities 

and can be derived from the latter with hardly any calculation at all. Here 

we shall merely give the rules, without proof. 
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The matrix elements of all the components of a vector can be different 

from zero only for transitions in which the angular momentum L changes by 

not more than one unit: 

L^L or L± 1. (29.5) 

There is a further selection rule which forbids transitions between any two 

states with L = 0. This rule is an obvious consequence of the complete 

spherical symmetry of states with angular momentum zero. 

The selection rules for the angular momentum component M are different 

for the different components of a vector: the matrix elements can be different 

from zero for transitions where M changes as follows: 

for A+ = Az+iAy, M ^-M+ 1, , 

for A- = Ax — iAy, M^M-1, (29.6) 

for A2, M^M. I 

Moreover, it is possible to determine a general form for the matrix elements 

of a vector as functions of the number M. These important and frequently 

used formulae are given here, also without proof, since they are actually 

a particular case of more general relations derived in §107 for any tensor 

quantities. 

The non-zero matrix elements of the quantity Az are given by the formulae 

M 
<in'LM\Az\nLMy = ---(n'L\\A\\nLy, \ 

' ' V[£(£+1)(2L+1)] 

/ / 2 _ M2 
VLM\AA„, L- 1, M> - 7^_1X2L+1)<"'W £-l>, (29.7) 

<"■• L-1- ~ 

Here the symbol (ri L'\\A\\nLy denotes a reduced matrix element, a quantity 

independent of the quantum number M.-\ These matrix elements are related 

by 

(n’L’WAWnLy = <jiL\\A\\ri L"y*, (29.8) 

which follows directly from the fact that the operator Az is Hermitian. 
The matrix elements of the quantities A- and A+ are also determined by 

t The appearance in formulae (29.7) and (29.9) of denominators which depend on L is in 
accordance with the general notation used in §107. The convenience of these denominators 
is shown, in particular, by the simple form of equation (29.12) for the matrix elements of the 
scalar product of two vectors. 

The symbol for the reduced matrix element is to be taken as a whole, in contrast to the 
matrix element symbol (see the comments following (11.17)). 
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the reduced matrix elements. The non-zero matrix elements of A - are 

<»', L, M — \\A-\nLMy 

= liL-M±l)(L+u)WL |i^|wL>, 
V L(L + l)(2L+ 1) 11 11 

<«', L, M—\\A_\n, L-1, M> 

V L(2L-1)(2L+1) 

<«', L- 1, M- \\A-\nLMy 

= /(L + M-IXL^) I 
V L(2L-\)(2L+l) " " J 

(29.9) 

The matrix elements of ^3 + need not be written out separately: since Ax and 

Ay are real we have 

(ri L' M'\A +\nLMy = (29.10) 

There is a formula which expresses the matrix elements of the scalar A . B 

in terms of the reduced matrix elements of the two vector quantities A and 

B. The calculation is conveniently carried out by writing the operator 

A . B in the form 

A.B = \(A+B- + A-B+) + AzBz. (29.11) 

The matrix of A. B (like that of any scalar) is diagonal with respect to L 

and M. A calculation by means of formulae (29.7)-(29.9) gives the result 

<w'LM|A.B|wLA/> = 2 <n'L\\A\\n"L"y(n'L"\\B\\nLy, (29.12) 

where L" takes the values L, L ± 1. 

For reference, we shall give the reduced matrix elements for the vector L 

itself. A comparison of (29.9) and (27.12) shows that 

<L||L||L> = V[^+1)(2L+1)], ) 

<L-1||L||L> = <L||L||L-1> = 0. j 

A quantity that often occurs in applications is the unit vector n along the 

radius vector of the particle. Its reduced matrix elements can be calculated 



96 Angular Momentum §30 

by finding, for example, the matrix elements of nz = cos 0 for a zero angular- 

momentum component, m = 0; 

</- 1, 0|»*|/0> = f 0i-i.o* cos 0.©,o sin 0d0, 

with the functions 0,o given by (28.11). The evaluation of the integral! gives 

<Z-1,0|««|Z0> = *7M(2/-1)(2/+1)]. 

The matrix elements for transitions / -*• / are zero (as for any polar vector of 

an individual particle; see (30.8) below). Comparison with (29.7) then gives 

</-i||«||/> = -</||*||/-i> = iVi, 

</|M|/> = o. 

PROBLEM 
Average the tensor rum—$l>iic (where n is a unit vector along the radius vector of a particle) 

over a state where the magnitude but not the direction of the vector 1 is given (i.e. lz is 
indeterminate). 

Solution. ^ The required mean value is an operator which can be expressed in terms of 
the operator 1 alone. We seek it in the form 

rni-is it = fl[/,/*+M-iMf+i)]; 

this is the most general symmetrical tensci of rank two with zero trace that can be formed 
from the components of 1. To determine the constant a we multiply this equation on the left 
by U and on _the right by Ik (summing over i and k). Since the vector n is perpendicular to 
the vector hi = i x f>, we have nth — 0. The product UUtktk = (l2)2 is replaced by its 
eigenvalue /2(/ + l)2, and the product Utktilk is transformed by means of the commutation 
relations (26.7) as follows: 

} (29.14) 

hU,L = UAlk-ieM 
= (i2)2-i>Wi(Mt-Mi) 

= (i!)!+h«i-J.4 

= (h)2-h 

= /2(/+1)2-'(/+1) 

(using the fact that ememki = 2&tm). After a simple reduction we obtain the result 

c= —1/(2/— l)(21+3). 

§30. Parity of a state 

Besides the parallel displacements and rotations of the coordinate system, 

the invariance under which represents the homogeneity and isotropy of space 

t Bv /—I times integrating by parts with d cos 6; the general formula for integrals of this 
type is (107.14). 
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respectively, there is another transformation which leaves unaltered the 

Hamiltonian of a closed system. This is what is called the inversion trans¬ 

formation, which consists in simultaneously changing the sign of all the 

coordinates, i.e. a reversal of the direction of each coordinate axis; a right- 

handed coordinate system then becomes left-handed, and vice versa. The 

invariance of the Hamiltonian under this transformation expresses the 

symmetry of space under mirror reflections.-)- In classical mechanics, the 

invariance of Hamilton’s function with respect to inversion does not lead to a 

conservation law, but the situation is different in quantum mechanics. 

Let us denote by P (for “parity”) an inversion operator whose effect on a 

wave function f(r) is to change the sign of the coordinates: 

Pf( r) = (30.1) 

It is easy to find the eigenvalues P of this operator, which are determined 

by the equation 

pm = pm. (30.2) 

To do so, we notice that a double application of the inversion operator 

amounts to identity: the argument of the function is unchanged. In other 

words, we have P24> = P24> = i.e. P2 = 1, whence 

P = ±1. (30.3) 

Thus the eigenfunctions of the inversion operator are either unchanged or 

change in sign when acted upon by this operator. In the first case, the wave 

function (and the corresponding state) is said to be even, and in the second it 

is said to be odd. 

The invariance of the Hamiltonian under inversion (i.e. the fact that the 

operators H and Pcommute) thus expresses the law of conservation of parity: 

if the state of a closed system has a definite parity (i.e. if it is even, or odd) 

then this parity is conserved in the course of time.J 

The angular momentum operator also is invariant under inversion, which 

changes the sign of the coordinates and of the operators of differentiation with 

respect to them; the operator (26.2) thus remains unaltered. In other words, 

the inversion operator commutes with the angular momentum operator, and 

this means that the system can have a definite parity simultaneously with 

definite values of the angular momentum L and its component M. All states 

that differ only in the value of \1 have the same parity ; this is evident because 

the properties of a closed system are independent of its orientation in space, 

t Invariance under inversion exists also for the Hamiltonian of a svstem of particles in a 
centralh symmetric field with the centre at the origin. 

I To avoid misunderstanding, it should be mentioned that this refers to the non-relativistic 
theory. There exist interactions in Nature, falling in the realm of relativistic theory, which 
violate the conservation of parity 
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and it can be formally demonstrated from the commutation rule L +P — PL+ 

= 0 by the same method as in deriving (29.3) from (29.2). 

There are specific parity selection rules for the matrix elements of various 

physical quantities. Let us first consider scalars. Here we must distinguish 

true scalars, which are unchanged by inversion, from pseudoscalars, which 

change sign, for instance the scalar product of an axial and a polar vector. 

The operator of a true scalar/commutes with P; hence it follows that, if the 

matrix of P is diagonal, then the matrix of / is diagonal also as regards the 

parity suffix, i.e. the matrix elements are zero except for transitions £ g and 

u -> u (where g and u denote even and odd states respectively). For the 

operator of a pseudoscalar quantity, we have Pf = —fP\ the operators P and 

/ anticommute. The matrix element of this equation for a transition g -> g is 

Peefee = ~fggPgg> an<^ so.fgg = 0 since Pgg = 1. Similarly we find that 
fuii — 0. Thus, in the matrix of a pseudoscalar quantity, only those elements 

can be different from zero' which correspond to transitions with change of 

parity. The selection rules for the matrix elements of scalars are therefore: 

true scalars g g, u -> u\ 

pseudoscalars g -> u, u -> g. 
(30.4) 

These rules can also be obtained directly from the definition of the matrix 

elements. Let us consider, for example, the integral fug = J >Pu*f>pg 

where the function 4<g is even and ipu odd. When all the coordinates change 

sign, the integrand does so if/is a true scalar; on the other hand, the integral 

taken over all space cannot change when the variables of integration are 

renamed. Hence it follows that fug = —fug, \.t.fug = 0. 

We can similarly derive selection rules for vector quantities. Here it must 

be recalled that ordinary (polar) vectors change sign on inversion, while 

axial vectors (such as the angular momentum vector, which is the vector 

product of the two polar vectors p and r) are unchanged by inversion. The 

selection rules are found to be: 

polar vectors g -*■ u, u 

axial vectors g -* g, u 
(30.5) 

Let us determine the parity of the state of a single particle with angular 

momentum /. The inversion transformation (x -> —x, y -> —y, z ->■ —z) 

is, in spherical polar coordinates, the transformation 

r-*r, 6-+TT-6, <f> n+0. (30.6) 

The dependence of the wave function of the particle on the angle is given by 

the spherical harmonic Yim, which, apart from a constant that is here 

unimportant, has the form Pim(cos 6)eim4’. When <f> is replaced by 7r + ^>, 
the factor eim<‘ is multiplied by ( —l)m, and when 8 is replaced by tt — 8, 

Pim(cos 6) becomes Pim{-cos 6) = {-\)l~mPim{cos 8). Thus the whole 
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function is multiplied by ( — l)z (independent of m, in agreement with what 

was said above), i.e. the parity of a state with a given value of l is 

P = (-l)*. (30.7) 

We see that all states with even / are even, and all those with odd / are odd. 

A vector physical quantity relating to an individual particle can have non¬ 

zero matrix elements only for transitions with l -> l or (§29). Remem¬ 

bering this, and comparing formula (30.7) with what was said above regarding 

the change of parity in the matrix elements of vectors, we reach the result, 

that the matrix elements of vectors relating to an individual particle are zero 

except for the transitions: 

polar vectors / -* / ± 1; I g^ 

axial vectors / -* /. J 

§31. Addition of angular momenta 

Let us consider a system composed of two parts whose interaction is weak. 

If the interaction is entirely neglected, then for each part the law of conserva¬ 

tion of angular momentum holds. The angular momentum L of the whole 

system can be regarded as the sum of the angular momenta Li and L2 of its 

parts. In the next approximation, when the weak interaction is taken into 

account, Li and L-2 are not exactly conserved, but the numbers L\ and Z,2 

which determine their squares remain “good” quantum numbers suitable for 

an approximate description of the state of the system. Regarding the angular 

momenta in a classical manner, we can say that in this approximation Lx and 

L2 rotate round the direction of L while remaining unchanged in magnitude. 

For such systems the question arises regarding the “law of addition” of 

angular momenta: what are the possible values of L for given values of Li 

and L2? The law of addition for the components of angular momentum is 

evident: since Lz = L\z + L-zz, it follows that 

M = A/i + Afg. (31.1) 

There is no such simple relation for the operators of the squared angular 

momenta, however, and to derive their “law of addition” we reason as 

follows. 

If we take the quantities Lj2, L22, L^, L2z as a complete set of physi¬ 

cal quantities,! every state will be determined by the values of the numbers 

-Lj, L2, A/j, A/2. For given Lj and L2, the numbers Mx and M2 take (21^+1) 

and (2L2 + 1) different values respectively, so that there are altogether 

(2^+1)(2L2 + 1) different states with the same and L2. We denote the 

wave functions of the states for this representation by 4>L,L,M,3f,‘ 

Instead of the above four quantities, we can take the four quantities 

Lx2, L22, L2, Lz as a complete set. Then every state is characterized by 

t Together with such other quantities as form a complete set when combined with these 
four. These other quantities pla> no part in the subsequent discussion, and for brevity we 
shall ignore them entirely, and conventionally call the above four quantities a complete set. 
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the values of the numbers Lj, L2, L, M (we denote the corresponding wave 

functions by For given Lx and L2, there must of course be 

(2Lj + 1)(2L2 + 1) different states as before, i.e. for given Lj and L2 the pair 

of numbers L and M must take (2L1 + 1)(2L2+1) pairs of values. These 

values can be determined as follows. 

By adding the various possible values of Mi and M2, we get the corres¬ 

ponding values ot M, as shown below: 

L, u 

L, —1 L2 
L, U-2 
L, — 1 Lt-1 
L, — 2 L2 

L2-1 

U-2 

We see that the greatest possible value of Mis M = Li +■ L2, corresponding 

to one state $ (one pair of values of Mi and M2). The greatest possible value 

of M in the states <p, and hence the greatest possible value of L also, is there¬ 

fore Li+L-2■ Next, there are two states <f> with M = Li + L2 — 1. Con¬ 

sequently, there must also be two states <p with this value of M; one of them 

is the state with L = Li + L2(andM = L— 1), and the other is that with L = 

L1 + L2—I (and M = L). For the value M = Li + L2 —2 there are three 

different states <f>. This means that, besides the values L = L1 + L2, L = 

Li + L-2 — 1, the value L = L1 + L2 — 2 can occur. 

The argument can be continued in this way so long as a decrease of M by 

1 increases by 1 the number of states with a given M. It is easily seen that 

this is so until M reaches the value \Li — L?|. When M decreases further, the 

number of states no longer increases, remaining equal to 2L2+1 (if L2 < L{). 

Thus \Li — L2\ is the least possible value of L, and we arrive at the result 

that, for given Li and L2, the number L can take the values 

L = Lx+L2,Lx+L2-\, ..., ILj-LJ, (31.2) 

that is 2L2 + 1 different values altogether (supposing that L2 < Lj). It is 

easy to verify that we do in fact obtain (2L1 + 1)(2L2 + 1) different values of 

the pair of numbers M, L. Here it is important to note that, if we ignore 

the 2L+ 1 values of M for a given L, then only one state will correspond to 

each of the possible values (31.2) of L. 

This result can be illustrated by means of what is called the vector model. 

If we take two vectors Llt L2 of lengths Lj and L2, then the values of L are 

represented by the integral lengths of the vectors L which are obtained by 

vector addition of and L2; the greatest value of L is L^+L2, which is 

obtained when Lj and Lg are parallel, and the least value is |Lj— L2|, when 

Li and L2 are antiparallel. 

In states with definite values of the angular momenta Lx, L2 and of the 
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total angular momentum L, the scalar products Lj. L2, L . Lj and L . L2 also 

have definite values. These values are easily found. To calculate Lj. L,, 

we write L = Lj +L2 or, squaring and transposing, 

2Lj . L2 = U-Lf-Lf. 

Replacing the operators on the right-hand side of this equation by their 

eigenvalues, we obtain the eigenvalue of the operator on the left-hand side: 

Lj . L, = imL+V-L^+V-L^+l)}. (31.3) 

Similarly we find 

L . L, = \{L{L+1)+!^+1)—L2(L2+1)}. (31.4) 

Let us now determine the “addition rule for parities”. The wave Tinction 

T of a system consisting of two independent parts is the product of the wave 

functions Ti and of these parts. Hence it is clear that if the latter are of 

the same parity (i.e. both change sign, or both do not change sign, when the 

sign of all the coordinates is reversed), then the wave function of the whole 

system is even. On the other hand, if Ti and T2 are of opposite parity, then 

the function T is odd. These statements may be written 

P = P1P2, (31.5) 

where P is the parity of the whole system and Pi,P% those of its parts. This 

rule can, of course, be generalized at once to the case of a system composed of 

any number of non-interacting parts. 

In particular, if we are concerned with a system of particles in a centrally 

symmetric field (the mutual interaction of the particles being supposed weak), 

then the parity of the state of the whole system is given by 

P = (_l)h+«2+... ; (31.6) 

see (30.7). We emphasize that the exponent here contains the algebraic sum 

of the angular momenta k, and this is not in general the same as their “vector 

sum”, i.e. the angular momentum L of the system. 

If a closed system disintegrates (under the action of internal forces), the 

total angular momentum and parity must be conserved. This circumstance 

may render it impossible for a system to disintegrate, even if this is energetic¬ 

ally possible. 

For instance, let us consider an atom in an even state with angular momen¬ 

tum L = 0, which is able, so far as energy considerations go, to disintegrate 

into a free electron and an ion in an odd state with the same angular momen¬ 

tum L = 0. It is easy to see that in fact no such disintegration can occur 

(it is, as we say, forbidden). For, by virtue of the law of conservation of angu¬ 

lar momentum, the free electron would also have to have zero angular momen¬ 

tum, and therefore be in an even state (P = (— 1)° = +1); the state of the 

system ion+electron would then be odd, however, whereas the original state 

of the atom was even. 



CHAPTER V 

MOTION IN A 

CENTRALLY SYMMETRIC EIELD 

§32. Motion in a centrally symmetric field 

The problem of the motion of two interacting particles can be reduced in 

quantum mechanics to that of one particle, as can be done in classical mech¬ 

anics. The Hamiltonian of the two particles (of masses m\, m2) interacting in 

accordance with the law U{r) (where r is the distance between the particles) 

is of the form 

- & , & , 
" _2^A,_2^ 2+£,<')' <32-'> 

where Ai and A2 are the Laplacian operators with respect to the coordinates 

of the particles. Instead of the radius vectors ^ and r2 of the particles, we 

introduce new variables R and r: 

r — r2—ri, R — (m1r1+m2r2)l{m1+tn2)-, (32.2) 

r is the vector of the distance between the particles, and R the radius vector 

of their centre of mass. A simple calculation gives 

n ft* 

2(m1+m2) 

A h* A 
A*—A+U(r), 

2m 
(32.3) 

where &R and A are the Laplacian operators with respect to the components 

of the vectors R and r respectively, m1+m2 is thetotal mass of the system, and 

m = wiW2/(m1 + W2) is the reduced mass. Thus the Hamiltonian falls into 

the sum of two independent parts. Hence we can look for ir2) in the 

form of a product <f>(R)>p{r), where the function (f>(R) describes the motion 

of the centre of mass (as a free particle of mass m\ + m2), and </<(r) describes 

the relative motion of the particles (as a particle of mass m moving in the cen¬ 

trally symmetric field U(r)). 

Schrodinger’s equation for the motion of a particle in a centrally sym¬ 

metric field is 

A0+(2m/ft«)[£—U(r)]0 =0. (32.4) 

Using the familiar expression for the Laplacian operator in spherical polar 
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coordinates, we can write this equation in the form 

r8 8r\ dr) r2 Lsin6 86 \ 86) 

1 g*Jn 2m 
-+—[E-U(f)\p 
sin8 6 8<f>2J ~ hr 

= 0. 

(32.5) 

If we introduce here the operator (26.16) of the squared angular momentum 

we obtain-}- 

£4*0 
8ip\ l2 “] 

rifr)+-2'P] + U(r)'P = EtP- (32.6) 

The angular momentum is conserved during motion in a centrally sym¬ 

metric field. We shall consider stationary states in which the angular 

momentum / and the component m have definite values. These values 

determine the angular dependence of the wave functions. We thus seek 

solutions of equation (32.6) in the form 

* = R{r)Ylm(6,<f>), (32.7) 

where the Yim(6, <j>) are spherical harmonic functions. 

Since i2Fim = /(/+l)yim, we obtain for the radial function R(r) the equa¬ 

tion 

1 d 

l*dr (■£)- 
/(/+1) 2m 
—rLR+~[E~U(r)]R = 0. 

r2 n2 
(32.8) 

This equation does not contain the value of lz = m at all, in accordance with 

the (21+ l)-fold degeneracy of the levels with respect to the directions of the 

angular momentum, with which we are already familiar. 

Let us investigate the radial part of the wave functions. By the substitu¬ 

tion 

R(r) = X(r)lr (32.9) 

equation (32.8) is brought to the form 

d8x r2m. d2v r~2m 
(32.10) 

If the potential energy U(r) is everywhere finite, the wave function ip must 

also be finite in all space, including the origin, and consequently so must its 

t If we introduce the operator of the radial component pr of the linear momentum, in the 

p4, = -ih-—W) = —iVi(— 

the Hamiltonian can be written in the form 

ft =(V2m)(p*+h+lr--) + U(r), 

which is the same in form as the classical Hamilton’s function in spherical polar coordinates. 



§32 104 Motion in a Centrally Symmetric Field 

radial part R(r). Hence it follows that g(r) must vanish for r = 0: 

x(0) = 0. (32.11) 

This condition actually holds also (see §35) for a field which becomes infinite 

as r -*■ 0. 

Equation (32.10) is formally identical with Schrodinger’s equation for 

one-dimensional motion in a field of potential energy 

ft* Z(Z+1) 
Ut(r) = U(r)+--, (32.12) 

2m r2 

which is the sum of the energy U(r) and a term 

h2l(l+l)/2mr2 = h2l2/2mr2, 

which may be called the centrifugal energy. Thus the problem of motion in a 

centrally symmetric field reduces to that of one-dimensional motion in a 

region bounded on one side (the boundary condition for r = 0). The nor¬ 

malization condition for the function g *s also “one-dimensional”, being 

determined by the integral 

J\R\ V2 dr = J |# dr. 

In one-dimensional motion in a region bounded on one side, the energy 

levels are not degenerate (§21). Hence we can say that, if the energy is given, 

the solution of equation (32.10), i.e. the radial part of the wave function, is 

completely determined. Bearing in mind also that the angular part of the 

wave function is completely determined by the values of / and m, we reach 

the conclusion that, for motion in a centrally symmetric field, the wave func¬ 

tion is completely determined by the values of E, l and m. In other words, 

the energy, the squared angular momentum and the ^-component of the 

angular momentum together form a complete set of physical quantities for 

such a motion. 

The reduction of the problem of motion in a centrally symmetric field to a 

one-dimensional problem enables us to apply the oscillation theorem (see 

§21). We arrange the eigenvalues of the energy (discrete spectrum) for a 

given l in order of increasing magnitude, and give them numbersnr> the lowest 

level being given the number nr = 0. Then nr determines the number of 

nodes of the radial part of the wave function for finite values of r (excluding 

the point r = 0). The number nr is called the radial quantum number. The 

number / for motion in a centrally symmetric field is sometimes called the 

azimuthal quantum number, and m the magnetic quantum number. 

There is an accepted notation for states with various values of the angular 

momentum / of the particle: they are denoted by Latin letters, as follows: 

/ = 01234567... 

s p df g h i k ... 
(32.13) 
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The normal state of a particle moving in a centrally symmetric field is 

always the r state; for, if / ^ 0, the angular part of the wave function in¬ 

variably has nodes, whereas the wave function of the normal state can have 

no nodes. We can also say that the least possible eigenvalue of the energy, 

for a given /, increases with l. This follows from the fact that the presence 

of an angular momentum involves the addition of the essentially positive 

term hH{l+\)\2mr2, which increases with /, to the Hamiltonian. 

Let us determine the form of the radial function near the origin. Here 

we shall suppose that 

lim U(ry = 0. (32.14) 

We seek R(r) in the form of a power series in r, retaining only the first term 

of the series for small r; in other words, we seek R(r) in the form R — con¬ 

stant x r*. Substituting this in the equation 

d(r* dRldr)jdr-l(l+l)R = 0, 

which is obtained from (32.8) by multiplying by r2 and taking the limit as 

r -> 0, we find 

r(r+l) =/(/+!). 

Hence 

s=l or i = -(/+!). 

The solution with r = — (/+1) does not satisfy the necessary conditions; 

it becomes infinite for r = 0 (we recall that l > 0). Thus the solution with 

s = l remains, i.e. near the origin the wave functions of states with a given l 

are proportional to rl: 

Ri % constant x rl. (32.15) 

The probability of a particle’s being at a distance between r and r+dr from 

the centre is determined by the value of r2|Z?|2 and is thus proportional to 

r8(,+1). VVe see that it becomes zero at the origin the more rapidly, the 

greater the value of l. 

§33. Spherical waves 

The plane wave 

ipp = constant xe(t’/n>p-r 

describes a stationary state in which a free particle has a definite momentum p 

(and energy E = p2j2m). Let us now consider stationary states of a free 

particle in which it has a definite value, not only of the energy, but also of the 

absolute value and component of the angular momentum. Instead of the 
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energy, it is convenient to introduce the wave number 

§33 

k = plh = V(2mE)lh. (33.1) 

The wave function of a state with angular momentum Z and projection 

thereof m has the form 

<i>klm = Rkl{r)Ylm{6,4>), (33.2) 

where the radial function is determined by the equation 

2 r Z(Z+1)~| 
= 0 (33.3) 

(equation (32.8) with U(r) = 0). The wave functions 4<kim for the continuous 

(with respect to k) spectrum satisfy the conditions of normalization and 

orthogonality: 

/ 'I'fl-m^klrndV = b^. 

The orthogonality for different Z, /' and m,m is ensured by the angular func¬ 

tions. The radial functions must be normalized by the condition 

f rm^Rki dr = = 2nh{k’-k). (33.4) 

If we normalize the wave functions, not on the “kj2n scale”, but on the 

“energy scale”, i.e. by the condition 

j rsRe-iRei dr = S(E'-E), 

then, by the general formula (5.14), we have 

Rei = iW(l/2rr)V(d*/d£) = (llb)V(ml2nk)Rkl. 

For Z = 0, equation (33.3) can be written 

dVZ?w) , Le D n 

its solution finite for r = 0 and normalized by the condition (33.4) is (cf. 

(21.9)) 

Rt o = (33.6) 

To solve equation (33.3) with Z # 0, we make the substitution 

Rkl = r*Xkl. (33.7) 

For we have the equation 

Xw"+2(l+l)Xkilr+k2xM — 0. 
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If we differentiate this equation with respect to r, we obtain 

2(/+1) 

By the substitution Xki = rXk,i+i i* becomes 

2(/+2) 
+l"H-Xk,l+l+k2Xk,l+i = 0, 

which is in fact the equation satisfied by xjt.i+i- 

tions Xki are related by 

Xk.i+i = Xkilr, 

and hence 

Thus the successive func- 

(33.8) 

where Xko = Rko *s determined by formula (33.6) (this expression can, of 

course, be multiplied by an arbitrary constant). 

Thus we finally have the following expression for the radial functions in 

the free motion of a particle: 

Rkl = ( 
’ kl \ r dr) 

(33.9) 

(the factor k~l is introduced for normalization purposes—see below— and 

the factor ( — 1)* for convenience). The functions (33.9) can be expressed in 

terms of Bessel functions of half-integral order, in the form 

Rkl = V(2tTk,r)J^xlo{kr) = 2 kji(kr)- (33.10) 

the functions 

7<(-v) = V(rr!2x)Jl+m(x) (33.11) 

are called spherical Bessel functions.f 

To obtain an asymptotic expression for the radial function (33.9) at large 

distances, we notice that the term which decreases least rapidly as r oo is 

obtained by differentiating the sine l times. Since each differentiation - d/dr 

of the sine adds — hn to its argument, we have the following asymptotic 

expression: 

^ ^ 2 sin (kr — hlir) 
(33.12) 

t The first few of these are 

as x times these are also sometimes used Functions defined 
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The normalization of the functions Rki can be effected by means of their 

asymptotic expressions, as was explained in §21. Comparing the asymptotic 

formula (33.12) with the normalized function R*.0 (33.6), we see that the func¬ 

tions R/ci, with the coefficient used in (33.9), are in fact normalized as they 

should be. 

Near the origin (r small) we have, expanding sin kr in series and retaining 

only the term containing the lowest power of r after the differentiation,-]- 

(1 d \1 sin kr 

rTr) 

/I dv'^V8 

= ( — l)lkzl +1l(2l+ 1)!!. 

Thus the functions Rkt near the origin have the form 

2kl +1 

(2/+1)!! 
(33.13) 

in agreement with the general result (32.15). 

In some problems (of scattering theory) it is necessary to consider wave 

functions which do not satisfy the usual conditions of finiteness, but corres¬ 

pond to a flux of particles from or to the centre. The wave function which 

describes such a flux of particles with angular momentum l = 0 is obtained 

by taking, instead of the “stationary spherical wave” (33.6), a solution in the 

form of an outgoing spherical wave Rko+ or an ingoing spherical wave Rko~, 

with 

Rk o1 = (Alr)e+-ikr. (33.14) 

In the general case of an angular momentum / which is not zero, we obtain 

a solution of equation (33.3) in the form 

r* / Id \ te±ikr 
(33.15, 

These functions can be expressed in terms of Hankel functions: 

Rkl± = ±iAV{knl2r)H(^^{kr), (33.16) 

of the first and second kinds for the signs + and — respectively. 

t The symbol !! denot 
the number in question. 

the product of all integers of the parity up to and including 
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The asymptotic expression for these functions ii 

Rkt± ~ Ae±HkT-tniV>lr_ 

Near the origin, it has the form 

109 

(33.17) 

(33.18) 

We normalize these functions so that they correspond to the emission (or 

absorption) of one particle per unit time. To do so, we notice that, at large 

distances, the spherical wave can be regarded as plane in any small interval, 

and the current density in it is j = vipip*, where v = kh/m is the velocity of a 

particle. The normalization is determined by the condition §j df = 1, 

where the integration is carried out over a spherical surface of large radius r, 

i.e. | jr2 do = 1, where do is an element of solid angle. If the angular func¬ 

tions are normalized as before, the coefficient A in the radial function must 

be put equal to 

A = 1/ Vv = V{mlkH). (33.19) 

An asymptotic expression similar to (33.12) holds, not only for the radial 

part of the wave function of free motion, but also for motion (with positive 

energy) in any field which falls off sufficiently rapidly with distance.-]- At 

large distances we can neglect both the field and the centrifugal energy in 

Schrodinger’s equation, and there remains the approximate equation 

1 d2(rR)fc,) 
r dr* 

+k*Rkl = 0. 

The general solution of this equation is 

Rkl ~ 2 s'in(kr ~ ¥n + 8i) (33.20) 

where 8, is a constant, called the phase shift, and the common factor is chosen 

in accordance with the normalization of the wave function on the “kjlrr 

scale”.J The constant phase shift Si is determined by the boundary con¬ 

dition (Rki is finite as r -*■ 0); to do this, the exact Schrodinger’s equation 

must be solved, and Si cannot be calculated in a general form. The phase 

shifts Si are, of course, functions of both l and k, and are an important 

property of the eigenfunctions of the continuous spectrum. 

t As we shall show in §124, the field must decrease more rapidly than 1/r. 
t The term —\lir in the argument of the sine is added so that 81 = 0 when the field is 

absent. Since the sign of the wave function as a whole is not significant, the phase shifts 81 
are determined to within m (not 2m). Their values may therefore always be chosen in the 
range between 0 and ir. 
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PROBLEMS 

Problem 1. Determine the energy levels for the motion of a particle with angular momen¬ 
tum / = 0 in a spherical square potential well: 

V{r) = - J70 for r < c, U{r) = 0 for r>a 

Solution. For 1 = 0 the wave functions depend only on r. Inside the well, Schrodinger's 
equation has the form 

1 =0, k = l- x'[2m(U0- |El)]. 

The solution finite for r = 0 is 

* 

For r > a, we have the equation 

= 0, k = iv/(2m| £[). 

The solution vanishing at infinity is 

<!> = A-e-tr/v. 

The condition of the continuity of the logarithmic derivative of ri/j at r = a gives 

k cot ka = — k — — v'[(2mU0/A2)-^], (1) 

sin Ac = ± v'(A2/2mc2L'0)Ac. (2) 

This equation determines in implicit form the required energy levels (we must take those 
roots of the equation for which cot ka < 0, as follows from (1)). The first of these levels 
(with l = 0) is at the same time the deepest of all energy levels whatsoever, i.e. it corresponds 
to the normal state of the particle. 

If the depth Uc of the potential well is small enough, there are no levels of negative energy, 
and the particle cannot “stay” in the well. This is easily seen from equation (2), by means of 
the following graphical construction. The roots of an equation of the form ±sin x = ax 
are given by the points of intersection of the line y = ax with the curves y = ± sin x, and 
we must take only those points of intersection for which cot x < 0; the corresponding parts 
of the curve y = sin x are shown in Fig. 9 by a continuous line. We see that, if a is 
sufficiently large (C/0 small), there are no such points of intersection. The first such point 
appears when the liney = ax occupies the position shown, i.e. for a = 2/ti, and is at x = 

Fig. 9 

Putting a = til\Z(2mazU0)t x = ka, we hence obtain for the minimum well depth to give a 
single negative level 

(3) 
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This quantity increases with decreasing well radius a. The position of the first level 
2?, at the point where it first appears is determined from ka = and is Et — 0, as we should 
expect. As the well depth increases further, the normal level E, descends. When the difference 
A = (L’o/ L'o.mn) - 1 is small, 

-Ei = Or*/16) I/O,™ A*. (4) 

Problem 2. Determine the order of the energy levels with various values of the angular 
momentum / in a very deep spherical potential well (U0 > h2lma2) (W. Elsasser 1933). 

Solution. The condition at the boundary of the well requires that <ji -*■ 0 as Uo -* oo 
(see §22). Writing the radial wave function within the well in the form (33.10), we thus have 
the equation 

Jw-{ka) = 0. 

whose roots give the position of the levels above the bottom of the well (£/0—|E| = ftsft2/2m) 
for various values of l. The order of the levels from-the ground state is found to be 

Is, Ip. 1 d, 2s, 1/, 2p, 1 g, 2d, Vi, 3j, 2f, ... 

The numbers preceding the letters give the sequence of levels for each f.f 

Problem 3. Determine the order of appearance of levels with various l as the depth 
Uo of the well increases. 

Solution. When it first appears, each new level has energy E = 0. The corresponding 
wave function in the region outside the well, which vanishes as r -> oo, is 

(the solution ofequation (33.3) with k = 0). From the continuity of Ri and Ri at the boundary 
of the well it follows, in particular, that the derivative (r,+1i?i)' is continuous, and so we have 
the following condition for the wave function within the well: 

(r'-i R,)' = 0 for r = a. 

This is equivalent! to the condition for the function i?i_, to vanish and, from (33.10), we 
obtain the equation 

Ji-idavV-’nUoW = 0; 

for 1 = 0 the function Ji-m must be replaced by the cosine. This gives the following order 
of appearance of new levels as Uo increases: 

Is, Ip, Id, 2s, \f. Ip. 1 g, 2d, 3s, U, 2f, .... 

It may be noted that differences from the order of levels in a deep well occur only for compar¬ 
atively high levels. 

Problem 4. Determine the energy levels of a three-dimensional oscillator (a particle in a 
field U = J/stu'r2), their degrees of degeneracy, and the possible values of the orbital angular 
momentum in the corresponding stationary states. 

Solution. Schrodinger’s equation for a particle in a field U = +y2 + z2) allows 
separation of the variahles, leading to three equations like that of a linear oscillator. The 
energy levels are therefore 

£„ = Mni+n!+n3+:) = M«+T 

The degree of degeneracy of the nth level is equal to the number of ways in which n can be 
divided into the sum of three positive integral (or zero) numbers ;|| this is 

i(„+l)(n+2). 

t This notation is customary for particle levels in the nucleus (see §118). 
t According to (33.7) and (33.8) we have (r~lRi)' = r~lRi+l. Since the equation (33.3) 

is unaltered when / is replaced by —/ —1, we also have (rl +1R_i_,)' = rl*1R_i. Finally, since 
the functions R_i and Ri_t satisfy the same equation, we obtain (r, + 1Ei)' = ri + 1Ei_i, the 
formula used in the text. 

|[ In other words, this is the number of ways in which n similar balls can be distributed 
among three urns. 
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The wave functions of the stationary states are 

'/'n.ii.n. = constant x t-°'r'riH,l(ax)H„(ay)Hvl,az), (1) 

where a. = \/(ma,jh) and m is the mass of the particle. When the sign of the coordinate 
is changed, the polynomial Hn is multiplied by ( — 1)". The parity of the function (1) is 
therefore ( — l)ni+na+,1a = ( — l)". Taking linear combinations of these functions with a 
given sum m + ns + n3 = n, we can form the functions 

= constant xe-^/Vfl ->-<&*+ ... +cn^r--‘)Ylm(6, 4)F( _*„+$/, /+$,aV), (2) 

where |m| = 0, 1, ..., / and / takes the values 0, 2, .... n for even n and 1, 3, .... n for odd n; 
F is the confluent hypergeometric function. This is evident from a comparison of the parities 
( —l)n of the functions (1) and ( — 1)' of the functions (2), which must be the same. This 
determines the possible values of the orbital angular momentum corresponding to the energy 
levels considered. 

The order of levels of the three-dimensional oscillator is, therefore, with the same notation 
as in Problems 2 and 3, 

(1*). 0?). (14 *). (1/. 2P), (Iff. 2d, 3j), 

where the parentheses enclose sets of degenerate states "t 

§34. Resolution of a plane wave 

Let us consider a free particle moving with a given momentum p = kh 

in the positive direction of the 2-axis. The wave function of such a particle 

is of the form 

ip = constant x eikz. 

Let us expand this function in terms of the wave functions ipklmoi free motion 

with various angular momenta. Since, in the state considered, the energy 

has the definite value k2h2j2m, it is clear that only functions with this k will 

appear in the required expansion. Moreover, since the function exk1 has 

axial symmetry about the 2-axis, its expansion can contain only functions 

independent of the angle <p, i.e. functions with m = 0. Thus we must have 

eikz = E aiipkio = E aiRkiYio, 

where the ai are constants. Substituting the expressions (28.8) and (33.9) 

for the functions Yio and Rki, we obtain 

(* .,cosS). 

where the C, are other constants. These constants are conveniently deter¬ 

mined by comparing the coefficients of (r cos 6)n in the expansions of the two 

sides of the equation in powers of r. On the right-hand side of the equation 

this term occurs only in the «th summand; for / > «, the expansion of the 
radial function begins at a higher power of r, while for / < « the polynomial 

t Note that levels with different angular momenta / are mutually degenerate; see the 
footnote at the end of §36. 
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Pi (cos 0) contains only lower powers of cos 8. The term in cos1 8 in P, (cos 8) 

has the coefficient (2/)!/2*(/!)2 (see formula (c.l)). Using also formula 

(33.13), we find the desired term of the expansion of the right-hand side of 

the equation to be 

(2l)\(krcos8)1 
(-lycv——--. 

Z'(f!),(2/-|-1)!! 

On the left-hand side of the equation the corresponding term (in the expansion 

of e{kT COJe) is 

(ikr cos 8)ljl\. 

Equating these two quantities, we find C, = (—i)‘(2/+l). Thus we finally 

obtain the required expansion: 

<*» 

At large distances this relation takes the asymptotic form 

1 ^ 
eikz a — 2, *7(2/+ l)^i(cos 8) sin(kr- J/tt). (34.2) kr 

In (34.1) the z-axis is in the direction of the wave vector k of the plane 

wave. This expansion can also be written in a more general form which does 

not presuppose a particular choice of the coordinate axes. For this purpose 

we must use the addition theorem for spherical harmonics (see (c. 11)) to 

express the polynomials Pi (cos 6) in terms of spherical harmonic functions 

of the directions of k and r (the angle between which is 8). The result is 

etu.r = 4?r l J ' iijl{kr) Ylm*{k/A) Ylm(rlr). (34.3) 

The functions ji(kr) (defined by (33.11)) depend only on the product kr, and 

this makes evident the symmetry of the formula with respect to the vectors k 

and r; it does not matter which of the two spherical harmonics is labelled as 

the complex conjugate. 

We normalize the wave function eikz to give a probability current density 

of unity, i.e. so that it corresponds to a flux of particles (parallel to the ar-axis) 

with one particle passing through unit area ih unit time. This function is 

4> = v-i/ieikz = v(mM)«Uz. (34.4) 

where v is the velocity of the particles; see (19.7). Multiplying both sides of 

equation (34.1) by V(mjkh) and introducing on the right-hand side the 

normalized functions fki^ (r) Yim(8, <j>), we obtain 

^ =2 v/|>(2/+ l)]~(<Pkiov—>Pkio~)- 
fzo tk 
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The squared modulus of the coefficient of ipklo~ (or 4,kio+) this expansion 

determines, according to the usual rules, the probability that a particle in a 

current converging to (or diverging from) the centre has an angular momen¬ 

tum l (about the origin). Since the wave function v~ieikz corresponds to a 

current of particles of unit density, this “probability” has the dimensions of 

length squared; it can be conveniently interpreted as the magnitude of the 

“cross-section” (in the ary-plane) on which the particle must fall if its angular 

momentum is l. Denoting this quantity by olt we have 

oi = tt(2/+1)/*2. (34.5) 

For large values of /, the sum of the cross-sections over a range A/ of l 

(such that 1 Af /) is 

2o, « —2ZAZ = 2 

On substituting the classical expression for the angular momentum, hi = pp 

(where p is what is called the impact parameter), this expression becomes 

in agreement with the classical result. This is no accident; we shall see 

below that, for large values of /, the motion is quasi-classical (see §49). 

PROBLEM 

Expand a plane wave in wave functions of states having definite values of the j-components m 
of the angular momentum and py of the momentum. 

Solution. We take cylindrical polar coordinates j, p, <p with the axis in the j-direction 
The wave functions of the states in question have the form Qm{p)e'mt‘e‘p‘y!’}. If the angle 4> is 
measured from the £-axis, the expansion can be written as 

(in this case p, = 0), whence 

QAp) 
2n 

4>=imUkp\ 

where J„(x) is a Bessel function. When kp !> 1, we have the asymptotic expression 

§35. Fall of a particle to the centre 

To reveal certain properties of quantum-mechanical motion it is useful to 

examine a case which, it is true, has no direct physical meaning: the motion 
of a particle in a field where the potential energy becomes infinite at some 
point (the origin) according to the law U(r) « — P/rs, P > 0; the form of the 
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field at large distances from the origin is here immaterial. We have seen in 

§18 that this is a case intermediate between those where there are ordinary 

stationary states and those where a “fall” of the particle to the origin takes 

place. 

Near the origin, Schrodinger’s equation in the present case is 

R”+2R’lr+yRlr* = 0, (35.1) 

where R(r) is the radial part of the wave function, and we have introduced 

the constant 

Y = 2mplh*-J(h-l) (35.2) 

and have omitted all terms of lower orders in 1/r; the value of the energy E 

is supposed finite, and so the corresponding term in the equation is Omitted 

also. 

Let us seek R in the form R ~ r3\ we then obtain for s the quadratic 

equation 

r(r+l)+y = 0, 

which has the two roots 

=-i+V(i-y), ** =-i-V(i-y). (35.3) 

For further investigations it is convenient to proceed as follows. We draw 

a small region of radius r0 round the origin, and replace the function —yjrs 

in this region by the constant — y/r02. After determining the wave functions 

in this “cut off” field, we then examine the result of passing to the limit 

r0 -*0. 

Let us first suppose that y < J. Then sx and s2 are real negative quantities, 

and Ji > $2- For r > r0, the general solution of Schrodinger’s equation 

has the form (always restricting ourselves to small r), 

R = Ar\+Br\ (35.4) 

A and B being constants. For r < r0, the solution of the equation 

R"+2R'lr+yRlr02 = 0 

which is finite at the origin has the form 

sin kr 
R = C-, k = Vy/v (35.5) 

For r = r0, the function R and its derivative R' must be continuous It is 

convenient to write one of the conditions as a condition of continuity of the 
logarithmic derivative of rR. This gives the equation 

A(s, -i- IV.*,4- RCc. J- 1V ». 
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or 

^i+l)ro».+B(j,+ l)r0'. 

A-0*.+Br0‘. 
Vy cot Vy. 

On solving for the ratio BjA, this equation gives an expression of the form 

B/A = constant x r0s^~sK (35.6) 

Passing now to the limit r0 -» 0, we find that B/A -> 0 (recalling that 

ji > S2). Thus, of the two solutions of Schrodinger’s equation (35.1) which 

diverge at the origin, we must choose that which becomes infinite less rapidly: 

R = A/W. (35.7) 

Next, let y > Then Sj and s2 are complex: 

si = —i + «V(y—i), r2 = h*- 

Repeating the above analysis, we again arrive at equation (35.6), which, on 

substituting the values of sl and s2, gives 

B/i4 = constant xro^fy-M. (35.8) 

On passing to the limit r0 -> 0, this expression does not tend to any definite 

limit, so that a direct passage to the limit is not possible. Using (35.8), the 

general form of the real solution can be written 

R = constant xr1'2 cos( V(y—J) log (r/r0)+ constant). (35.9) 

This function has a number of zeros which increases without limit as ro 

decreases. Since, on the one hand, the expression (35.9) is valid for the 

wave function (when r is sufficiently small) with any finite value of the energy 

E of the particle, and, on the other hand, the wave function of the normal 

state can have no zeros, we can infer that the “normal state” of a particle in 

the field considered corresponds to the energy E — — 00. In every state of a 

discrete spectrum, however, the particle is mainly in a region of space where 

E > V. Hence, for E -*■ — 00, the particle is in an infinitely small region 

round the origin, i.e. the particle falls to the centre. 

The “critical” field [}cr for w'hich the fall of a particle to the centre 

becomes possible corresponds to the value y = The smallest value of the 

coefficient of — 1 jr2 is obtained for / = 0, i.e. 

Ua = —h2l&mr2, (35.10) 

It is seen from formula (35.3) (for Ji) that the permissible solution of Schro¬ 

dinger’s equation (near the point w’here U ~ l/r2) diverges, as r -* 0, not 
more rapidly than ljVr. If the field becomes infinite, as r -> 0, more slowly 
than 1 jr2, we can neglect U(r), in Schrodinger’s equation near the origin, 
in comparison with the other terms, and we obtain the same solutions 
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as for free motion, i.e. ip ~ rl (see §33). Finally, if the field becomes infinite 

more rapidly than 1 jr2 (as — 1/r* with s > 2), the wave function near the 

origin is proportional to r1'-1 (see §49, Problem). In all these cases the 

product np tends to zero at r = 0. 

Next, let us investigate the properties of the solutions of Schrodinger’s 

equation in a field which diminishes at large distances according to the law 

U x —/?/r2, and has any form at small distances. We first suppose that 

y < It is easy to see that in this case only a finite number of negative 

energy levels can exist.f For with energy E = 0 Schrodinger’s equation 

at large distances has the form (35.1), with the general solution (35.4). The 

function (35.4), however, has no zeros (for r / 0); hence all zeros of the 

required radial wave function lie at finite distances from the origin, and their 

number is always finite. In other words, the ordinal number of the level 

E = C which terminates the discrete spectrum is finite. 

If y > J, on the other hand, the discrete spectrum contains an infinite 

number of negative energy levels. For the wave function of the state with 

E — 0 has, at large distances, the form (35.9), with an infinite number of 

zeros, so that its ordinal number is always infinite. 

Finally, let the field be U = —ft/r2 in all space. Then, for y > J, the 

particle falls, but if y < J there are no negative energy levels. For the 

wave function of the state with E = 0 is of the form (35.7) in all space; it has 

no zeros at finite distances, i.e. it corresponds to the lowest energy level (for 

the given /). 

§36. Motion in a Coulomb field (spherical polar coordinates) 

A very important case of motion in a centrally symmetric field is that of 

motion in a Coulomb field 
U = ±«/r 

(where a is a positive constant). We shall first consider a Coulomb attraction, 

and shall therefore write U — —a.lr. It is evident from general considera¬ 

tions that the spectrum of negative eigenvalues of the energy will be discrete 

(with an infinite number of levels), while that of the positive eigenvalues will 

be continuous. 

Equation (32.8) for the radial functions has the form 

d2/? 2dR 

dr2 ^ r dr 

1(1+1) 2m 
■R+ 

tmf a\ 

*(*+;>-0 
(36.1) 

If we are concerned with the relative motion of two attracting particles, m 

must be taken as the reduced mass. 

In calculations connected with the Coulomb field it is convenient to use, 

instead of the ordinary units, special units for the measurement of all quanti¬ 

ties, which we shall call Coulomb units. As' the units of measurement of 

mass, length and time, we take respectively 

m, h2jma, h3jma2. 

t It is amed that for particle dc Dt fall. 
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All the remaining units are derived from these; thus the unit of energy is 

ma.2jh2. 

From now on, in this section and the following one, we shall always (unless 

explicitly stated otherwise) use these units.f 

Equation (36.1) in the new units is 

dlR 2dR 

dr2~^"r dr 

1(1+1) / 1\ 
-±—Lr+2\E+-)R = 0 (36.2) 

Discrete spectrum 

Instead of the parameter E and the variable r, we introduce the new 

quantities 

n=ljV(-2E), p = 2rjn. (36.3) 

For negative energies, n is a real positive number. The equation (36.2), on 

making the substitutions (36.3), becomes 

2 r n /(Z+l) -i 
R"+-R'+ -l+—±—± i? = 0 (36.4) 

P L p p2 J 

(the primes denote differentiation with respect to p). 

For small p, the solution which satisfies the necessary conditions of finite¬ 

ness is proportional to pl (see (32.15)). To calculate the asymptotic be¬ 

haviour of R for large p, we omit from (36.4) the terms in 1 /p and 1/p2 and 

obtain the equation 

R" = \R, 

whence R = e±ip. The solution in which we are interested, which vanishes 

at infinity, consequently behaves to e~ip for large p. 

It is therefore natural to make the substitution 

R = p!e-p/2K,(p)) (36.5) 

when equation (36.4) becomes 

pw"+(2l+2-p)zv'+(n-l-l)zv = 0. (36.6) 

t If m = 9-11 XlO-28 g :s the mass of the electron, and a = ei (where e is the charge on 
the electron), the Coulomb units are the same as what are called atomic units. The atomic 
unit of length is 
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The solution of this equation must diverge at infinity not more rapidly than 

every finite power of p, while for p =0 it must be finite. The solution which 

satisfies the latter condition is the confluent hypergeometric function 

a = F(-k+Z+1, 21+2, P) (36.7) 

(see §d of the Mathematical Appendices).! A solution which satisfies the 

condition at infinity is obtained only for negative integral (or zero) values of 

—n+l+1, when the function (36.7) reduces to a polynomial of degree 

n—l—1. Otherwise it diverges at infinity as ef (see (d.14)). 

Thus we reach the conclusion that the number n must be a positive integer, 

and for a given l we must have 

n>l+1. (36.8) 

Recalling the definition (36.3) of the parameter n, we find 

E = -ll2n\ n = 1,2,.... (36.9) 

This solves the problem of determining the energy levels of the discrete 

spectrum in a Coulomb field. We see that there are an infinite number of 

levels between the normal level Ei — — £ and zero. The distances between 

successive levels diminish as n increases; the levels become more crowded 

as we approach the value E = 0, where the discrete spectrum closes up into 

the continuous spectrum. In ordinary units, formula (36.9) is J 

E = -mx*l2h*n2. (36.10) 

The integer n is called the principal quantum number. The radial quantum 

number defined in §32 is 

nr = n—l— 1. 

For a given value of the principal quantum number, l can take the values 

l = 0,1,..., n-1, (36.11) 

i.e. n different values in all. Only n appears in the expression (36.9) for the 

energy. Hence all states with different l but the same n have the same energy. 

Thus each eigenvalue is degenerate, not only with respect to the magnetic 

quantum number m (as in any motion in a centrally symmetric field) but 

also with respect to the number l. This latter degeneracy (called accidental 

or Coulomb degeneracy) is a specific property of the Coulomb field. To each 

value of l there correspond 21+ 1 different values of m. Hence the degree of 

degeneracy of the nth energy level is 

nf(2l+l)=n2. (36.12) 

+ The second solution of equation (36.6) diverges as p~zt~1 as p ->• 0. 
t Formula (36.10) was first derived bv N. Bohr in 1913, before the discovery of quantum 

mechanics. In quantum mechanics it was derived by W. Pauli in 1926 using the matrix 
method, and a few months later by E. Schrodinger using the wave equation 
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The wave functions of the stationary states are determined by formulae 

(36.5) and (36.7). The confluent hypergeometric functions with both 

parameters integral are the same, apart from a factor, as what are called the 

generalized Laguerre polynomials (see §d of the Mathematical Appendices). 

Hence 

Rnl = constant Xple~»l2L^+i{p). 

The radial functions must be normalized by the condition 

J*»iVdr = 1. 

Their final form isf 

Rnl = -- 
W[(K+/)!]3 W W 

(n+l)l I (”+I ! 
■ // , ' (2rfc't"F(-n+l+1, 21+2, 2rjri); 
V («—/—1)! 

(36.13) 
if+\2l+\)\ -v («—/—!)! 

the normalization integral is calculated by (f.6).J 

Near the origin, Rni has the form 

2l+1 I (n+l)\ 

. 7^—- (36-14) n2+z(2Z+l)! V (n—/—-1)! 

At large distances, 

n^V[(n+l)\(«-/-!)!] 
(36.15) 

The wave function R10 of the normal state decreases exponentially at distances 

of the order r ~ 1, i.e. r ~ h2jmx in ordinary units. 

+ We give the first few functions Rnl explicitly: 

+ The normalization inti 
for the Laguerre polynom 
integral (c.8) for the Leger 

R10 = 2c-r, 

*M=(1 t'2)e-f(l-ir), 

R2I = (l,2t'6)e-t'2r, 

/ 2 2 \ 
^30 — (2'3\ 3)e-r 3^1—~r+—rEJ, 

R3, = (8'27 v6)fr'3r^l— 

R32 = (4/81 V30)e-t'3r=. 

1 can also be calculated by substituting the expression (d.13) 
and integrating by parts (similarly to the calculation of the 
polynomials). 
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The mean values of the various powers of r are calculated from the formula 

rfc = J rk+2Rn2 dr. 

o 

The general formula for rk can be obtained by means of formula (f.7). Here 

we shall give the first few values of rk (for positive and negative k): 

7 = £[3k2-/(/+1)], r2 = in2[5n2+l-3l(l+l)], 

r~* = l/n\ r“2 = l/«3(Z+i). 

(36.16) 

Continuous spectrum 

The spectrum of positive eigenvalues of the energy is continuous and 

extends from zero to infinity. Each of these eigenvalues is infinitely degener¬ 

ate; to each value of E there corresponds an infinite number of states, with 

l taking all integral values from 0 to oo (and with all possible values of m for 

the given /). 

The number n and the variable p, defined by the formulae (36.3), are now 

purely imaginary: 

n = -ilV{2E) = -i/k, P = 2 ikr, (36.17) 

where k = \/{2.E)j\ The radial eigenfunctions of the continuous spectrum 

are of the form 

Rk 
Cki | 

(2/+1)!1 
2kr)le-ikrF(i/k+l+l, 21+2, 2ikr). (36.18) 

where the C^i are normalization factors. They can be represented as a 

complex integral (see §d): 

Rki = Cki(2kr)le~ik' 

(36.19) 

which is taken along the contour! shown in Fig. 10. The substitution 

£ = 2ikr(t + J) converts this integral to the more symmetrical form 

t It would be possible to define n and p by the complex cor 
P = 2ikr; the real lunctions Rk( do not, of course, depend c 

1 Instead of this contour we could use any closed loop passin 
f = 0 and ( = 2ikr in the positive direction.' For integral 
f — 2ikr)n-‘ (see §d) returns to its initial value on passing 

agate expressions n = ijk, 
which definition is used, 
round the singular points 
/, the function F(f) = 

ound such a contour. 
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(_2kr\~l~y r 
Rki = Cki-6 dt; (36.20) 

the path of integration passes in the positive direction round the points 

t = + £. It is seen at once from this representation that the functions Rkl 

are real. 

The asymptotic expansion (d.14) of the confluent hypergeometric function 

enables us to obtain immediately a similar expansion for the wave functions 

Rk |. The two terms in (d.14) give two complex conjugate expressions in the 

function Rkl, and as a result we obtain 

e-”lSk ,c—tI*r-ir(Z+l)/2-|-U/fc) log 2kr] 
Rki = Ck,——re - -G(l+l + i/k, i/k-l, —2ikr) 

kr { r(l+l-tk) 
(36.21) 

If we normalize the wave functions on the "kfl-n scale” (i.e. by the condition 

(33.4)), the normalization coefficient is 

Ckl = 2*eW2*|r(/+1 -i7*)|. (36.22) 

For the asymptotic expression for Rkl when r is large (the first term of the 

expansion (36.21)) is then of the form 

Rki x - sin (kr + i log 2/zr-i/Tr + Sz^, 

Bi = arg T(l+l-ilk), 

(36.23) 

in agreement with the general form (33.20) of the normalized wave functions 

of the continuous spectrum in a. centrally symmetric field. The expression 

(36.23) differs from (33.20) by the presence of a logarithmic term in the argu¬ 

ment of the sine; however, since log r increases only slowly compared with r 

itself, the presence of this term is immaterial in calculating a normalization 

integral which diverges at infinity. 
The modulus of the gamma function which appears in the expression 

(36.22) for the normalization factor can be expressed in terms of elementary 

functions. Using the familiar properties of gamma functions: 

r(*+i) =>*r(*)f r(«)r(i-«) =*Wsin»«, 
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we have 

and also 

Thus 

m+i+ijk) = (i+iik)... {l+iikMkwik), 

m+i-iik) = (i-i/k)... (i-nmi-iik). 

|r(M-i-*y*)| = [r(i+i-iik)r{i+i+iik)]w 

v(&,n 7K> Cki = (36.24) 

for / = 0 the product is replaced by unity. 

The radial function for the special case of zero energy can be obtained by 

taking the limit k 0, for which 

f(^ +l+1,21 + 2, 2ikr^j 

2 r (2 rf 

{21 + 2). 1! (2/ + 2)(2/ + 3) . 2! 

= (2/+ 1)! (2r)-*-i/aysu+1( V(8r)),‘ 

where J21+1 is a Bessel function. The coefficients Cm (36.24) for k -> 0 

become 

Cm * 

Hence 

[R*ilVk]*~o = V(^lr)j2l+l(V(8r)). (36.25) 

The asymptotic form of this function for large r isf 

[Rkil Vk]k-o = (8/r3)i/4 sin (V(8r) _ h _ JW). (36.26) 

The factor y/k disappears if we change to normalization on the energy scale, 

i.e. from the functions Rm to Rei given by (33.5); the latter remains finite as 

t It may be noted that this function corresponds to the 
applied to motion in the region (/ + i)“ <S r <g 

quasi-classical approximation (§49) 
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In a repulsive Coulomb field (U = a/r) there is only a continuous spectrum 

of positive eigenvalues of the energy. Schrodinger’s equation in this field 

can be formally obtained from the equation for an attractive field by changing 

the sign of r. Hence the wave functions of the stationary states are found 

immediately from (36.18) by the same alteration. The normalization co¬ 

efficient is again determined from the asymptotic expression, and as a result 

we obtain 

Rkl = (27^T)!(2Ar)W(l'/A+/+1’ 2l+2’ ~2ikr)‘ 

c« = 2 fe-/“|r(Z+i+«/*)! 

V(8**) 
V(e2"/fc—!) 

The asymptotic expression for this function for large r is 

Rkl ~ - sin^fer—- log2kr— 

8, = arglXM-l+«7*). 

(36.27) 

(36.28) 

The nature of the Coulomb degeneracy 

In classical motion of a particle in a Coulomb field, there is a conservation 

law peculiar to this type of field; if the field is an attractive one, 

A = r/r-pxl = constant (36.29) 

(see Mechanics, §15). In quantum mechanics, the corresponding operator is 

A = r/r-i(pxl-fxp), (36.30) 

and is easily seen to commute with the Hamiltonian H — ip2 — 1/r. 

Direct calculation gives the following commutation rules for the operators 

Ai with one another and with the angular momentum operators: 

{h, At} = ieuaAi, {At, A/tj = -2iHeikih. (36.31) 

The non-commutativity of the Ai means that the quantities Ax, Ay, Az 
cannot simultaneously have definite values in quantum mechanics. Any one 
of the operators, say Az, commutes with the corresponding angular momen¬ 
tum component lz, but not with the squared angular momentum operator I2. 
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The existence of a further conserved quantity, which cannot be measured 

simultaneously with the others, leads (see §10) to an additional degeneracy 

of the levels, and this is the “accidental” degeneracy of the discrete energy 

levels, peculiar to the Coulomb field. 

The origin of this degeneracy may also be formulated in terms of the 

increased symmetry of the Coulomb problem in quantum mechanics, in 

comparison with the symmetry relative to spatial rotations (V. A. Fok 1935). 

For this purpose we note that, in discrete-spectrum states with a fixed 

negative energy, we can replace H on the right of the second equation (36.31) 

by E, and use instead of the At the operators zq = y/( - 2E). The com¬ 

mutation rules for these operators are 

{k, uk} = iemui, {uit uk} = iewU- (36.32) 

These, together with the rule {It, U-} = iendh, are formally identical with 

the commutation rules for the operators of infinitesimal rotations in four¬ 

dimensional Euclidean space.f This is the symmetry of the Coulomb 

problem in quantum mechanics.! 

From the commutation rules (36.32) we can again derive an expression for 

the energy levels in a Coulomb field.|| They can be rewritten by using 

instead of I and u the operators 

ji = *(l + u), j2 = *(!-u). (36.33) 

For these, 

{jit./i*} = ieuciju, {j2u hk) = ieudjoi, {ju,]2k} = 0. (36.34) 

These are formally identical with the commutation rules for two independent 

three-dimensional angular momentum vectors. The eigenvalues of ji2 and 

j'22 are thereforeji(ji + 1) andy2(y2+ 1), whereji,;2 = 0, 1, §.ft On the 

other hand, the definition of the operators u and 1 = r xp shows by a simple 

calculation that 

1. u = u . 1 = 0, 

t Here lz, lu, lz represent the operators of infinitesimal rotations in the yz, zx and xy planes 
in four-dimensional Cartesian coordinates x, y, z, u ; uz. iiy. Ui are the operators of infinitesimal 
rotations in the xu, yu and zu planes. 

t The symmetry appears explicitly in the wave functions in the momentum representation: 
see V. A. Fok, Zeitschrift fur Physik 98, 145, 1935. 

|| This derivation is essentially as given by W. Pauli (1926). 
tt Here we anticipate the properties of the angular momentum that are to be descr 

§54 (the possibility of integral and half-integral j). 
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i2+u2 = -i _ _L 
2 E 

with H again being replaced by E in calculating l2 + u2. Hence 

ji2 = j22 = -l(i +^) =j(i+1) 

(where j == j\ = j2)> and then E = - l/2(2j +1)2. With the notation 

2j + 1 = n, n = 1,2,3,..., (36.35) 

we get the required result £ = 1/2«2. The degree of degeneracy of the levels 

is (2ji+ l)(2j2+ 1) = (2; + l)2 = w2, as it should be. Lastly, since 1 = ji+j2, 

for a given value of71 = 72 = v(« — 1) the orbital angular momentum / takes 

values from 0 to 27 = n — 1 -t 

PROBLEMS 

Problem 1. Determine the probability distribution of various values of the momentum 
in the ground state of the hydrogen atom. 

. Solution.^ The wave function of the ground state is 1P — RiaYoo = (l/v/7i)e~r. The 
wave function of this state in the p representation is then given by the integral 

°(p) = J ’Kr)e ^dV 

(see (15.10)). The integral is calculated by changing to spherical polar coordinates with the 
polar axis along p; the result is 

t The “accidental” degeneracy of levels with different values of / occurs also for motion 
in a centrally symmetric field U = £mu)2r2 (a three-dimensional oscillator; see §33, Problem 
4). This degeneracy is likewise due to the extra symmetry of the Hamiltonian. In this case, 
the symmetry arises because in f? = $il2m + bmui*rs both the operators pi and the coordi¬ 
nates Xi occur as sums of squares. If they are replaced by the operators 

\/(2mhtti)' 

\/(2 mhtu)' 

we obtain 

h = MS*.a+i]. 

This is invariant under any unitary transformations of the operators <3, + and <5( forming a 
group that is wider than that of the three-dimensional rotations (under which the particle 
Hamiltonian is invariant in anv centrally symmetric field). 

The specific property of the Coulomb and oscillator fields in quantum mechanics (presence 
of accidental degeneracy) is in correspondence with the fact that in classical mechanics closed 
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and the probability density in p-space is |a(p)|s/(2w)s. 

Problem 2. Determine the mean potential of the field created by the nucleus and the 
electron in the ground state of the hydrogen atom. 

Solution. The mean potential created by an “electron cloud” at an arbitrary point r 
is most simply found as the spherically symmetric solution of Poisson’s equation with charge 
density p = — |v!>|2: 

I d- 
Wr) = 4e-2r 

Integrating this equation, and choosing the constants so that <fc«(0) is finite and $e(oo) = 0, 
and adding the potential of the field of the nucleus, we obtain 

* = - +M') - (- +iV2r- 
For r^lwe have $ ss 1/r (the field of the nucleus), and for r > 1 the potential <f> e_lr 
(the nucleus is screened by the electron). 

Fig. 11 

Problem 3. Determine the energy levels of a particle moving in a centrally symmetric 
field with potential energy U — Air2 —B/r (Fig. 11). 

Solution. The spectrum of positive energy levels is continuous, while that of negative 
levels is discrete; we shall consider the latter. Schrodinger’s equation for the radial function is 

d2R 2dR 2m/ 

d^+r dT+A»V 

//= 1 A B\ 

t,5,+1);t-7+7> (i) 

We introduce the new variable 

p = 2 V( —2 mE)rili. 

and the notation 

2mAlh?+l(l+l) =j(j+1), 

B \ '(ml — 2E)-h = n. 

Then equation (1) takes the form 

(2) 

(3) 
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which is formally identical with (36.4). Hence we can at once conclude that the solution 
satisfying the necessary conditions is 

R = P‘e-°^F(-n+s+l, ls+2, p), 

where n—s — 1 = p must be a positive integer (or zero), and s must be taken as the positive 
root of equation (2). From the definition (3) we consequently obtain the energy levels 

2 B-m 
-Ev = [2/.+ 1 + V{(2/+l)"-+8 mAlh’}]-* 

Problem 4. The same as Problem 3, but with U = A/^+Br* (Fig. 12). 

Solution. There is only a discrete spectrum. Schrodinger’s equation is 

d2R 2dR 2mr h2l(l+\) 
-+-+— E-- 
drs r dr h~ L 2mr1 

0. 

Introducing the variable 

f = V(2 mB)rVh 

and the notation 
l(l+\)+2mAlh' = 2t(2t+l), 

V(2 m/B)Elh = 4(n+i)+3, 

we obtain the equation 

(R’’+3-R'+["+>+i~i(-s(*+h)W = 0. 

The solution required behaves asymptotically as e~il when f -*■ eo, while for small ( it is 
proportional to where j must be taken as the positive quantity 

* = l[-l + V{(2i+l)*+8^*}]. 

Hence we seek a solution in the form 

R = 

obtaining for w the equation 
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where n must be a non-negative integer. We consequently find as the energy levels the infinite 
act of equidistant values 

E„ -*V(B/2m)[4n+2+v'{(2/+l)*+8m^/«*}],n =0,1,2,... 

§37. Motion in a Coulomb field (parabolic coordinates) 

The separation of the variables in Schrodinger’s equation written in 

spherical polar coordinates is always possible for motion in any centrally 

symmetric field. In the case of a Coulomb field, the separation of the variables 

is also possible in what are called parabolic coordinates. The solution of the 

problem of motion in a Coulomb field in terms of parabolic coordinates is 

useful in investigating a number of problems where a certain direction in 

space is distinctive; for example, for an atom in an external electric field 

(see §77). 

The parabolic coordinates ij, -q, (f> are defined by the formulae 

* = V(fy)cos 4>, y = V(fy)sin^, 2 = i(f~17). 

r = V(*2+jy2+22) = i(^+72). 

or conversely 

f = r+z, v = r-z, = tan_1(y/»); 

£ and rj take values from 0 to oo, and <f> from 0 to 2tt. The surfaces $ = 

constant and -q — constant are paraboloids of revolution about the 2-axis, 

with focus at the origin. This system of coordinates is orthogonal. The 

element of length is given by the expression 

(d l? = ^(df)2+^(dy)2+fy(d^, 
4f 4-rj 

(37.3) 

and the element of volume is 

dT = Kf+^dfdyd (37.4) 

From (37.3) we have the Laplacian operator 

i+vUi\ d€J dvVdqJj $-0 8<f>2 
(37.5) 

Schrodinger’s equation for a particle in an attractive Coulomb field with 
[/= -1 fi = -2/(f + ,) is 

} (37.1) 

(37.2) 
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Let us seek the eigenfunctions tp in the form 

<£ =m)Uri)ei^, (37.7) 

where m is the magnetic quantum number. Substituting this expression in 

equation (37.6) multiplied by i(£ + v)> anc* separating the variables £ and ij, 

we obtain forfi and f% the equations 

d / d/A 

d / d/2 \ 
-{rt-~) + [iEV-i^N+^]f2 = 0, 

(37.8) 

where the separation parameters jSi, £2 are related by 

Pl+Pt = I- (37.9) 

Let us consider the discrete energy spectrum (E < 0). We introduce i 

place of E, 17 the quantities 

n = lM-2£), Pl=fV(-2 £)=£/*, p2 =,/», 

whereupon we obtain the equation for /1 

and a similar equation for /2, with the notation 

«i = + = -i(\m\ + l)+np2. 

(37.10) 

(37.12) 

Similarly to the calculation for equation (36.4), we find that behaves as 

for large pt and as p^1™1 for small pv Accordingly, we seek a solution 

of equation (37.11) in the form 

/1O1) = e-V2Pi|m|/2t»i(pi), 

and similarly for /2, obtaining for iv\ the equation 

Piu>i"+(\m\ + l—Pi)V)i'+niw>i = °- 

This is again the equation for a confluent hypergeometric function. The 

solution satisfying the conditions of finiteness is 

h>i = F(—nlt MT-bPi). 

where «i must be a non-negative integer. 



§37 Motion in a Coulomb field 131 

Thus each stationary state of the discrete spectrum is determined in para¬ 

bolic coordinates by three integers: the parabolic quantum numbers n\ and 

ri2, and the magnetic quantum number m. For n, the principal quantum 

number, we have from (37.9) and (37.12) 

n=n1+«a+W +1- (37.13) 

For the energy levels, of course, we obtain our previous result (36.9). 

For given n, the number \m\ can take n different values from 0 to n — 1. 

For fixed n and \m\ the number tq takes n — \m\ values, from 0 to n — \m\ — 1. 

Taking into account also that for given \m\ we can choose the functions with 

m — ± |m |, we find that for a given n there are altogether 

2's1(«-m)+(«-0) =n2 

different states, in agreement with the result obtained in §36. 

The wave functions of the discrete spectrum must be normalized 

by the condition 

J dV = i JJj d^dfd,, = 1. (37.14) 

The normalized functions are 

where 

1 KP+HY- 
Umip) = r-r — F(-P, W + l, P)e-^PW*. (37.16) 

|m|!V p\ 

The wave functions in parabolic coordinates, unlike those in spherical 

polar coordinates, are not symmetrical about the plane z = 0. For n\ > n2 

the probability of finding the particle in the direction z > 0 is greater than 

that for z < 0, and vice versa for n\ < no. 

To the continuous spectrum (E > 0) there corresponds a continuous spec¬ 

trum of real values of the parameters )SX, in equations (37.8) (connected as 

before, of course, by the relation (37.9)). We shall not pause to write out here 

the corresponding wave functions, since it is not usually necessary to employ 

them. Equations (37.8), regarded as equations for the “eigenvalues” of the 

quantities /Si, f2, have also (for E > 0) a spectrum of complex values. The 

corresponding wave functions are written out in §135, where vve shall use 
them to solve a problem of scattering in a Coulomb field. 

The existence of stationary states \ninomy leads to an additional conser¬ 
vation law (36.29). In these states, the quantities lz = m and Az, as well as 
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the energy, have definite values. Calculating the diagonal matrix elements of 

the operator Az, we find that 

Az = (ni-no)ln. (37.17) 

Here 

are 

«i — no, and the components of the “angular momenta” ji and j‘2 

ju = ±{m + ni-n2) = Ml. 

j'2z = \{m-ny + n2) = M2- 
(37.18) 

These properties of the states |«i«2m> (or, equivalently, |«miM2» make it 

easy to establish the relation between their wave functions and those of the 

states |nlm). Since 1 = ji+j’2, the change from one of these descriptions to 

the other is essentially the construction of wave functions with addition of 

two angular momenta, discussed in §106. In terms of the “angular momenta” 

ji and j2, the states \rilin') and In^mm) are described as\jij2lm) and |ji/2MiM2>, 

where, from (36.35) and (37.13), 

ji =h = K”-1) = \{ni + n2 + \m\). 

According to the general formulae (106.9)—(106.11), 

tnlm = ^ ^mlMlM2>^|Wj. 

Ml+M2|MlM2)<AnjTO 

(37.19) 

(37.20) 

(D. Park 1960). 



CHAPTER VI 

PERTURBATION THEORY 

§38. Perturbations independent of time 

The exact solution of Schrodinger’s equation can be found only in a com¬ 

paratively small number of the simplest cases. The majority of problems 

in quantum mechanics lead to equations which are too complex to be solved 

exactly. Often, however, quantities of different orders of magnitude appear 

in the conditions of the problem; among them there may be small quantities 

such that, when they are neglected, the problem is so much simplified that its 

exact solution becomes possible. In such cases, the first step in solving the 

physical problem concerned is to solve exactly the simplified problem, and 

the second step is to calculate approximately the errors due to the small terms 

that have been neglected in the simplified problem. There is a general 

method of calculating these errors; it is called perturbation theory. 

Let us suppose that the Hamiltonian of a given physical system is of the 

form 

8 =80+P, 

where T is a small correction (or perturbation) to the unperturbed operator 80. 

In §§38, 39 we shall consider perturbations P which do not depend explicitly 

on time (the same is assumed regarding 80 also). The conditions which are 

necessary for it to be permissible to regard the operator P as “small” com¬ 

pared with the operator 8 will be derived below. 

The problem of perturbation theory for a discrete spectrum can be formu¬ 

lated as follows. It is assumed that the eigenfunctions i//n(0) and eigenvalues 

En(0) of the discrete spectrum of the unperturbed operator 80 are known, i.e. 

the exact solutions of the equation 

= E«V<0> (38.1) 

are known. It is desired to find approximate solutions of the equation 

Jfy = (80+P)$ =E& (38.2) 

i.e. approximate expressions for the eigenfunctions >fjn and eigenvalues En of 
the perturbed operator 8. 

In this section we shall assume that no eigenvalue of the operator 80 is 

degenerate. Moreover, to simplify our results, we shall at first suppose that 
there is only a discrete spectrum of energy levels. 

The calculations are conveniently performed in matrix form throughout. 
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To do this, we expand the required tunction <A in terms of the functions 

4> = Z (38.3) 

Substituting this expansion in (38.2) we obtain 

Z cm(Emm+ 1tymm = s cjetJ*-, 

multiplying both sides of this equation by i/rfc(0)* and integrating, we find 

(E-EkM)ck = Z Vkmcm. (38.4) 

Here we have introduced the matrix Vkm of the perturbation operator P-, 

defined with respect to the unperturbed functions >pmw: 

Vkm = J q. (38.5) 

We shall seek the values of the coefficients cm and the energy E in the form 

of series 

E = £'(°>+£''1>+£®+ .... cm= cm(0)+cm(1)+cm(2)+ 

where the quantities Ea) and cm(1) are of the same order of smallness as the 

perturbation P, the quantities E&) and cm(2) are of the second order of small¬ 

ness, and so on. 

Let us determine the corrections to the wth eigenvalue and eigenfunction, 

putting accordingly cnw = 1, crn(0) = 0 for m # n. To find the first approxi¬ 

mation, we substitute in equation (38.4) E = £'n(0)4-£'n(1), ck = cfc(0)+c*(1), 

and retain only terms of the first order. The equation with k = n gives 

E„a) = V„n = J Jfy.ro d q. (38.6) 

Thus the first-order correction to the eigenvalue En(0> is equal to the mean 

value of the perturbation in the state >fin(0). 

The equation (38.4) with k ^ n gives 

= VkJ(EM-EkM) for A # w, (38.7) 

while cn(1) remains arbitrary; it must be chosen so that the function tjjn = 

is normalized up to and including terms of the first order. For 

this we must put cn^ = 0. For the functions 

= Y -—-fj* (38.8) 

(the prime means that the term with m = n is omitted from the sum) are 
orthogonal to and hence the integral of |^„(0>+^„(1)l2 differs from unity 

only by a quantity of the second order of smallness. 
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Formula (38.8) determines the correction to the wave functions in the first 

approximation. Incidentally, we see from this formula the condition for the 

applicability of the above method. This condition is that the inequality 

\Vmn\ £J°>| (38.9) 

must hold, i.e. the matrix elements of the perturbation must be small com¬ 

pared with the corresponding differences between the unperturbed energy 

levels. 

Next, let us determine the correction to the eigenvalue En(0) in the second 

approximation. To do this, we substitute in (38.4) E = Eni0)+Ena)+Enw, 

ck = cfc(0)+cfc(1>+c*(2), and examine the terms of the second order of small¬ 

ness. The equation with k = n gives 

o) = S' Vnmcma\ 

whence 

E® = y |Fmn|2 (38.10) 
JL, £M0)_£M0) V 

(we have substituted cmW from (38.7), and used the fact that, since the 

operator P- is Hermitian, Vmn = Vnm*)- 

We notice that the correction in the second approximation to the energy 

of the normal state is always negative; for, since En(0) then corresponds to 

the lowest value of the energy, all the terms in the sum (38.10) are negative. 

The further approximations can be calculated in a similar manner. 

The results obtained can be generalized at once to the case where the 

operator J70 has also a continuous spectrum (but the perturbation is applied, 

as before, to a state of the discrete spectrum). To do so, we need only add to 

the sums over the discrete spectrum the corresponding integrals over the 

continuous spectrum. We shall distinguish the various states of the continu¬ 

ous spectrum by the suffix v, which takes a continuous range of values; by v 

we conventionally understand an assembly of values of quantities sufficient 

for a complete description of the state (if the states of the continuous spec¬ 

trum are degenerate, which is almost always the case, the value of the energy 

alone does not suffice to determine the state).f Then, for instance, we must 

write instead of (38.8) 

2' Fmn f 
-;-<PJ0)+ -—</v(0) dv, (38.11) 

and similarly for the other formulae. 

It is useful to note also the formula for the perturbed value of the matrix 

element of a physical quantity /, calculated as far as terms of the first order 
by using the functions = 0„‘°J + 0„<«, with 0„U> given by (38.8). The 

t Here the wave functions 0V<°> must be normalized by delta functions of the quantities 
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following expression is easily obtained: 

In the first sum £ yt h, while in the second k ^ m. 

(38.12) 

PROBLEMS 

Problem 1. Determine the correction v&„(2) in the second approximation to the eigen¬ 
functions. 

Solution. The coefficients Ckm (k # n) are calculated from equations (38.4) with 
written out up to terms of the second order, and the coefficient cnm is chosen so that the 
function ijjn = ^„(0) + i/v,'1' + ijinm is normalized up to terms of the second order. As a result 
we find 

’-tii 

where we have introduced the frequencies 

w„m = (Ew-Emm>);n 

Problem 2. Determine the correction in the third approximation to the eigenvalues of the 
energy 

Solution. Writing out the terms of the third order of smallness in equation (38.4) with 
k — ts, we obtain 

22 I \V™\‘ 

Problem 3. Determine the energy levels of an anharmonic linear oscillator whose Hamil¬ 
tonian is 

H = !,p2lm+ ',mxiu>2 + ax3 + fix*. 

Solution. The matrix elements of Xs and x' can be obtained directly according to the 
rule of matrix multiplication, using the expression (23.4) for the matrix elements of x. We 
find for the matrix elements of x5 that are not zero 

- WmwflWlin(n-t)(n-2)], 

= (**)-- = 

The diagonal elements in this matrix vanish, so that the correction in the first approximation 
due to the term ax* in the Hamiltonian (regarded as a perturbation of the harmonic oscillator) 
is zero. The correction in the second approximation due to this term is of the same order as 
that in the first approximation due to the term /3x\ The diagonal matrix elements of xl are 

(**)„.„ =(himcu)Ki(2^+2n+l). 

Using the general formulae (38.6) and (38.10), we find the following approximate expression 
for the energy levels of the anharmonic oscillator: 
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Problem 4. A spherical potential well with infinitely high walls is subjected to a small 
deformation (without change of volume) which gives it the form of a slightly prolate or 
oblate spheroid with semi-axes a = b and c. Find the splitting of the energy levels of a particle 
in the deformed well (A. B. Migdal 1959). 

Solution. The equation of the well boundary is 

+ 5=1. 

and by the change of variables x -* axjR, y -* ay/R, z -* cz/R it is converted into 
x1+y* + zi = R}, the equation of a sphere with radius R. The same change of variables 
converts the Hamiltonian of the particle, = pa/2M = —h2A/2M (where M is the mass of 
the particle and the energy is measured from the bottom of the well) into ft = /?„ + P, where 

H0 = -A2A/2M, 

p= -*-|7£ - iW— + -V (- - 0-1- 2A7 L\ a2 / By2) V c2 ) Bz2J 

Thus the problem of motion in an ellipsoidal well reduces to that of motion in a spherical 
well. If the ellipsoid is almost a sphere of radius R = (a2c)l/a, V may be regarded as a small 
perturbation. If the ellipsoidality /J (|/J| 1) is defined by 

a*R( 1-tf). c*R( 1+fft, 

the perturbation operator may be written 

V = (/3/3A7)(p2-3^22). 

In the first order of perturbation theory, the change in the energy levels of the particle from 
their values in the spherical well is 

AEmm = -&«<•> 

= (nlm\V\nlm')t 

where / and m are the angular momentum of the particle and its component along the axis of 
the spheroid; n numbers the levels in the spherical well for a given Z, which are independent 
of m. Since p* —3pz2 is the 22-component of an irreducible tensor, Si*pa — ’ipipk, with zero 
trace, we find from (107.2) and (107.6) that the matrix element <n/m| V\nlm> is proportional to 

<-*•(-; o 

and therefore 

<*/m|P>/m> = (l - J^L)<»Z0|F|»Z0). 

A table of 3/-symbols is given in §106. 
Next, 

in the fir 

<n/0|I>/0> = + ^L<„/0 |i:„/0> 

- ifiEm” s£f ;**=.;* ,.drdo. 
M}Bz 

■ have used Schrodinger’s equation = And01 'Pnim for a spherical well, 
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and in the second term integrsted by parts. With yi0 in the form (28.11), we find the deriva¬ 
tive of tl>ni, = Rni(r)Yic(6,<f>) to be 

= (cos eTr - 

K,„ + 
[4(Z+ 1)2- 1]''2 

The radial integrals are calculated by means of the formulae 

J r dr = - 1 j RnI2 dr, 

RnW dr = ™Enl«»-l(l+\) 

which are derived by integrating by parts and using the radial Schrodinger’s equation (33.3) 

r ,.2 ti-2 

The terms containing integrals of Rni1 cancel, and the final result is 

577-, IE- ■ «“"• 

i.e. the "centre of gravity” of the multiplet is not shifted. 

§39. The secular equation 

Let us now turn to the case where the unperturbed operator i?0 has de¬ 

generate eigenvalues. We denote by ^n<0), ^n.(0), ... the eigenfunctions be¬ 

longing to the same eigenvalue Enm of the energy. The choice of these func¬ 

tions is, as we know, not unique; instead of them we can choose any s (where 

s is the degree of degeneracy of the level Enm) Independent linear combina¬ 

tions of these functions. The choice ceases to be arbitrary, however, if we 

subject the wave functions to the requirement that the change in them under 

the action of the small applied perturbation should be small. 

At present we shall understand by ^n(0), ... some arbitrarily selected 

unperturbed eigenfunctions. The correct functions in the zeroth approxima¬ 

tion are linear combinations of the form 
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The coefficients in these combinations are determined, together with the 

corrections in the first approximation to the eigenvalues, as follows. 

We write out equations (38.4) with k = n, n, ... , and substitute in them, 

in the first approximation, E — £'n(0)+£'<1>; for the quantities ck it suffices 

to take the zero-order values cn = cn(0), cn. — cn.m, ... ; cm = 0 for m # n, 

n'. We then obtain 

£<i)Cn(0) = 2 Vnn'cn,m 

or 

Z (Vnn- -£«Snn-)<V<0) = 0, (39.1) 

where n, n' take all values denumerating states belonging to the given un¬ 

perturbed eigenvalue En(0). This system of homogeneous linear equations 

for the quantities cn(0) has solutions which are not all zero if the determinant 

of the coefficients of the unknowns vanishes. Thus we obtain the equation 

|Tnn>—£<«Snn-| =0. (39.2) 

This equation is of the sth degree in £(1) and has, in general. $ different real 

roots. These roots are the required corrections to the eigenvalues in the first 

approximation. Equation (39.2) is called the secular equation.-f We notice 

that the sum of its roots is equal to the sum of the diagonal matrix elements 

Vnn, Vn.n., ... (this being the coefficient of [£'<1)]s~1 in the equation). 

Substituting in tu,-n the roots of equation (39.2) in the system (39.1) and 

solving, we find the coefficients cn(0) and so determine the eigenfunctions 

in the zeroth approximation. 

As a result of the perturbation, an originally degenerate energy level 

ceases in general to be degenerate (the roots of equation (39.2) are in general 

distinct); the perturbation removes the degeneracy, as we say. The removal 

of the degeneracy may be either total or partial (in the latter case, after the 

perturbation has been applied, there remains a degeneracy of degree less than 

the original one). 

It may happen that for some reason all the matrix elements are particularly 

small (or even zero) for transitions within a group of mutually degenerate 

states n, n.It may then be useful to take into account not only in the first 

order the matrix elements Vnn. but also in the higher orders the matrix 

elements Vnm (m # n, n\ ...) for transitions to states with a different energy. 

Let us do this for the matrix elements Vmn in the second order. 

In equation (38.4) with k = n we put on the left E = E,j<0) + EnW (retaining 

the notation Ef1’ for the correction to the energy in the approximation 

considered), and replace cn by f„<0>. Since cm<0) = 0 for all m =£ n,ri, we 
have 

El»cnM = ^ J Vnn*n-m. (39.3) 
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The equations (38.4) with k = m =£ n, n',.... give as far as the first-order terms 

(£„«»- EmW)cma) = 2 Vmn.cn.(0), 

whence 

= z -7 EnM - EmM 
-On'0). 

Substitution in (39.3) gives 

EWcn(°) = y c„.<°> (vnn. + V Jj™iXrnn_\ 
^ \ ^Enm-EmMj 

These equations replace (39.1); the condition for them to be compatible 

again leads to the secular equation, which differs from (39.2) by the change 

Vnn- Vnn- 2 VnmVmn- 

Enm-EmW 
(39.4) 

PROBLEMS 

Problem 1. Determine the corrections to the eigenvalue in the first approximation and 
the correct functions in the zeroth approximation, for a doubly degenerate level. 

Solution. Equation (39.2) here has the form 

| 1=0 
1 v„ v2S-e<» I 

(the suffixes 1 and 2 correspond to two arbitrarily chosen unperturbed eigenfunctions 0,<o* 
and of the degenerate level in question). Solving, we find 

£<» = f[(E11+r22) ± W>i], (1) 

with the notation 

Wi) « V{(^ii-M2 + 4|E12|2) 

for the difference between the two values of the correction Efl). Solving also equations (39.1) 
with these values of En), we obtain for the coefficients in the correct normalized function in 
the zeroth approximation, = c1,01<('1,0) +es(0)i/'2,cl), the values 

Cl'») 

f2(0) 
(2) 

Problem 2. Derive the formulae for the correction to the eigenfunctions in the first 
approximation and to the eigenvalues in the second approximation. 

Solution. We shall suppose that the correct functions in the zeroth approximation are 
chosen as the functions 0„(o). The matrix V„„. defined with respect to these is clearly diagonal 



§39 The secular equation 141 

with respect to the suffixes n, n (belonging to the same group of functions of a degenerate 
level), and the diagonal elements V„„, are equal to the corresponding corrections 

... in the first approximation. 
Let us consider a perturbation of the eigenfunction so that in the zeroth approxima¬ 

tion E = Enm, Cnl0) = 1, Cm101 = 0 for m ^ n. In the first approximation E = £V°>+ Vnn, 
c„ = 1+Cn<1), c„ — cjv. We write out from the system (38.4) the equation with k 
retaining in it terms of the first order: 

(£„»-£y“Km = W = vt„, 

c*(1> = VltJ(E„t0)—Ekm) for k * n, .. (1) 

Next we write out the equation with k = n\ retaining in it terms of the second order: 

Ej"c„Al' - V„-„- <v<»+ S' 

(the terms with m = n, n, ... are omitted in the sum over m). Substituting E„W = V„„ and 
the expression (1) for Cm111, we obtain for n ^ n 

_!_yl± 
y _ y , , I £ (o). (2) 

(In this approximation the coefficient c,,*11 is zero.) Formulae (1) and (2) determine the 
correction 0n(1> = Scm(1)0m(O> to the eigenfunctions in the first approximation.f 

Finally, writing out the second-order terms in equation (38.4) with k = n, we obtain for 
the second-order corrections to the energy the formula 

E* I E„m,—E„m ’ 
(3) 

which is formally identical with (38.10). 

Problem 3. At the initial instant t = 0, a system is in a state which belongs to a 
doubly degenerate level. Determine the probability that, at a subsequent instant t, the 
system will be in the state i4j(0) with the same energy; the transition occurs under the action 
of a constant perturbation. 

Solution. We form the correct functions in the zeroth approximation, 

lA = c^t+c^, V = f/ii.+o.V'j, 

where clt c,; ct', ct' are two pairs of coefficients determined by formulae (2) of Problem 1 
(for brevity, we omit the index (°> on all quantities). 

Conversely, 

The functions <]i and <ji' belong to states with perturbed energies £+£<'* and E+E^y, where 
E,l) and Ew‘ are the two values of the correction (1) in Problem 1. On introducing the time 
factors we pass to the time-dependent wave functions: 

WE** I] 

t Note that the condition for the quant 
tion for this method of perturbation the 
(38.9) to be satisfied only for transitions 
Transitions between states belonging to 
exactly (in a certain sense) by the secular 

titles (1) and (2) to be small (and therefore the condi- 
eory to be applicable) again requires the conditions 
between states belonging to different energy ltvels. 

> the same degenerate level are taken into account 
r equation. 
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(at time t = 0, T, = fa)- Finally, again expressing <j>, <i>' in terms of i/i1: i/ij, we obtain V, 
as a linear combination of <P\ and </i2, with coefficients depending on time. The squared modu¬ 
lus of the coefficient of 02 determines the required transition probability n.j,. Calculation 
with (1) and (2) from Problem 1 gives 

I Fill* 
(W>)2 

We see that the probability varies periodically with time, with frequency cut11. 
For times t which are small compared with the period in question, the expression in the 

braces, and therefore ic2,, is proportional to t2: a2i = | Vlt\2t2/h2. This formula can be very 
simply obtained by the method given in the next section (using equation (40.4)). 

§40. Perturbations depending on time 

Let us now go on to study perturbations depending explicitly on time. We 

cannot speak in this case of corrections to the eigenvalues, since, when the 

Hamiltonian is time-dependent (as will be the perturbed operator ft — ft0 + 

-pP^f)), the energy is not conserved, so that there are no stationary states. 

The problem here consists in approximately calculating the wave functions 

from those of the stationary states of the unperturbed system. 

To do this, we shall apply a method analogous to the well-known method 

of varying the constants to solve linear differential equations (P. A. M. Dirac 

1926). Let TV0) be the wave functions (including the time factor) of the 

stationary states of the unperturbed system. Then an arbitrary solution of the 

unperturbed wave equation can be written in the form of a sum Y = Safc'FfcW. 

We shall now seek the solution of the perturbed equation 

ih dWjdt = {ft0+ L)T (40.1) 

in the form of a sum 

Y = 2 ak(tfFjW, (40.2) 

where the expansion coefficients are functions of time. Substituting (40.2) 

in (40.1), and recalling that the functions Yfc(0) satisfy the equation 

we obtain 

ih cWy^jct = 

da* 

17 

Multiplying both sides of this equation on the left by Ym<0)* and integrating, 

we have 

ih 
d<2„ 

17 2 vmk(t)ak. (40.3) 



§40 

where 

Perturbations depending on time 143 

vmk(t) = J ¥„,«»*PY*«» dq 

n 

are the matrix elements of the perturbation, including the time factor (and 

it must be borne in mind that, when V depends explicitly on time, the quanti¬ 

ties Vmk also are functions of time). 

As the unperturbed wave function we take the wave function of the rath 

stationary state, for which the corresponding values of the coefficients in 

(40.2) are an(0> = 1, akl0) = 0 for k ^ n. To find the first approximation, 

we seek ak in the form ak = afc(0>+afc(1>, substituting ak = afc(0> on the 

right-hand side of equation (40.3), which already contains the small quantities 

Vmk. This gives 

ih dfl»«/dt = Vkn(t). (40.4) 

In order to show the unperturbed function to which the correction is being 

calculated, we introduce a second suffix in the coefficients ak, writing 

= S akn(tft‘k«». 

Accordingly, we write the result of integrating equation (40.4) in the form 

akM = -{ijh) | Vkn{t) At = -(i'h) J Vkne^n‘ At. (40.5) 

This determines the wave functions in the first approximation. 

Let us now consider in more detail the important case of a perturbation 

which is periodic with respect to time, of the form 

(40.6) 

where P and 0 are operators independent of time. Since P is Hermitian, 
we must have 

Pg-Uot _j_ Qgtmt = p+giwt+ Q+g-ia>t' 

whence G = F+, i.e. 

Gnra = Fmn*. (40.7) 

This relation shows that 

Vkn(t) = = Fkne^kn-^t + Fnk*e^>kn+o>)t' (40.8) 



144 Perturbation Theory §40 

Substituting in (40.5) and integrating, we obtain the following expression for 

the expansion coefficients of the wave functions: 

aj» ------ 
h(<k>kn—aj) fi(wkn+tu) 

(40.9) 

These expressions are applicable if none of the denominators vanishes,! i.e. 

if for all k (and the given n) 

Ek"»-En® # ±hco. (40.10) 

In a number of applications it is useful to have expressions for the matrix 

elements of an arbitrary quantity /, defined with respect to the perturbed 

wave functions. In the first approximation we have 

where 

/»»(*) = /«»B8(O+/n,.W0, 
I 

fnmw){t) = J Tn<0)*/T„<« d q = 

/„ m«(0 = J [vFn(0>*/'Fm(I>4-'Fn(1)*/'Fm(0)] dq. 

Substituting here 'Fn(1> = £ akn(l)lFk(0), with akna) determined by formula 

(40.9), it is easy to obtain the required expression 

fnJ'Kt) = 
Z—t lUt(wfcm—u>) h(wkn+<F)A 

fJa)Fmk* fbn^Frk* r /„d°T 
L h{ojkm- \{ojkm+oj) h(ojkn—oj). 

(40.11) 

This formula is applicable if none of its terms becomes large, i.e. if none of 

the frequencies iokn, <^km is too close to <jj. For to = 0 we return to formula 

(38.12). 

In all the formulae given here, it is understood that there is only a discrete 

spectrum of unperturbed energy levels. However, these formulae can be 

immediately generalized to the case where there is also a continuous spectrum 

(as before, we are concerned with the perturbation of states of the discrete 

spectrum); this is done by simply adding to the sums over the levels of the 

discrete spectrum the corresponding integrals over the continuous spectrum. 

Here it is necessary for the denominators cokn±u> in formulae (40.9), (40.11) 

to be non-zero when the energy Eki0) takes all values, not only of the discrete 

but also of the continuous spectrum. If, as usually happens, the continuous 

t More precisely, if none is so small that the quantities mV11 are no longer small compared 
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spectrum lies above all the levels of the discrete spectrum, then, for instance, 

the condition (40.10) must be supplemented by the condition 

Emluw-Enw > kco, (40.12) 

where Emin(0) is the energy of the lowest level of the continuous spectrum. 

PROBLEM 

Determine the change in the nth and mth solutions of Schrodinger’s equation in the 
presence of a periodic perturbation (of the form (40.6)), of frequency to such that 
= h(w+c), where « is a small quantity. 

Solution. The method developed in the text is here inapplicable, since the coefficient 
in (40.9) becomes large. We start afresh from the exact equations (40.3), with V„t(t) 

given by (40.8). It is evident that the most important effect is due to those terms, in the 
sums on the right-hand side of equations (40.3), in which the time dependence is determined 
by the small frequency com„ — to. Omitting all other terms, we obtain a system of two equa- 

ihdajdt = = F„ne“'a„, 

ihdajdt = Fm„*e-‘,lam. 

We make the substitution 

and obtain the equations 

H)am = F„ 

Eliminating 

We can take as two independent solutions of these equations 

= .4e'“.', am = -A/ix^'F^ (1) 

a„ = Be-".', u, = B^x5e-“."E„„ 

where A and B are constants (which have to be determined from the normalization condition), 
and we have used the notation 

*1=-|« + fl, a2=Ie + fi, 

O = v/(le2+h|2). n = Fmn/ti. 

Thus, under the action of the perturbation, the functions f»,0l become a„'F„<0| + 
with and a„ given by (1) and (2). 

Let the system be in the state T,„<°> at the initial instant (t = 0). The state of the system 
at subsequent instants is given by a linear combination of the two functions which we have 
obtained, which becomes T„(°> for t = 0: 

T = *‘"'^cos fit-21 sin fit^Tm<°> -(iy*,'fi)esin fit . (3) 
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The squared modulus of the coefficient of is 

§41 

±i(l cos 20,) (4) 

This gives the probability of finding the system in the state TJ”) at time l. We see that it is a 
periodic tunction with frequency 2f2, and varies from 0 to 

For « = 0 (exact resonance) the probability (4) becomes 

i(l - cos 2|jj|r). 

It varies periodically between 0 and 1; in other words, the system makes periodic transitions 
from the state to the state 

§41. Transitions under a perturbation acting for a finite time 

Let us suppose that the perturbation V(t) acts only during some finite 

interval of time (or that V(t) diminishes sufficiently rapidly as t ->±oo). 

Let the system be in the nth stationary state (of a discrete spectrum) before 

the perturbation begins to act (or in the limit as t -* — oo). At any subsequent 

instant the state of the system will be determined by the function 

T = 

where, in the first approximation, 

akn = aknm — —— J* Tfcn£laW df for k ^ n. 

(41-1) 

the limits of integration in (40.5) are taken so that, as / -> — oo, all the 

a*n(1) tend to zero. After the perturbation has ceased to act (or in the limit 

t -> + oo), the coefficients ai-n take constant values akn( oo), and the system 

is in the state with wave function 

Y = E akn(coyVk^, 

which again satisfies the unperturbed wave equation, but is different from 

the original function Yn(0). According to the general rule, the squared 

modulus of the coefficient a kn{ oo) determines the probability for the system 

to have an energy Ek{0\ i.e. to be in the kth stationary state. 
Thus, under the action of the perturbation, the system may pass from its 

initial stationary state to any other. The probability of a transition from 
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the initial (z'th) to the final (/ th) stationary state isf 
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"*J VfieUlfd d/1 (41.2) 

Let us now consider a perturbation which, once having begun, continues 

to act for an indefinite time (always, of course, remaining small). In other 

words, V(t) tends to zero as t — oo and to a finite non-zero limit as t -* 

+ oo. Formula (41.2) cannot be applied directly here, since the integral in 

it diverges. This divergence, however, is physically unimportant and can 

easily be removed. To do this, we integrate by parts: 

afi 
’Vfte^rin1 + r dV/i eitofil ^ 

. hajfi J.oo J dt hojft 

The value of the first term vanishes at the lower limit, while at the upper 

limit it is formally identical with the expansion coefficients in formula (38.8); 

the presence of an additional periodic factor eicjnt is merely due to the fact 

that the a/j are the expansion coefficients of the complete wave function T, 

while the c/,- in §38 are the expansion coefficients of the time-independent 

function p. Hence it is clear that its limit as t -*■ oo gives simply the change 

in the original wave function TV0) under the action of the “constant” pan 

V( + oo) of the perturbation, and consequently has no relation to transitions 

into other states. The probability of a transition is given by the squared 

modulus of the second term and is 

(41.3) 

The derivation is also valid when the transition is from a state of the discrete 

spectrum to a state of the continuous spectrum. The only difference is that 

here we have the probability of the transition from a given (z'th) state to states 

in a range of values of vf (see the end of §38) from vf to vf+ dvf, so that, for 

example, formula (41.2) must be written 

du'/i = p f V/te^rddt dvf. (41.4) 

If the perturbation V(t) varies little during time intervals of the order of 
the period 1/oj/z the value of the integral in (41.2) or (41.3) will be very 

1" F°r uniformity, the initial and final states will henceforward be denoted by i and f when 
transition probabilities are discussed. The suffixes of these probabilities will be written in 
the order fi. the same as for matrix elements. 
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small. In the limit when the applied perturbation varies arbitrarily slowly, the 

probability of any transition with change of energy (i.e. with a non-zero 

frequency cufi) tends to zero. Thus, when the applied perturbation changes 

sufficiently slowly (adiabatically), a system in any non-degenerate stationary 

state will remain in that state (see also §53). 

In the opposite limiting case of a very rapid, “instantaneous” application of 

the perturbation, the derivatives dV/ilct become infinite at the “instant of 

application”. In the integral of we can take outside the 

integral the comparatively slowly varying factor ei'°nt and use its value at 

this instant. The integral is then found at once, and we obtain 

tv„ = (41-5) 

The transition probabilities in instantaneous perturbations can also be 

found in cases where the perturbation is not small. Let the system be in a 

state described by one of the eigenfunctions iof the original Hamiltonian 

Hq. If the change in the Hamiltonian occurs instantaneously (i.e. in a time 

short compared with the periods 1/oj/j of transitions from the given state i 

to other states), then the wave function of the system is “unable” to vary and 

remains the same as before the perturbation. It will no longer, however, be 

an eigenfunction of the new Hamiltonian H of the system, i.e. the state 

iwill not be a stationary state. The probabilities Wft for transitions of 

the system into the new stationary states are determined, according to the 

general rules of quantum mechanics, by the coefficients in the expansion of the 

function 0j(O) in terms of the eigenfunctions 0/ of the Hamiltonian H: 

zvfi = | J 0,«»0/* d#. (41.6) 

We shall show how this general formula becomes (41.5) if the change 

P = H — Ho in the Hamiltonian is small. We multiply the equations 

#O0|«» = H*lpf* = EflPf* 

by ipf* and irespectively, integrate with respect to q and subtract. 

Using also the self-conjugacy of the operator H, we obtain 

(£/_£.(0)) J 0/*0,<O> dq = J 0/*P0(<°> dq. 

If the perturbation V' is small, in the first approximation we can replace 

Ef by the adjoining unperturbed level E/(0), and the wave function 0/ (on 

the right-hand side of the equation) by the corresponding function 0/(O)- 

This gives 

| 0/*0t(O> d9 = _L J 0/0)*F^(°) d$, 

and formula (41.6) becomes (41.5). 
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PROBLEMS 

Problem 1. A uniform electric field is suddenly applied to a charged oscillator in the 
ground state. Determine the probabilities of transitions of the oscillator to excited states 
under the action of this perturbation. 

Solution. The potential energy of the oscillator in the uniform field (which exerts a 
force F on it) is 

L(X) = 

(where xo = F moi-), i.e. has still the pure oscillator form but with the equilibrium position 
shifted. Hence the wave functions of the stationary states of the perturbed oscillator are 
ipk(.x—xo), where ipk(x) are the oscillator functions (23.12); the initial wave function is 
i/>o(x) (23.13). Using these functions and the expression (23.11) for the Hermite polynomials, 
we find 

i 
(-!)* i df*- «■ df. 

with the notation fo = -to \/(mui li). On integrating h times by parts, the integral On the 
right becomes 

fo'-' f df = f„S ™>S°=.4. 

Thus the transition probability (41.6) is 

toot = l = lf02 = F^lmhu?. 

As a function of the number k it represents a Poisson distribution for which the mean value 
of k is K. 

Perturbation theory is applicable when F is small, so that k <^1. Then the excitation 

probabilities are small, and decrease rapidly with increasing k. The largest is bi,0 as k. 

In the opposite case of large F (k 1), excitation of the oscillator occurs with very high 

probability: the probability that the oscillator will remain in the normal state is Bloo = e~k. 

Problem 2. The nucleus of an atom in the normal state receives an impulse which gives 
it a velocity v\ the duration r of the impulse is assumed short in comparison both with the 
electron periods and witha/u, where a is the dimension of the atom. Determine the probability 
of excitation of the atom under the influence of such a “jolt” (A. B. Migdal 1939). 

Solution. We use a frame of reference K' moving with the nucleus after the impact. 
By virtue of the condition t a/v, the nucleus may be regarded as practically stationary 
during the impact, so that the coordinates of the electrons in K' and in the original frame K 
immediately after the perturbation are the same. The initial wave function in K' is 

yt<j' = tfoe.\p(-/q . I rG), q = wiv,//, 

where ipo is the wave function of the normal state with the nucleus at rest, and the summation 
in the exponent is over all Z electrons in the atom. The required probability of transition 
to the feth excited state is now given, according to (41.6), by 

0*0 = l<*l exp ( -iq . E ra)|0>|2. 

In particular, if qa 1, then by expanding the exponential factor in the integrand and noting 
that the integral of is zero because the functions 0o and 0* are orthogonal, we obtain 

= l<*l(q- £ r«)|o>|*. 
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Problem 3. Determine the total probability of excitation and ionization of an atom of 
hydrogen which receives a sudden "jolt” (see Problem 2). 

Solution. The required probability can he calculated as the difference 

1-K>00= 1-1 f *)**-«■■■ dP|S, 

where toc0 is the probability that the atom will remain in the ground state (i/i„ = (tta3)-llte~,la 
being the wave function of the ground state of the hydrogen atom, with a the Bohr radius) 
Calculation of the integral gives 

1-kioo = 1 -1/(1 + J92«2y. 

In the limiting case qa 1 this probability tends to zero as q2a2, while for qa 1 it tends to 
unity as 1 —(2Iqa)*. 

Problem 4. Determine the probability that an electron will leave the AT-shell of an atom 
with large atomic number Z when the nucleus undergoes /3-decay. The velocity of the 
/3-particle is assumed large in comparison with that of the AT-electron (A. B. Migdal and 
E. L. Feinberg 1941). 

SOLUTION, t In the conditions stated the time taken by the /3-partide to pass through the 
jFC-shell is small compared with the period of revolution of the electron, so that the change in 
the nuclear charge can be regarded as instantaneous. The perturbation is here represented 
by the change V = 1/r in the field of the nucleus when the change in its charge is small 
(1 compared with Z). According to (41.S) the transition probability for one of the two jFC-shell 
electrons with energy Eo — —\Z2 (here and below we use the fact that the state of the K- 
electrons is hydrogen-like; see §74) to a state of the continuous spectrum with energy 
E = Ik2 in the range AE = k Ak is 

(A2+Z2)2 

In the range which determines the matrix elemerit Vot, the important part is that of short 
distances (~1 /Z) from the nucleus, in which the hydrogen-like expression can again be used 
for the wave function of a state of the continuous spectrum. The final state of the electron 
must have angular momentum 1 = 0 (the same as that of the initial state). By means of the 
functions Rio, and Rto (normalized on the kl2-n scale), derived in §36 and formula (f.3) in the 
Mathematical Appendices we findj 

we obtain finally 

(1 
4 v/(2ttA) (1 + i*/Z)'2«( 1 - iA/Z)-<z/* 

v;(l-e-2 "*'*) l + *2/Z2 

|(l+,a)'/«|2 = exp[-(2/a) tan-1 a], 

27 
drc --}[kjZ)k Ak, 

Z%l+k2lZY 

with /(a) = TZ7^;exp[-(4/a)tan'lctl 

The limiting values of the function /(a) are e~i for ct <§? 1 and a/2ir for a 1. 
The total probability of ionization of the /C-shell is obtained by integration of dte over all 

energies of the emergent electron. A numerical evaluation gives vi = 0-65Z~2. 

PROBLEM S. Determine the probability of emergence of an electron from the AT-shell 
of an atom with large Z in a-decay of the nucleus. The velocity of the a-particle is small 

fin Problems 4 and 5, 
J In the calculation it is 

in the final result. 
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compared with that of the jFC-electron, but the time which it takes to leave the nucleus is small 
in comparison with the time of revolution of the electron (A. B. Migdal 1941, J. S. Levinger 
1953). 

Solution. After the emergence of the a-particle, the perturbation acting on the electron 
is adiabatic. The required effect is therefore determined essentially by the interval of time 
close to the “instant of application'’ of the perturbation which destroys the adiabaticity, when 
the a-particle, leaving the nucleus and moving freely, is still at a distance small compared with 
the radius of the iC-orbit. The perturbation V which causes the ionization of the atom is 
here represented by the deviation of the combined field of the nucleus and the a-particle 
from the purely Coulomb field Z/r. The dipole moment of two particles with atomic weights 
4 and A—4, and charges 2 and Z—2, at a distance vt apart (where v is the relative velocity of 
the nucleus and the a-particle), is 

2(A-4)—(Z—2)4 2(A—2Z) 

A Vt A Vt' 

lienee the dipole term in the field of the nucleus and the a-particle isf 

= 2{A~2Z\r 
A r3' 

where the z-axis is in the direction of the velocity v. The matrix element of this perturbation 
reduces to that of z: taking the matrix element of the equation of motion of the electron 
z = — Zz/r3, we obtain 

(a/r3)0t = (E-E0y~0tIZ. 

The required transition probability for one of the two electrons in the K-shell is, by (41.2). 

d« = 2| j" I 'ote,,£.-c« di| dk 

to calculate the integral, we include in the integrand an additional damping factor with 
A > 0, and then make A -* 0 in the result. To calculate the matrix element of z = r cos ti, 
we note that, since the orbital angular momentum in the initial state is / = 0, cos 6 has a non¬ 
zero matrix element only for the transition to a state with / = 1, and 

|(cos0)l)1|- = 

30*i" — 1 ilr0A-|" 

Calculating rot by means of the radial functions Roo and f?u, we find 

the function / being as in Proble 

2"(A-2Zy-v* 

iAiZ^l + k-lZ")3 
f(kjZ)k dk. 

§42. Transitions under the action of a periodic perturbation 

The results are different for the probability of transitions to the states of 

the continuous spectrum under the action of a periodic perturbation. Let 

t If the difference A — 2Z is small, it may be necessary to take account of the next (quad- 
rupole) term also. 
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us suppose that, at some initial instant t = 0, the system is in the ith station¬ 

ary state of the discrete spectrum. We shall assume that the frequency to of 

the periodic perturbation is such that 

hco > Emm-EiW), (42.1) 

where Emia is the value of the energy where the continuous spectrum begins. 

It is evident from the results of §40 that the chief part will be played by 

states of the continuous spectrum with energies Ef very close to the resonance 

energy EftQ) + hco, i.e. those for wrhich the difference wfi — w is small. For this 

reason it is sufficient to consider, in the matrix elements (40.8) of the pertur¬ 

bation, only the first term (with the frequency cofi-co close to zero). Sub¬ 

stituting this term in (40.5) and integrating, we obtain 

afi = f Vft{t) dt = -FffH"n~w)l~ \ (42.2) 
h) hitofi-to) 

The lower limit of integration is chosen so that a# = 0 for t = 0, in accord¬ 

ance with the initial condition imposed. 

Hence we find for the squared modulus of a/i 

l«/il2 = \Ffi\2 • 4 sin2[i(o/i — 4] '^(cofi - of. (42.3) 

It is easy to see that, for large t, this function can be regarded as propor¬ 

tional to /. To show this, we notice that 

sin2ctf 
lim -- = 8(a). (42.4) 

(-►co 7rta? 

For when a ^ 0 this limit is zero, while for a = 0 we have (sin2 at) ft a? = t, 

so that the limit is infinite; finally, integrating over a from — oo to +oo, 

we have (with the substitution at = £) 

1 r sin2at 1 r sin2f 
- -da = - -- d£ = 1 
rr) ta2 rr} ? 

Thus the function on the left-hand side of equation (42.4) in fact satisfies all 

the conditions which define the delta function. Accordingly, we can write 

for large t 

\an\2 = (^!Fi)\Ffi\2TTth(\(Ofi~\co), 

or, substituting hcofi = Ef-Eft0'* and using the fact that S(ax) = (1 la)8(x), 

| afi |2 = (iTr^lFf^hiEf-Ei^-htoft. 

The expression |fl/i|2 dv/is the probability of a transition from the original 
state to one in the interval dvf. We see that, for large t, it is proportional to the 
time interval'elapsed since t = 0. The probability dzvfi of the transition per 
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unit time isf 

d to ft = (2^)|F/i|ZS(£/-£i(0)-&o) dvf. (42.5) 

As vve should expect, it is zero except for transitions to states with energy 

Ef = Ef^+htu. If the energy levels of the continuous spectrum are not 

degenerate, so that v/ can be taken as the value of the energy alone, then the 
whole “interval” of states dvj reduces to a single state with energy E = Ef°> + 

+ fuo, and the probability of a transition to this state is 

wEi = (2ir!h)\FEi\2. (42.6) 

There is another method of deriving formula (42.5) that is methodologically 

instructive, in which the periodic perturbation is assumed not to be applied at 

a time t = 0 but to increase slowly from t = — oo by an exponential law ext 

with a positive constant A which is then made to tend to zero (adiabatic 

switch-on). The initial condition a^ = 0 is accordingly applied at t = — oo. 

The matrix element of the perturbation now has the form 

Vdf) = -»>*+**, 
and (42.2) becomes 

afi = - \ J W) df 

Hence 

eUujfi-ui)t ±xt 
Ffi-. 

Koxfi-co-iA) 

Wd2 = l2\Ffi\2 
n2 

g2 kt 

(w/i-^+AS' 

(42.7) 

The transition probability per unit time is given by the derivative 

There is a formula 

d|a/4|2/d* = 2A|a/i|2. 

i tt(cc2 + A2) 
= S(a), (42.8) 

valid in the same sense as (42.4); with this we find, taking the limit A 0, 

and thus return to (42.5). 

t It is easy to verify that, on taking account of the second term in (40.8), which we have 
omitted, additional expressions are obtained which, on being divided by t, tend to zero as 
/ -► + oo. 
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§43. Transitions in the continuous spectrum 

One of the most important applications of perturbation theory is to calculate 

the probability of a transition in the continuous spectrum under the action 

of a constant (time-independent) perturbation. We have already mentioned 

that the states of the continuous spectrum are almost always degenerate. 

Having chosen in some manner the set of unperturbed wave functions cor¬ 

responding to some given energy level, we can put the problem as follows. 

It is known that, at the initial instant, the system is in one of these states; 

it is required to determine the probability of the transition to another state 

with the same energy. For transitions from the initial state i to states between 

vf and v/+ dvj we have at once from (42.5) (putting to = 0 and changing the 

notation) 

dtoft = (2tt/A)| Vft\*8(Ef-Et) dvf. (43.1) 

This expression is, as we should expect, zero except for Ef = E\\ under 

the action of a constant perturbation, transitions occur only between states 

with the same energy. It must be noticed that, for transitions from states 

of the continuous spectrum, the quantity doy< cannot be regarded directly 

as the transition probability; it is not even of the right dimensions (1/time). 

Formula (43.1) represents the number of transitions per unit time, and its 

dimensions depend on the chosen method of normalization of the wave 

functions of the continuous spectrum.f 

Let us calculate the perturbed wave function, which before the action of 

the perturbation is the same as the original unperturbed function ip^°K 

Using the method given at the end of §42, we can regard the perturbation as 

being adiabatically applied according to ewith A -> 0. From (42.7), 

putting oj = 0 and changing the notation, we have 

where the integration is extended over the w'hole of the continuous spectrum. J 

Substitution of (43.2) gives 

T, - [*«.+ J ^fe»_^_.]eXp(-i£„). (43.3, 
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In the limit as A -»■ 0, the factor ekt becomes unity. The term 4-f0, denoting 

the limit of iA as A tends to zero from positive values, determines the manner 

of integration with respect to the variable Ef (dEf occurs as a factor in dty 

together with the differentials of other quantities which describe the states of 

the continuous spectrum). Without the term iA, the integrand in (43.3) 

would have a pole at Ef - £), near which the integral would diverge. The 

term iA moves this pole into the upper half-plane of the complex variable Ef. 
After the limit A -> 0 is taken, the pole returns to the real axis, but we know 

that the path of integration must pass beneath it: 

(43.4) 

The time factor in (43.3) shows that this function belongs, as it should, to 

the same energy Ei as the original unperturbed function. In other words, the 

function 

'Pi = 4>i^] + I Vfj 
Ei — Ef + iQ 

i/r/<°> dVf 

satisfies Schrodinger’s equation 

(tfo+i^i = Ed*. 

It is therefore natural that the expression obtained should correspond exactly 

to (38.8).f 

The calculations given above correspond to the first approximation of 

perturbation theory. It is not difficult to calculate the second approximation 

as well. To do this, we must derive the formula for the next approximation 

to Tj; this is easily effected by using the method of §38 (now that we know the 

method of dealing with the “divergent” integrals) A simple calculation 

gives the formula 

* YmE'‘- (43'5> 

Comparing this expression with formula (43.3), we can write down the 

corresponding formula for the probability (or, more precisely, the number) 

t With this formula, the way in which the integral is to be taken can be found from the 
condition that the asymptotic expression for 0i at large distances should contain only an 
outgoing (and not an ingoing) wave (see §136). 
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of transitions, by direct analogy with (43.1): 

§43 

dzvn = j Vfi + | ^ «-.Q d*8(Et - Ef) d,,. (43.6) 

It may happen that the matrix element Vp for the transition considered 

vanishes. The effect is then zero in the first approximation, and (43.6) 

becomes 

2t7 C Vf V i 2 
dWfi = T I ~E-'E dv 8(Ef-Ei)dvf. (43.7) 

In applications of this formula, the point £v = Ef is not usually a pole of the 

integrand; the manner of integrating with respect to is then unimportant, 

and the integral can be taken along the real axis. 

The states v for which V/v and Vvi are not zero are usually called inter¬ 

mediate states for the transition i f. Intuitively, we may say that this 

transition takes place as if in two steps i -»• v and v ->/(but such a descriptio’- 

must not be taken literally, of course). It may happen that the transition 

i -»• / can take place not through one but only through several successive 

intermediate states. Formula (43.7) can be at once generalized to such cases. 

For example, if two intermediate states are needed, we have 

d»(( - |j | VfyVvvVvi 12 
dv dv' &(Ef— Ei) dvf. (43.8) 

Lastly, to clarify the mathematical significance of the integrals taken along 

a path of the form (43.4), we shall prove the formula 

f /(*) d* = p 

J x-a — iO x — a 
(43.9) 

where the integration is along a segment of the real axis including the point 

x = a. If we pass round the pole x = a along a semicircle of radius p, we find 

that the whole integral is equal to the sum of the integrals along the real axis 

from the lower limit to a — p and from a + p to the upper limit, together with 

iir times the residue of the integrand at the pole. In the limit p -*■ 0, the 

integrals along the real axis make the integral along the complete segment, 

taken as a principal value (denoted by P), and the result is (43.9), which may 

also be symbolically written 

_l_ = P—L + iir8(x - a); (43.10) 
x — a-iO x-a 

P here denotes the taking of the principal value when integrating the function 

f{x)l(x-a). 
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§44. The uncertainty relation for energy 

Let us consider a system composed of two weakly interacting parts. We 

suppose that it is known that at some instant these parts have definite values 

of the energy, which we denote by E and e respectively. Let the energy be 

measured again after some time interval At\ the values E', e obtained are 

in general different from E, e. It is easy to determine the order of magnitude 

of the most probable value of the difference E' + e — E— e which is found as a 

result of the measurement. 

According to formula (42.3) with a> = 0, the probability of a transition of 

the system (after time t), under the action of a time-independent perturbation, 

from a state with energy E to one with energy E' is proportional to 

sin2\(E'-E)tl2h]I(E'-E)2. 

Hence we see that the most probable value of the difference E' —E is of the 

order of h/t. 

Applying this result to the case we are considering (the perturbation being 

the interaction between the parts of the system), we obtain the relation 

|£+€_£'-e'|At~^. (44.1) 

Thus the smaller the time interval At, the greater the energy change that is 

observed. It is important to notice that its order of magnitude hjAt is inde¬ 

pendent of the amount of the perturbation. The energy change determined 

by the relation (44.1) will be observed, however weak the interaction between 

the two parts of the system. This result is peculiar to quantum theory and has 

a deep physical significance. It shows that, in quantum mechanics, the law 

of conservation of energy can be verified by means of two measurements only 

to an accuracy of the order of h/At, where At is the time interval between the 

measurements. 

The relation (44.1) is often called the uncertainty relation for energy. How¬ 

ever, it must be emphasized that its significance is entirely different from 

that of the uncertainty relation ApAx ~ h for the coordinate and momen¬ 

tum. In the latter, Ap and A.v are the uncertainties in the values of the 

momentum and coordinate at the same instant; they show that these two 

quantities can never have entirely definite values simultaneously. The 

energies E, e, on the other hand, can be measured to any degree of accuracy 

at any instant. The quantity (E+e) — (E'+€) in (44.1) is the difference 

between two exactly measured values of the energy £+e at two different 

instants, and not the uncertainty in the value of the energy at a given instant. 

If we regard E as the energy of some system and e as that of a “measuring 

apparatus”, we can say that the energy of interaction between them can be 

taken into account only to within hjAt. Let us denote by AE, Ac, ... the 

errors in the measurements of the corresponding quantities. In the favour¬ 
able case when e, e are known exactly’ (Ac = Ac' = 0), we have 

A(E-E’) ~ hi At (44.2) 
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From this relation we can derive important consequences concerning the 

measurement of momentum. The process of measuring the momentum of a 

particle (for definiteness, we shall speak of an electron) consists in a collision 

of the electron with some other (“measuring”) particle, whose momenta 

before and after the collision can be regarded as known exactly.^ If we apply 

to this collision the law of conservation of momentum, we obtain three equa¬ 

tions (the three components of a single vector equation) in six unknowns 

(the components of the momentum of the electron before and after the col¬ 

lision). The number of equations can be increased by bringing about a 

series of further collisions between the electron and “measuring” particles, 

and applying to each collision the law of conservation of momentum. This, 

however, increases the number of unknowns also (the momenta of the electron 

between collisions), and it is easy to see that, whatever the number of col¬ 

lisions, the number of unknowns will always be three more than the number 

of equations. Hence, in order to measure the momentum of the electron, 

it is necessary to bring in the law of conservation of energy at each collision, 

as well as that of momentum. The former, however, can be applied, as we 

have seen, only to an accuracy of the order of hi At, where Af is the time be¬ 

tween the beginning and end of the process in question. 

To simplify the subsequent discussion, it is convenient to consider an 

imaginary idealized experiment in which the “measuring particle” is a 

perfectly reflecting plane mirror; only one momentum-component is then 

of importance, namely that perpendicular to the plane of the mirror. To 

determine the momentum P of the particle, the laws of conservation of 

momentum and energy give the equations 

p'+P'-p-P = o, (44.3) 

|«'+£'-e-.EJ~ft/A/, (44.4) 

where P, E are the momentum and energy of the particle, and p, e those of 

the mirror; the unprimed and primed quantities refer to the instants before 

and after the collision respectively. The quantities p, p', e, e' relating to the 

“measuring particle” can be regarded as known exactly, i.e. the errors in 

them are zero. Then we have for the errors in the remaining quantities, 

from the above equations: 

AP = AP', \AE'-AE\~h/At. 

But AE = (3.E/3P)AP = vAP, where v is the velocity of the electron (before 

the collision), and similarly AE' = v'AP' = v'AP. Hence we obtain 

l(t''*-»*)AP*|~ft/Ar. (44-5) 

We have here added the suffix x to the velocity and momentum, in order to 

emphasize that this relation holds for each of their components separately. 

This is the required relation. It shows that the measurement of the 



§45 Potential energy as a perturbation 159 

momentum of the electron (with a given degree of accuracy AP) necessarily 

involves a change in its velocity (i.e. in the momentum itself). This change 

becomes greater as the duration of the measuring process becomes shorter. 

The change in velocity can be made arbitrarily small only as At x>, but 

measurements of momentum occupying a long time can be significant only 

for a free particle. The non-repeatability of a measurement of momentum 

after short intervals of time, and the “two-faced” nature of measurement in 

quantum mechanics—the necessity of a distinction between the measured 

value of a quantity and the value resulting from the process of measurement— 

are here exhibited with particular clarity,f 

The conclusion reached at the beginning of this section, which was based 

on perturbation theory, can also be derived from another standpoint by con¬ 

sidering the decay of a system under the action of some perturbation. Let 

E0 be some energy level of the system, calculated without any allowance for 

the possibility of its decay. We denote by r the lifetime of this state of the 

system, i.e. the reciprocal of the probability of decay per unit time. Then 

we find by the same method that 

\E0-E-e\~hlT, (44.6) 

where E, e are the energies of the two parts into which the system decays. 

The sum E + e, however, gives us an estimate of the energy of the system 

before it decays. Hence the above relation shows that the energy of a system, 

in some “quasi-stationary” state, which is free to decay can be determined 

only to within a quantity o'f the order of H/t. This quantity is usually called 

the width T of the level. Thus 

r ~ h/r. (44.71 

§45. Potential energy as a perturbation 

The case where the total potential energy of the particle in an external 

field can be regarded as a perturbation merits special consideration. The 

unperturbed Schrodinger’s equation is then the equation of free motion of 

the particle: 

=0, k = V(2 mEI&) = pjh, (45.1) 

and has solutions which represent plane waves. The energy spectrum of 

free motion is continuous, so that we are concerned with an unusual case of 

perturbation theory in a continuous spectrum. The solution of the problem 

is here more conveniently obtained directly, without having recourse to 
general formulae. 

The equation for the correction ipa) to the wave function in the first ap¬ 
proximation is 

= (2mU/h2)^, (45.2) 

t The relation (44.5) and the elucidation of the physical significance of the unc 
relation for energy are due to N. Bohr (1928). 
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where U is the potential energy. The solution of this equation, as we know 

from electrodynamics, can be written in the form of retarded potentials, i.e. 

in the formf 

P%x, y, z) = —(mjlTrh2) J z’)e^r dV'jr, (45.3) 

where 

dV' = dx'dy’dz’, r2 = (x—x')2+(y—y')2+(z—z')2. 

Let us find what conditions must be satisfied by the field U in order that 

it may be regarded as a perturbation. The condition of applicability of per¬ 

turbation theory is contained in the requirement that ipa) tpw. Let a be 

the order of magnitude of the dimensions of the region of space in which the 

field is noticeably different from zero. We shall first suppose that the energy 

of the particle is so small that ka is at most of the order of unity. Then the 

factor eikT in the integrand of (45.3) is unimportant in an order-of-magnitude 

estimate, and the integral is of the order of tpm\U\a2, so that 

~ m\U\a2ft0)lh2, 

and we have the condition 

\U\4h2;ma2 (fur ka < 1). (45.4) 

We notice that the expression on the right has a simple physical meaning; 

it is the order of magnitude of the kinetic energy which the particle would 

have if enclosed in a volume of linear dimensions a (since, by the uncertainty 

relation, its momentum would be of the order of hja). 

Let us consider, in particular, a potential well so shallow that the condition 

(45.4) holds for it. It is easy to see that in such a well there are no negative 

energy levels (R. Peierls 1929); this has been shown, for the particular case 

of a spherically symmetric well, in §33, Problem. For, when E = 0, the 

unperturbed wave function reduces to a constant, which can be arbitrarily 

taken as unity: = 1. Since it is clear that the wave function 

>p = l+^i(1) for motion in the well nowhere vanishes; the eigenfunction, 

being without nodes, belongs to the normal state, so that E — 0 remains the 

least possible value of the energy of the particle. Thus, if the well is suffi¬ 

ciently shallow, only an infinite motion of the particle is possible: the particle 

cannot be “captured” by the well. Note that this result is peculiar to quantum 

theory; in classical mechanics a particle can execute a finite motion in any 

potential well. 

It must be emphasized that all that has been said refers only to a three- 

dimensional well. In a one- or two-dimensional well (i.e. one in which the 

field is a function of only one or two coordinates), there are always negative 

t This is a particular integral of equation (45.2), to which we may add any solution of the 
ime equation with zero on the right-hand side, i.e. the unperturbed equation (45.1). 
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energy levels (see the Problems at the end of this section). This is related to 

the fact that, in the one- and two-dimensional cases, the perturbation theory 

under consideration is inapplicable for an energy E which is zero (or very 

small).-)- 

For large energies, when ka |> 1, the factor e‘kr in the integrand plays an 

important part, and markedly reduces the value of the integral. The solution 

(45.3) in this case can be transformed; the alternative form, however, is more 

conveniently derived by returning to equation (45.2). We take as x-axis the 

direction of the unperturbed motion; the unperturbed wave function then 

has the form <pm = e'kx (the constant factor is arbitrarily taken as unity). 

Let us seek a solution of the equation 

= (2 mlh2)Ueikx 

in the form i/i(1) = eikxf\ in view of the assumed large value of k, it is suffi¬ 

cient to retain in A>p{l) only those terms in which the factor eikx is differen¬ 

tiated one or more times. We then obtain for / the equation 

2ik 8f!8x = 2mUlh2, 

whence 

iptl) = exkxf = —(imlh2k)elkxj Udx. (45.5) 

An estimation of this integral gives ~ m\U\ajh2k, so that the con¬ 

dition of applicability of perturbation theory in this case is 

| U\ (h2lma2)ka = hv!a (ka > 1), (45.6) 

where v = khjm is the velocity of the particle. It is to be observed that this 

condition is weaker than (45.4). Hence, if the field can be regarded as a 

perturbation at small energies of the particle, it can always be so regarded at 

large energies, whereas the converse is not necessarily true J 

The applicability of the perturbation theory developed here to a Coulomb 

field requires special consideration. In a field where U = a/r, it is impossible 

to separate a finite region of space outside which U is considerably less than 

inside it. The required condition can be obtained by writing in (45.6) a 

variable distance r instead of the parameter a; this leads to the inequality 

aIkv < 1. (45.7) 

t In the two-dimensional case <Ptl) is expressed (as is known from the .theory of the two- 
dimensional wave equation) as an integral similar to (45.3), in which, instead of elkr dx'dy'dz'lr 
we have dx'dy', where H0(1) is the Hankel function and r2 = (x—x')2 + (y—y')2. 
As k -* 0, the Hankel function, and therefore the whole integral, tend logarithmically to 
infinity. 

Similarly, in the one-dimensional case, we have, m the integrand, 2meikT dx'/k, where 
r = lx — «'|, and as k ->- 0 vM1) tends to infinity as 1 Ik. 



162 Perturbation Theory §45 

Thus, for large energies of the particle, a Coulomb field can be regarded as a 
perturbation.')- 

Finally, we shall derive a formula which approximately determines the 

wave function of a particle whose energy E everywhere considerably exceeds 

the potential energy U (no other conditions being imposed). In the first 

approximation, the wave function depends on the coordinates in the same 

way as for free motion (whose direction is taken as the .v-axis). Accordingly, 

let us look for ip in the form ip — eikxF, where F is a function of the co¬ 

ordinates which varies slowly in comparison with the factor eikx (but we 

cannot in general say that it is close to unity). Substituting in Schrodinger’s 

equation, we obtain for F the equation 

2ik dF/dx = (2mlff)UF, (45.8) 

whence 

ip = eikxF = constant 145.9) 

This is the required expression. It should, however, be borne in mind that 

this formula is not valid at large distances. In equation (45.8) a term AF 

has been omitted which contains second derivatives of F. The derivative 

d2Fjdxtogether with the first derivative dFjdx, tends to zero at large 

distances, but the derivatives with respect to the transverse coordinates y 

and z do not tend to zero, and can be neglected only if x ha2, 

PROBLEMS 

Problem 1. Determine the energy level in a one-dimensional potential well whose depth 
is small. It is assumed that the condition (45.4) is satisfied. 

Solution. We make the hypothesis, which will be confirmed by the result, that the 
energy level \E\ < |[/|. Then, on the right-hand side of Schrodinger’s equation 

dY/dx* = (2m//j2)[[/(jt)—£]0, 

we can neglect E in the region of the well, and regard ^ as a constant, which without loss of 
generality can be taken as unity: 

dV/d** = 2mU/hi 

We integrate this equation with respect to x between two points such that a xx 1/k, 
where a is the width of the well and k = \Z(2m\E\lh-). Since the integral of C7(x) converges, 
the integration on the right can be extended to the whole range from — co to + co: 

At large distances from the well, the wave function is of the form ifr = e±KZ. Substituting 
this in (1), we find 

—2k = (2m'h‘) j Udx 

t It must be borne in 
mically) when x/\/(r! + 
by means of perturbatioi 

mind that the integral (45.5) with a field U 

n theory, is inapplicable within a narrow co 

= o/r diverges (logarith- 
Coulomb field, obtained 
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|£| = (»/2ff) Uix «. 

We see that, in accordance with the hypothesis, the energy of the level is a small quantity of a 
higher order (the second) than the depth of the well. 

Problem 2. Determine the energy level in a two-dimensional potential well U(r) (where 

r is the polar coordinate in the plane) of small depth; it is assumed that the integral J rU dr 
converges. o 

Solution. Proceeding as in the previous problem, we have in the region of the well the 
equation 

11/^ 
r dr\ dr/ 

Integrating this with respect to r from 0 to r, (where a r, 1/k), we find 

& (i) 

At large distances from the well, the equation of free motion in two dimensions is 

Id/ dib\ 2m 
-( r— )+— E* = 0, 
r dr\ dr/ V 

and has a solution (vanishing at infinity) ip = donstant xH0(1,(i>fr); for small values of the 
argument, the leading term in this function is proportional to log kt. Bearing this in mind, we 
equate the logarithmic derivatives of <p for r ~ a inside the well (the right-hand side of (1)) 
and outside it, obtaining 

whence 

clog, 

\E\ 

We see that the energy of the level is exponentially small compared with the depth of the 
well. 



CHAPTER VII 

THE QUASI-CLASSICAL CASE 

§46. The wave function in the quasi-classical case 

If the de Broglie wavelengths of particles are small in comparison with the 

characteristic dimensions L which determine the conditions of a given 

problem, then the properties of the system are close to being classical, just as 

wave optics passes into geometrical optics as the wavelength tends to zero. 

Let us now investigate more closely the properties of quasi-classical 

systems. To do this, we make in Schrodinger’s equation 

the substitution 

4, = (46.1) 

For the function a we obtain the equation 

(,62) 
Since the system is supposed almost classical in its properties, we seek a in 

the form of a series: 

a = cr0-f-{hji)ax+(hji)2a2 + ... , (46.3) 

expanded in powers of h. 

We begin by considering the simplest case, that of one-dimensional motion 

of a single particle. Equation (46.2) then reduces to 

c'2l2m—ihc"l2tn =E—U(x), (46.4) 

where the prime denotes differentiation with respect to the coordinate x. 

In the first approximation we write a = cr0 and omit from the equation the 

term containing h: 

a0'2/2m = E- U(x). 

a„ = ±JV( 2m[E-U(x)]}dx. 

Hence we find 
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The integrand is simply the classical momentum p{x) of the particle, expres¬ 

sed as a function of the coordinate. Defining the function p(x) with the + 

sign in front of the radical, we have 

cio = ± jp tk, p = V[2m(E-U)], (46.5) 

as we should expect from the limiting expression (6.1) for the wave function.-}- 

The approximation made in equation (46.4) is legitimate only if the second 

term on the left-hand side is small compared with the first, i.e. we must have 

h\a"ja'2\ 1 or 

|d(ft/a')/d*| « 1. 

In the first approximation we have, according to (46.5), o' —p, so that the 

condition obtained can be written 

|d(A/27r)/dx| <§ 1, (46.6) 

where A(x) = 2?rhlp(x) is the de Broglie wavelength of the particle, expressed 

as a function of x by means of the classical function p(x). Thus we have 

obtained a quantitative quasi-classicality condition: the wavelength of the 

particle must vary only slightly over distances of the order of itself. The 

formulae here derived are not applicable in regions of space where this condi¬ 

tion is not satisfied. 

The condition (46.6) can be written in another form by noticing that 

dp 

dx 

mdU _ mF_ 

p dx p 

where F = —dll/dx is the classical force acting on the particle in the external 

field. In terms of this force we find 

mh\F\]p> < 1. (46.7) 

It is seen from this that the quasi-classical approximation becomes inapplic¬ 

able if the momentum of the particle is too small. In particular, it is clearly 

inapplicable near turning points, i.e. near points where the particle, according 

to classical mechanics, would stop and begin to move in the opposite direction. 

These points are given by the equation p(x) = 0, i.e. E = U(x). As p -> 0, 

the de Broglie wavelength tends to infinity, and hence cannot possibly be 

supposed small. 

It must be emphasized, however, that the condition (46.6) or (46.7) alone 

may be insufficient for the quasi-classical approximation to be valid. The 

reason is that this condition has been derived from estimates of the various 

terms in the differential equation (46.4), the term omitted containing a higher 

derivative. It would be necessary, in fact, to stipulate the smallness of the 

t As is well known, J p dx is the time-independent part of the action. The total mechanical 
action S of a particle js S = -Et± Jp dx. The term -Et is absent from o0, since we are 
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subsequent expansion terms in the solution of this equation, and this need 

not be ensured by the smallness of the term omitted. For example, if the 

solution for cr(x) contains a term which increases almost linearly with the 

coordinate x, the smallness of the second derivative in the equation will not 

prevent this term from becoming large at sufficiently great distances. Such a 

situation occurs, in general, when the field extends to distances large in 

comparison with the characteristic length L over which it varies by an 

appreciable amount; see the discussion of (46.11) below. The quasi-classical 

approximation is then invalid for investigating the behaviour of the wave 

function at large distances. 

Let us now calculate the next term in the expansion (46.3). The first-order 

terms in h in equation (46.4) give 

= 0, 
whence 

= -a0"/2a0' = -p'jlp. 

Integrating, we find 

°i=-*l°g P. (46.8) 

omitting the constant of integration. 

Substituting this expression in (46.1) and (46.3), we find the wave function 

in the form 

= Crf-uW d*+Crf-Me-* d*. (46.9) 

The factor 1 j\'p in this function has a simple interpretation. The proba¬ 

bility of finding the particle at a point with coordinate between x and x+ dx 

is given by the square |^|2, i.e. is essentially proportional to 1/p. This is 

exactly what we should expect for a “quasi-classical” particle, since, in 

classical motion, the time spent by a particle in the segment dx is inversely 

proportional to the velocity (or momentum) of the particle. 

In the “classically inaccessible” parts of space, where E < U(x), the func¬ 

tion^*) is purely imaginary, so that the exponents are real. The general form 

of the solution of the wave equation in these regions is 

0 = SL-e-aih) { \p\dx + _£l_eaih) J|p|d* (46.10) 

vlpl V\P\ 

It must, however, be borne in mind that the accuracy of the quasi-classical 

approximation is not such as to allow the retention in the wave function of 

exponentially small terms superimposed on exponentially large ones, and in 

this sense it is usually not permissible to retain both terms in (46.10). 

Although there is, as a rule, no need to use the higher-order terms in the 

wave function, we shall derive the next term in the expansion (46.3), with a 
view to noting some aspects of the accuracy of the quasi-classical approxi¬ 

mation. 
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The terms of order h2 in equation (46.4) give 

ffoV+WHiffx" = 0, 

whence (substituting (46.5) and (46.8) for oo and <ri) 

<*.' =/>"/4/>2-3/>'W 

Integrating (by parts in the first term) and introducing the force F = pp'jm, 

we obtain 

c2=lmFlp*+tm*j (FW) dx. 

The wave function in this approximation is of the form 

0 = «S/w = «tf/w».+*,(i-ihc2) 

constant r 
4>-—[1 — \imfiFjpz—\ihm2J (F2//?5) d*]««'»>fr d*. (46.11) 

The occurrence of imaginary correction terms in the coefficient of the 

exponential is equivalent to the presence of a similar correction in the phase of 

the wave function, i .e. of an addition to the integral (1 fh) J p d* in its exponent. 

This correction is proportional to h, i.e. is of order A/L. 

The second and third terms in the brackets in (46.11) must be small in 

comparison with unity. For the second term, this condition is the same as 

(46.7); for the third term, an estimate of the integral gives (46.7) only if F2 

tends to zero sufficiently rapidly at distances ~ L. 

§47. Boundary conditions in the quasi-classical case 

Let x = a be a turning point, so that U{a) = E, and let U > E for all 

x > a, so that the region to the right of the turning point is classically 

inaccessible. The wave function must be damped in this region. Sufficiently 

far from the turning point, it has the form 

corresponding to the first term in (46.10). To the left of the turning point, 

the wave function must be represented by a real combination (46.9) of two 

quasi-classical solutions of Schrodinger’s equation: 

* - +£ /> "*) for x < a. (47.2) 
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To determine the coefficients in this combination we must follow the 

variation in the wave function from positive x -a (where (47.1) holds) to 

negative x — a. In doing so, however, it is necessary to pass through a region 

near the turning point where the quasi-classical approximation is invalid, 

and the exact solution of Schrodinger’s equation must be considered. For 

small — a\ we have 

E-U(x) « F0(x-a), F0 = ~[dUldx]x=a < 0; (47.3) 

that is, the problem in this region is one of movement in a homogeneous 

field. The exact solution of Schrodinger’s equation for this problem has been 

found in §24, and the relation between the coefficients in (47.1) and (47.2) 

can be derived by comparison with the asymptotic forms (24.5) and (24.6) of 

this exact solution on either side of the turning point. Here it must be noted 

that (47.3) gives p(x) = y/[2mF^x-a)], so that the integral 

\]pAx = h v/(2mF°^-fl)3/2 

is equal to the argument of the exponential in (24.5) or the sine in (24.6). 

In this discussion it is important that the region where the expansion (47.3) 

is valid and the quasi-classical region partly overlap: if the motion is quasi- 

classical in almost the whole of the field region (as we assume), then there 

exist values of |x — a\ small enough for the expansion (47.3) to be valid but 

also large enough for the quasi-classicality condition to be satisfied and for 

the asymptotic forms (24.5) and (24.6) to be applicable.f 

There is, however, another approach that is methodologically more 

instructive and does not make use of the exact solution. For this, ip(x) must 

be formally regarded as a function of a complex variable x, and the passage 

from positive to negative x — a must be along a path which is always suffi¬ 

ciently far from the point x = a, so that the quasi-classicality condition is 

formally satisfied along the whole path (A. Zwaan 1929). We then again 

consider values of |x-a| such that the expansion (47.3) is also valid, so that 

the wave function (47.1) has the form 

**) " 2[2HF„K»-«r. eXP ('" t] *1 <«.4) 

Let us first examine the variation of this function on passing round the 

point x = a from right to left along a semicircle of radius p in the upper half- 

t The expansion (47.3) is valid for \x—a\ « L, where L is the characteristic distance for 
variation of the field U(x). The quasi-classicality condition (46.7) requires that |x-a|5'« > 
fi/VM-Fol)- These two conditions are compatible, since the quasi-classicality of the motion 
far from the turning-point (i.e. for |x— a\ ~ L) implies that I*'* hl^'(m\Fa\). 
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plane of the complex variable x. On this semicircle, 

x -a = pei*, J -\/(x-a) dx = |p3/2(cos |^> + £ sin 

the phase 4> varying from 0 to it. The exponential factor in (47.4) at first 

(for 0 < 4> < I77') increases in modulus, and then decreases to modulus 1. At 

the end of the semicircle the exponent becomes purely imaginary, equal to 

" J x[2m\Fo\(a-x)} dx = Jp(x) d*. 

In the coefficient of the exponential in (47.4), the change along the semicircle 

(*-a)-i/4 ->(a-*)-i/4«-<*/4. 

Thus the whole function (47.4) becomes the second term in (47.2) with 

coefficient Ci = JCe-4’1/4. 

The fact that by passing through the upper half-plane it is possible to 

determine only the coefficient Ci in (47.2) has a simple explanation. If we 

follow the variation of the function (47.2) along the same semicircle in the 

opposite direction (from left to right), we see that at the beginning the first 

term rapidly becomes exponentially small in comparison w*th the second 

term. But the quasi-classical approximation does not allow us to include 

exponentially small terms in <p superimposed on the large principal term, and 

this is why the first term in (47.2) is “lost” in the passage along the semicircle. 

To determine the coefficient Ci, we must pass from right to left along a 

semicircle in the lower half-plane of the complex variable x. In a similar 

manner, we find that formula (47.4) then becomes the first term in (47.2) 

with coefficient Ci — £Cein/4. 

Thus the wave function (47.1) for x > a corresponds to the function 

* = J/d*+1’r) 
for x < a. This rule of correspondence may be written in a form independent 

of the side of the turning-point on which the classically inaccessible region 
lies: 

2^1exp d*:} cos {«/ * dr *”} 

for U(x) > E for fc/(jc) < E 

(H. A. Kramers 1926). 

(47.5) 
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Let us once again emphasize what is obvious from the proof, namely that 

this rule is associated with a particular boundary condition imposed on one 

side of the turning-point, and in this sense it can be applied only in a particular 

direction. The rule (47.5) is derived with the boundary condition that ip -> 0 

into the classically inaccessible region, and must be applied to a passage from 

the latter to the classically allowed region, as is shown by the arrow.f 

If the classically accessible region is bounded (at x = a) by an infinitely 

high “potential wall”, the boundary condition for the wave function at x = a 

is ip = 0 (see §18). The quasi-classical approximation is then valid up to 

the wall itself, and the wave function is 

C 1 r 
ip = -sin- 6dx for x < a, 

VP (47.6) 

ip = 0 for x > a. 

§48. Bohr and Sommerfeld’s quantization rule 

States that belong to the discrete energy spectrum are quasi-classical for 

high values of the quantum number n, the ordinal number of the state, 

since this gives the number of nodes of the eigenfunction (see §21), and the 

distance between adjacent nodes is equal in order of magnitude to the de 

Broglie wavelength. For large n this distance is small, and the wavelength is 

therefore small in comparison with the dimensions of the region of the 

motion. 

Let us derive the condition which determines the quantum energy levels 

in the quasi-classical case. To do this we consider a finite one-dimensional 

motion of a particle in a potential well; the classically accessible region 

b ^ x ^ a is bounded by two turning points.^ 

According to the rule (47.5), the boundary condition at x = b gives (in the 

region right of this point) the wave function 

♦ (48-1) 

t A passage in the opposite direction is meaningless in that even a small change of the wave 
function on the right in (47.5) may give rise to an exponentially increasing term in the function 
on the left. 

t In classical mechanics, a particle in such a field would execute a periodic motion with 
period (time taken in moving from x = b to x = a and back) 

T = 2 J dx/v «. 2mj.dxf, 

where v is the velocity of the particle. 
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Applying the same rule to the region left of the point x = a, we obtain the 

same function in the form 

If these two expressions are the same throughout the region, the sum of their 

phases (which is a constant) must be an integral multiple of tr: 

J p dx - - nrr, 

with C =(-l)"C'. Hence 

±hjpdx = n+i (48.2) 

where £ p dx = 2 J p dx is the integral taken over the whole period of the 

classical motion of the particle. This is the condition which determines 

the stationary states of the particle in the quasi-classical case. It corresponds 

to Bohr and Sommerfeld’s quantization rule in the old quantum theory. 

The quantity / = (l/27t)$/> dx is called an adiabatic invariant (see 

Mechanics, §49); the quantization condition (48.2) can be written as 

l{E) = h{n+\). 

It has already been mentioned in §41 that, when the parameters vary 

sufficiently slowly (“adiabatically”), the system remains in the same 

quantum state; in the present case, a state with a certain value of n. 

We see that in the quasi-classical limit this statement is the same as 

the classical theorem that the adiabatic invariant is constant when the 

parameters vary slowly. 

It is easy to see that the integer n is equal to the number of zeros of the 

wave function, and hence it is the ordinal number of the stationary state. 

For the phase of the wave function (48.1) increases from — In at x = b to 

(n + J)7r at x — a, so that the cosine vanishes n times in this range (outside 

the range b ^ x ^ a, the wave function decreases monotonically and has 
no zeros at a finite distance).! 

As has been shown previously, the number n is large in the quasi-classical 
case. It must be emphasized, however, that the retention of the term £ added 

t Strictly speaking, the zeros should be counted by means of the exact form of the wave 
function near the turning points If this is done, the result given in the text is confirmed. 
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to n in (48.2) is nevertheless legitimate: to take account of the subsequent 

correction terms in the phase of the wave functions would give only terms 

~A/L on the right of (48.2), which are small in comparison with unity; see 

the remark at the end of §46.t 

In normalizing these wave functions, the integration of \<fi\2 can be re¬ 

stricted to the range b ^ x ^ a, since outside this range ip decreases exponen¬ 

tially. Since the argument of the cosine in (48.1) is a rapidly varying function, 

we can with sufficient accuracy replace the squared cosine by its mean value £. 
This gives 

f * iC* 
J { PM 

= nC2l2mw = 1, 

where to = In/T is the frequency of the classical periodic motion. Thus 

the normalized quasi-classical function is 

(48J) 
It must be recalled that the frequency a> is in general different for different 

levels, being a function of energy. 

The relation (48.2) can also be interpreted in another manner. The 

integral §p dx is the area enclosed by the closed classical phase trajectory 

of the particle (i.e. the curve in the pjc-plane, which is the phase space of the 

particle). Dividing this area into cells, each of area 2rrh, we have n cells 

altogether; ti, however, is the number of states with energies not exceeding 

the given value (corresponding to the phase trajectory considered). Thus 

we can say that, in the quasi-classical case, there corresponds to each quantum 

state a cell in phase space of area 2rrh. In other words, the number of states 

belonging to the volume element ApAx of phase space is 

ApAx/lnh. (48.4) 

If we introduce, instead of the momentum, the wave number k — p/h, this 

number can be written 

AkAx/ln. 

It is, as we should expect, the same as the familiar expression for the number 

of characteristic vibrations of a wave field (see Fields, §52). 

t In some cases the exact expression for the energy levels E(n) (as a function of the quantum 
number n), obtained from the exact Schrodinger’s equation, is such that it retains its form as 
n —► co ; examples are the energy levels in a Coulomb field, and those of a harmonic oscillator. 
In these cases, of course, the quantization rule (48.2), although really applicable only for large 
n. gives for the function E(n) an expression which is the exact one. 
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Starting from the quantization rule (48.2), we can ascertain the general 

nature of the distribution of levels in the energy spectrum. Let AE be the 

distance between two neighbouring levels, i.e. levels whose quantum numbers 

n differ by unity. Since AE is small (for large n) compared with the energy 

itself of the levels, we can write, from (48.2), 

AE § (dpiBE) dx = 2nh. 

But BEjdp = v, so that 

<£ (8p/dE) dx = <£ dxjv = T. 

Hence we have 

AE = IrrhlT = hco. (48.5) 

Thus the distance between two neighbouring levels is hco. The frequencies 

to may be regarded as approximately the same for several adjacent levels (the 

difference in whose numbers n is small compared with n itself). Hence we 

reach the conclusion that, in any small range of a quasi-classical part of the 

spectrum, the levels are equidistant, at intervals of hoo. This result could 

have been foreseen, since, in the quasi-classical case, the frequencies cor¬ 

responding to transitions between different energy levels must be integral 

multiples of the classical frequency co. 

It is of interest to investigate what the matrix elements of any physical 

quantity / become in the limit of classical mechanics. To do this, we start 

from the fact that the mean value / in any quantum state must become, in 

the limit, simply the classical value of the quantity, provided that the state 

itself gives, in the limit, a motion of the particle in a definite path. A wave 

packet (see §6) corresponds to such a state; it is obtained by superposition of 

a number of stationary states with nearly the same energy. The wave func¬ 

tion of such a state is of the form 

T = 2 anTn> 

where the coefficients an are noticeably different from zero only in some 

range An of values of the quantum number n such that 1 An n; the 

numbers n are supposed large, because the stationary states are quasi-classical. 

The mean value of / is, by definition, 

/ = J T*/T dx = EE 

or, replacing the summation over n and m by a summation over n and the 
difference m —n = s, 

f=-ZZan+*anfn+.'nei««, 

fc'mn = in accordance with (48.5). where we have put 
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The matrix elements fnm calculated by means of the quasi-classical wave 

functions decrease rapidly in magnitude as the difference m—n increases, 

though at the same time they vary only slowly with n itself (m—n being fixed). 

Hence we can write approximately 

/=22 an*anfaeio“i = 2 |wn|2 2//«-, 

where we have introduced the notation /, =/-+, -, h being some mean value 

of the quantum number in the range Aw. But 2 \an\2 = 1; hence 

The sum obtained is in the form of an ordinary Fourier series. Since / 

must, in the limit, coincide with the classical quantity f{t), we arrive at the 

result that the matrix elements fmn in the limit become the components /m_n 

in the expansion of the classical function f(t) as a Fourier series. 

Similarly, the matrix elements for transitions between states of the con¬ 

tinuous spectrum become the components in the expansion of/(f) as a Fourier 

integral. Here the wave functions of the stationary states must be normalized 

by (1 jh) times the delta function of energy. 

All the above results can be generalized immediately to systems with 

several degrees of freedom, executing a finite motion for which the problem 

in classical mechanics allows a complete separation of the variables in the 

Hamilton-Jacobi method (called a conditionally periodic motion; see 

Mechanics, §52). After separation of the variables for each degree of freedom, 

the problem reduces to a one-dimensional problem, and the corresponding 

quantization conditions are 

ji Pi dqt = 2nk(ni + yt), (48.6) 

where the integral is taken over the period of variation of the generalized 

coordinate qu and yt is a number of the order of unity which depends on 

the nature of the boundary conditions for the degree of freedom considered.! 

In the general case of an arbitrary (not conditionally periodic) motion in 

several dimensions the formulation of the quasi-classical conditions of 

quantization calls for more far-reaching considerations.! The concept of 

t For example, in motion in a centrally symmetric field we have 

jprdT - 2trlUnr+i), j pe M ~ m+i), jp<, &4> = 2nftm, 

where nr = n-l-1 is the radial quantum number. The last of the three equations simply 
expresses the fact that p$ is the z-component of the angular momentum, equal to Km. 

I See J. B. Keller, Annals of Physics 4, 180. 1958. 
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“cells” in phase space is, however, applicable (in the quasi-classical approxi¬ 

mation) in the same form always. This is clear from the above-mentioned 

relationship between it and the number of characteristic vibrations of the 

wave field in a given volume of space. In the general case of a system with s 

degrees of freedom, there are 

AN = Aqi... AqsApi... Ap^lnhy (48.7) 

quantum states in a volume element in phase space.f 

PROBLEMS 

Problem 1. Determine (approximately) the number of discrete energy levels of a particle 
moving in an arbitrary (not central) field U(r) which satisfies the quasi-classical condition. 

Solution. The number of states belonging to a volume of phase space which corresponds 
to momenta in the range 0 < p < pmax and particle coordinates in the volume element dV 
is ftipmsi3 dVI(2irfi)3. For given r the particle can have (in its classical motion) a momentum 
satisfying the condition E = p2l2m + U(r) 0. Substituting pmVL = V[— 2mt/(r)], we 
obtain the total number of states of the discrete spectrum: 

y/2 mW 
|(-l/)3/a dV, 

where the integration is over the region of space in which U < 0. This integral diverges 
(i.e. the number of states is infinite) if U decreases at infinity as r~‘ with s < 2, in accordance 
with the results of §18. 

Problem 2. The same as Problem 1, but for a quasi-classical centrally symmetric field 
U{r) (V. L. Pokrovski!). 

Solution. In a centrally symmetric field the number of states is not the same as the 
number of energy levels, on account of the degeneracy of the latter with respect to the 
direction of the angular momentum. The required number can be found by noting that th? 
number of levels with a given value of the angular momentum M is the same as the number 
of (non-degenerate) levels for a one-dimensional motion in a field with potential energy 
Uett = U(r) + Mil2mri. The maximum possible value of the momentum pr for given r and 
energies E 0 ispr.ms* = \/(—2mUett). The number of states (i.e. the required number of 
levels) is therefore 

Cdrdpr V(2m) r // 

J 2ntt 2nh J \ \ 
1W*\ 
-) d. 
2mr2J 

The required total number of discrete levels is obtained from this by integration with respect 
to M<h (which replaces in the quasi-classical case the summation with respect to /), and is 

(m/4A2) J ( — U)T dr. 

§49. Quasi-classical motion in a centrally symmetric field 

In motion in a centrally symmetric field the wave function of a particle 

falls, as we know, into an angular and a radial part. Let us first consider the 
former. 

The dependence of the angular wave function on the angle <f> (determined 

by the quantum number m) is so simple that the question of finding approxi- 

t In particular, for one particle, dap/(2ir/i)s is the number of states for a range d3p of values 
of the momentum in unit volume of coordinate space. This explains the agreement of the 
two methods of normalizing the plane wave (15.8), mentioned in the footnote to that formula. 
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mate formulae for it does not arise. The dependence on the polar angle 8 is, 

according to the general rule, quasi-classical if the corresponding quantum 

number / is large (this condition will be more precisely formulated below). 

We shall here confine ourselves to deriving the quasi-classical expression 

for the angular function for the case (the most important one in applications) 

of states whose magnetic quantum number is zero (m = 0).f This function 

is, apart from a constant factor, the Legendre polynomial P, (cos#) (see 

(28.8)), and satisfies the differential equation 

d*P,/des+cot 6 dP,/d#+/(/+l)P, = 0. (49.1) 

The substitution 

Pi(cos 6) = x(0)/Vsin 6 (49.2) 

reduces this to 

X"+[(*+*)*+* cosec2#]* = 0, (49.3) 

which does not contain the first derivative and is similar in appearance to 

the one-dimensional Schrodinger’s equation. 

In equation (49.3), the part of the de Broglie wavelength is played by 

A = 2t7 [(/+i)2+i cosec2#]-i/2. 

The requirement that the derivative d(A/277)/dx is small (the condition (46.6)) 

gives the inequalities 

61 > 1, (77-#)/ > 1, (49.4) 

which are the conditions that the angular part of the wave function is quasi- 

classical. For large / these conditions hold for almost all values of 8, exclud¬ 

ing only a range of angles very close to 0 or it. 

When the conditions (49.4) are satisfied, we can neglect the second term 

in the brackets in (49.3) compared with the first: 

x'+V+Wx = 0. 

The solution of this equation is 

* = yjsin # P;(cos #) = A sin[(/+£)#+a], (49.5) 

where A and a are constants. 

For argles # <^ 1, we can put in equation (49.1) cos 8 as 1/#; replacing 

also /(/+!) by the approximation (/+ £)2, we obtain the equation 

d2P, 1 dP, 

t The opposite case, m = /, must ci 
lying in the equatorial plane B = in, 
this function (and therefore \tp\-) tends 

spond in the limit to t 
:e Pil(cos 6) = constar 
■ero for all 8 # in. 

classical orbit 
and as Z -7- co 
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which has as solution the Bessel function of zero order: 

P,(cos0) =/o[(/+i)0], 0 4 1. (49.6) 

The constant factor is put equal to unity, since we must have P, = 1 for 

6=0. The approximate expression (49.6) for P, is valid for all angles 

6 4 1. In particular, it can be applied for angles in the range Ijl 4 6 4 1, 

where it must agree with the expression (49.5), which holds for all 6 p 1//. 

For 61 p 1 the Bessel function can be replaced by its asymptotic expression 

for large values of the argument, and we obtain 

, / * 
V 77/ 

2 sin[(Z+i)0+frr] 

(we can neglect \ in the coefficient compared with /). On comparison with 

(49.5), we find that A = \/(2IttI), a = \tt. Thus we obtain finally the 

following expression for P((cos 6), applicable in the quasi-classical case 

Pj(cos 6) 
2 sin[(/+i)0+H 

(49.7) 

The normalized spherical harmonic function Yio is obtained from this as 

(cf. (28.8)) 

F,0 
sin[(Z+l)0+H 

IT -\/S*n # 
(49.8) 

Let us now turn to the radial part of the wave function. It has been 

shown in §32 that the function x{r) = rR(r) satisfies an equation identical 

with the one-dimensional Schrodinger’s equation, with the potential energy 

m = U(r)+; 
h* /(/+!) 

Hence we can apply the results obtained in the previous sections, if the 

potential energy is understood to be the function U Jr). 

The case l = 0 is the simplest. The centrifugal energy vanishes and, if 

the field U(r) satisfies the necessary condition (46.6), the radial wave 

function will be.quasi-classical in all space. For r — 0 we must have x = 0, 

and hence the quasi-classical function x(r) is determined by formulae (47.6). 

If / ^ 0, the centrifugal energy also must satisfy the condition (46.6). In 

the region of small r, where the centrifugal energy is of the same order as 

the total energy, the wavelength A = '2-nhjp ~ r/l, and the condition (46.6) 

gives Ip 1. Thus, if l is small, the quasi-classical condition is violated by the 

t Note that, as a result of replacing /(/ + 1) by (f + i)s 
which is multiplied by ( — 1)1 when 8 is replaced by n — 8; tl as it should be for the function 
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centrifugal energy in the region of small r. It is easily seen that we obtain 

the correct value of the phase of the quasi-classical wave function x(r) by 

calculating it from the formulae for one-dimensional motion, replacing the 

coefficient /(/+1) in the potential energy Ut(r) by (/+£)2:f 

k2 (/+£) 2 
Ui{r)= U{r)+—^L. (49.9) 

Am rA 

The question of the applicability of the quasi-classical approximation to a 

Coulomb field U — ±a/r requires special consideration. The most import¬ 

ant part of the whole region of the motion is that corresponding to distances 

r for which \U\ ~ |£|, i.e. r ~ a/|Z?|. The condition for quasi-classical 

motion in this region amounts to the requirement that the wavelength 

X ~ h/y/(2m\E\) is small compared with the dimensions a/|Z?| of the 

region; this gives 

\E\ < m^;h\ (49 10) 

i.e. the absolute value of the energy must be small compared with the energy 

of the particle in the first Bohr orbit. This condition can also be written in 

the form 

ajkv > 1, (49.11) 

where v ~ \?(\E\jm) is the velocity of the particle. It should be noticed 

that this condition is the opposite of the condition (45.7) for the applicability 

of perturbation theory to a Coulomb field. 

The region of small distances (| U(r) | §> E) is without interest in a repulsive 

Coulomb field, since for U > E the quasi-classical wave functions diminish 

exponentially. In an attractive field, however, when l is small it is possible 

for the particle to penetrate into the region where \U\ > E, so that we have 

to consider the limits of applicability of the quasi-classical approximation in 

this case. We use the general condition (46.7), putting there 

F = -dUjdr = -a/r2, p ^(2m\U\) - 

As a result, we find that the region of applicability of the quasi-classical 

approximation is restricted to distances such that 

r > V;m*, (49.12) 

i.e. distances large in comparison with the “radius” of the first Bohr orbit. 

PROBLEM 
Determine the behaviour of the wave function near the origin, if the field becomes infinite 

as ± a'r', with J > 2, when r -*• 0. 

t For example, in the simple case of free motion (U = 0) the phase of the function calcula¬ 
ted from formula (48.1) with Ui from (49.9) will be the same as the phase of (33.12) for 
large r, as it should be. 
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Solution. For sufficiently small r, the wavelength A ~ h -v/(m| f7|) — tir’12; v'(m), 
so that dA'dr ~ hr,!2~l' 1; thus the quasi-classical condition is satisfied. In an 
attractive field Ui -*■ — °o when r —>■ 0. The region near the origin is in this case classically 
accessible, and the radial wave function x ~ 1 v7>, whence 

i-i. 

In a repulsive field, the region of small r is classically inaccessible. In this case the wave 
function tends exponentially to zero as r -*■ 0. Omitting the coefficient of the exponential 
function, we have 

Jpdr]’ 
2V(2mq)f 

5l (r-2)h T 

§50. Penetration through a potential barrier 

Let us consider the motion of a particle in a field of the type shown in 

Fig. 13, characterized by the presence of a potential barrier, i.e. a region in 

which the potential energy U(x) exceeds the total energy E of the particle. 

In classical mechanics, a potential barrier is “impenetrable” to a particle; 

in quantum mechanics, however, a particle can pass “through the barrier”: 

|u(*) 

Fig. 13 

the probability of this is not zero. The phenomenon is also called the tunnel 

effect,-j- If the field U(x) satisfies the quasi-classical conditions, the trans¬ 

mission coefficient for the barrier can be calculated in a general form. We 

may remark that, in particular, these conditions give the result that the barrier 

must be “wide”, and hence the transmission coefficient is small in the quasi- 

classical case. 

In order not to interrupt the subsequent calculations, we shall first solve 

the following problem. Let the quasi-classical wave function in the region 

to the right of the turning point x = b (where U(x) < E) have the form of a 
travelling wave: 

(S0.1) 

tExamples of this type have already occurred in §25, Problems 2 and 4 
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We'require to find the wave function of this state in the region x < b. This 

can be done by the same procedure as in §47, using the plane of the complex 

variable x. Putting 

E- U(x) % Fo(x-b), F0 > 0, 

we can write the function (50.1) as 

exp \j{2mF°Y/j 

and pass from right to left along a semicircle in the upper half-plane: 

x-b = Pei*,i j V(x-b)dx = fp3/2( — sin cos 

the phase varying from 0 to rr. The function <p(x) at first decreases and then 

increases in modulus, its value at the end of the semicircle being 

Thus we obtain the correspondence rulef 

for x > b for x < b 

(50.2) 

It must be emphasized that this rule presupposes a particular form of the 

wave function (a wave travelling to the right) in the classically allowed region, 

and must be applied to go from the latter to the classically inaccessible region. 

Let us now go on to calculate the coefficient for the penetration of the 

potential barrier. Let the particle be incident on the barrier from left to 

right, coming from region I. Then, in region III beyond the barrier, there 

t In a passage from right to left through the lower half-plane, the function at first 
increases and then decreases in modulus, becoming an exponentially small quantity on the 
left-hand axis (* -* —n), which it would not be legitimate to keep superimposed on the 
exponentially large function (50.2). In the region where sM*) is exponentially large, the 
inexactness of the quasi-classical approximation loses the exponentially small correction 
which for 4> - -n could become an exponentially large term, and the latter is therefore 
lost also. 
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will be only the wave that has passed through the barrier and is propagated 

to the right; the wave function in this region may be written 

(50.3) 

where v = pjm is the particle velocity and D the current density in the wave. 

Using the rule (50.2), we can now find the wave function in region II, within 

the barrier: 

WfTpGIM) 

(50-4> 

Finally, applying the rule (47.5), we have in region I in front of the barrier 

*= 2J^xp (iflfl “*)cos GJ'“*-*')• 
If we put here 

D = exp ^-| J|/>| dx^, 

this becomes 

(50.5) 

-L exp Q |p + + i «P {~1\P *>-&)■ 

This first term (which becomes a plane wave <p = as x -> — co) 

represents a wave incident on the barrier, and the second a reflected wave. 

The normalization chosen corresponds to a unit current density in the 

incident wave, and therefore D, the current density in the transmitted wave, 

is equal to the required transmission coefficient for the barrier. Note that 

this formula is applicable only if the exponent is large, so that D itself is 
small.f 

f The exponential smallness of D is related to the fact that the amplitudes of the incident 
and reflected waves in region I are found to be the same; the exponentially small difference 
between them is lost in the quasi-classicat approximation. 
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It has been assumed in the foregoing that the field U(x) satisfies the quasi- 

classical condition over the whole extent of the barrier (excluding only the 

immediate neighbourhood of the turning points). In practice, however, we 

often have to deal with barriers where the potential energy curve on one side 

drops so steeply that the quasi-classical approximation is inapplicable. The 

exponential factor in D remains the same in this case as in formula (50.5), 

but the coefficient of the exponential (equal to unity in (50.5)) is different. 

To calculate it we must, essentially, calculate the exact wave function in the 

non-quasi-classical region and determine the quasi-classical wave function 

inside the barrier in accordance with this. 
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Evaluating the integral, we finally obtain 

In the limiting case r„ -»■ 0, this formula becomes 

yj r^g-i"*}hW{2mlE) g-itto /fit. 

These formulae are applicable when the exponent is large, i.e. when a/hv 1. This condi¬ 
tion agrees, as it should, with the condition (49.11) for quasi-classical motion in a Coulomb 
field. 

Problem 3. The field U(x) consists of two symmetrical potential wells (I and II in Fig. 
16), separated by a barrier. If the barrier were impenetrable to a particle, there would be energy 
levels corresponding to the motion of the particle in one or other well, the same for both 
wells. The fact that a passage through the barrier is possible results in a splitting of each of 
these levels into two neighbouring ones, corresponding to states in which the particle moves 
simultaneously in both wells. Determine the magnitude of the splitting (the field U(x) is 
supposed quasi-classical). 

Fic. 16 

Solution. An approximate solution of Schrodinger’s equation in the field U(x), neglecting 
the probability of passage through the barrier, can be constructed with the quasi-classical 
wave function ^o(x) which describes the motion with a certain energy E„ in one well, say I, 
i.e. which is exponentially damped on both sides of this well; the function ^i0(x) is assumed to 
be norm".' .zed so that the integral of over well I is unity. When the small probability of 
tunnelling is taken into account, the level E0 splits into levels £\ and E2. The correct zero- 
approximation wave functions corresponding to these levels are the symmetric and anti¬ 
symmetric combinations of ijj0(.x) and i/r0(—x): 

Mx) = -pdMx) + M~x)]- 
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In Well I, the function ip0(—x) is vanishingly small in comparison with i/i0(x); in well II the 
opposite is true. The product ip0(x)ipa( — x) is therefore vanishingly small everywhere, and 
the functions (1) are normalized so that the integrals of their squares over wells I and II 

Schrodinger’s equations are 

4i"+(2 mih*KEv-U)4B = 0. A1"+(2m:h1)[El-U)ifil = 0; 

we multiply the former by ^ and the latter by i/i0, subtract corresponding terms, and integrate 
over x from 0 to oo. Bearing in mind that, for x = 0, 4i = and ifit' = 0, and that 

we find 

J Mi d* « — J 4>* d* = lIV2, 

0>fc'(0). 

Similarly, we find for Et—Et the same expression with the sign changed. Thus 

E,-E, = (M>)&(0)4/(0). 

By means of formula (47.1), with the coefficient C from (48.3), we find that 

4/(0) = ^Vo(0), 

where p0 = v'[2(C70-£,())/m]. Thus 

-tHHSJH- 

where a is the turning point corresponding to the energy Ev; see Fig. 16. 

Problem 4. Determine the exact value of the transmission coefficient D for the passage 
of a particle through a parabolic potential barrier U(x) — — ikx1 (supposing that D is not 
small) (E. C. Kemble 1935).f 

Solution. Whatever the values of k and E, the motion is quasi-classical at sufficiently 
large distances |x|, with 

and the asymptotic form of the solutions of Schrodinger’s equation is 

iji = constant x e±{( 

where we have introduced the notation 

f = « = (ElhWWk) 

We are interested in the solution which, is*-*-+to, contains only a wave which has 
passed the barrier, i.e. is propagated from left to right. We put 

as x-* cc, ii = 1 2 

as x ->• — cc, A = e1 ^ ■'-( 

(1) 

(2) 

t The solution of this problem 
of any barrier L7(x) whose depende 

be applied to penetration sufficiently near the top 
i x near the maximum is quadratic. 



§51 Calculation of the quasi-classical matrix elements 185 

In the expression (2), the first term represents the incident wave, and the second the reflected 
wave (the direction of propagation of a wave is that in which its phase increases). The 
relation between A and B can be found by using the fact that in this case the asymptotic 
expression for ip is valid in the whole of a sufficiently distant region of the plane of the complex 
variable f. Let us follow the variation of the function (1) as we go round a semicircle of large 
radius p in the upper half-plane1 of f: 

(, = pe‘*,tf2 = p2( — sin 2<f> + i cos 24), 

with 4> varying from 0 to it. As a result of traversing this semicircle, the function (1) becomes 
the second term in (2), with coefficient 

A= B(e = -z (3) 

in the part of the path (^tt < <j> < n) where the modulus |e<{',2| is exponentially large, the 
exponentially small quantity which should give the first term in (2) is lost.f 

With the normalization of the incident wave chosen in (2), the condition of conservation of 
number of particles is 

|.4|2 + |£|2 = 1. (4) 

From (3) and (4) we find the required transmission coefficient: 

D = i£|2 = l/(l+e-2"«). 

This formula holds for any E. If the energy is large and negative, it gives D 
in accordance with formula (50.5). For E > 0. the quantity 

R = 1 -D = l/(l+e2”«) 

is the coefficient of reflection above the barrier. 

§51. Calculation of the quasi-classical matrix elements 

A direct calculation of the matrix elements of any physical quantity/with 

respect to the quasi-classical wave functions presents great difficulty. We may 

suppose that the energies of the states between which the matrix element is 

calculated are not close to each other, so that the element does not reduce to 

the Fourier component of the quantity/(§48). The difficulties arise because, 

owing to the fact that the wave functions are exponential (with a large imagin¬ 
ary exponent), the integrand oscillates rapidly. 

We shall consider a one-dimensional case (motion in a field U(x)), and sup¬ 

pose for simplicity that the operator of the physical quantity is merely a func- 

tion / (x) of the coordinate. Let fa and fa be the wave functions correspond¬ 

ing to some values E1 and E2 of the energy of the particle (with E2 > Ex, 

Fig. 17); we shall suppose that fa and fa are taken real. We have to calculate 
the integral 

t The passage through the low£ 
on the part of the path ( —tt < 
by (2)), the term in «**”* is expone 

half-plane to determine A would be unsuitable, since 
: —iir) that adjoins its left-hand end (where <ji is given 
tially small in comparison with 
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fit = J" 'Pif'Pz dx- 

§51 

(51.1) 

According to (47.5), the wave function fa in the regions on both sides of 

the turning-point .v = a\, but not in its immediate neighbourhood, is of the 

form 

for x < al. 

for x > au 

i 

(51.2) 

and similarly for fa (replacing the suffix 1 by 2). 

However, the calculation of the integral (51.1) by substituting in it these 

asymptotic expressions for the wave functions would not give the correct 

result. The reason is, as we shall see below, that this integral is an exponen¬ 

tially small quantity, whereas the integrand is not itself small. Hence even a 

relatively small change in the integrand will in general change the order of 

magnitude of the integral. This difficulty can be circumvented as follows. 

We represent the function fa as a sum i/i2 = fa++fa~, expressing the cosine 

(in the region x > az) as the sum of two exponentials. According to (50.2), we 

have 

for * < 0,, 

for , > «p[i J p, ; 

(51.3) 
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the function fa~ is the complex conjugate of fa+ : fa- = (fa+)*. 

The integral (51.1) is also divided into the sum of two complex conjugate 

integrals f\i =/i2++/i2-. which we shall proceed to calculate. First of all, 

we note that the integral 

/i2+ = J faffa+ d* 
converges. For, although the function fa+ increases exponentially in 

the region x < a^, the function fa, in the region x < alt tends exponentially 

to zero still more rapidly (since we have [ftl > \p2\ everywhere in the region 

x < fa}- 
We shall regard the coordinate x as a complex variable, and displace the 

path of integration off the real axis into the upper half-plane. When x 

receives a positive imaginary increment, an increasing term appears in the 

function fa (in the region x > Cj), but the function fa+ decreases still more 

rapidly, since we have p2 > px everywhere in the region x > av Hence the 

integrand decreases. 

The displaced path of integration does not pass through the points x = alt 

a2 on the real axis, near which the quasi-classical approximation is inapplic¬ 

able. Hence we can use for fa and i/ra+, over the whole path, the functions 

which are their asymptotic expressions in the upper half-plane. These are 

fa =-—-exp I"- f d*~|, 
V1 2[2wi(t/—^i)]1/4 UJ J 

(51.4) 

fa+ =-—-exp!"" — f fa{2m( U—E2)} dx~|, 
2[2 m{U-Ez)yi* *L fcj J 

where the roots are taken so as to be positive on the real axis for x < a\, Ca¬ 

in the integral 

'"+ -W) / “PG /o—i j^u-ea dr] , 
a, 

fix) dx 
x-—- (51.5) 

[(U-£l)(C7-^)]i/4 

we desire to displace the path of integration in such a way that the exponential 

factor is diminished as much as possible. The exponent has an extreme value 

only where U(x) = co (for ^ E2, its derivative with respect to x vanishes 

at no other point). Hence the displacement of the contour of integration into 

the upper half-plane is restricted only by the necessity of passing round the 

singular points of the function U(x) \ according to the general theory of linear 
differential equations, these coincide with the singular points of the wave 
function fax). The actual choice of the contour depends on the actual form 
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of the field U(x). Thus, if the function U(x) has only one singular point 

.x = ,x0 in the upper half-plane, the integration can be effected along the type 

of path shown in Fig. 18. The immediate neighbourhood of the singular 

point plays the important part in the integral, so that the matrix element 

/12 = 2 re/i2+ required is practically proportional to an exponentially small 

expression of the form 

/,2 ~ expj- J y/[2m{E2-U)] dx- J V[2«(£i- U)] dxJJ (51.6) 

(L. D. Landau 1932).+ 

o 
Fig. 18 

The lower limits of the integrals may be any points in the classically 

accessible regions; their particular values evidently do not affect the imaginary 

parts of the integrals. If the function U(x) has several singular points in the 

upper half-plane, xo in (51.6) must be taken as that for which the exponent is 

smallest in absolute value.J 

Formula (51.6) becomes simpler when the energies £, and E2 are 

almost the same, so that the matrix element reduces, according to the 

results in §48, to the Fourier time component of the classical quantity 

/[x(<)]. Putting E2'X = E + \hio21 and expanding in powers of ha>2\, we 

find 

- cu21 im | J—JL— dx^J = exp (- cu21 im t ). (51,6a) f\2 ~ expl — cu21 im 

The quantity 

t In deriving formulae (Sl.S) and (51.6), we have replaced the wave functions by their 
asymptotic expressions, since, in the integral taken along the contour shown in Fig. 18 (p. 188), 
the order of magnitude of the integral is determined by that of the integrand; hence a relatively 
small change in the latter does not have any great effect on the value of the integral. 

1 We assume that the quantity f{x) itself has no singular points. 
The estimate (51.6) for the matrix element presupposes a “normal” order of magnitude for the 

coefficient of the exponential. There can of course be cases where the nature of the problem makes 
this coefficient unusually small. The simplest example is when/(r) — constant. The matrix element 
is then zero because the wave functions are orthogonal; this is not shown by (51.6). 
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T= j J2(E-U)dx = ]dxlv(x) 

can be regarded as the complex time at which the particle reaches the point 

in the complex x-plane. The quantity 

is the corresponding complex velocity. It is easily seen that (51.6a) in fact 

gives the approximate expression for the Fourier component of/[*(<)] 

if co21 im t > 1. 

The quasi-classical matrix elements for motion in a centrally symmetric 

field must be calculated by the same method. However, we must now replace 

U(r) by the effective potential energy (the sum of the potential energy and 

the centrifugal energy), which will be different for states with different /. 

In view of further applications of the method in question, we shall write the 

effective potential energies in the two states in a general form, as Ui(r) and 

Uz(r). Then the exponent in the exponential factor in the integrand in (51.5) 

has an extreme value not only at the points where Ui(r) or Uz(r) becomes 

infinite, but also at those where 

U2{r)-U,{r) = E2-Ev (51.7) 

Hence, in the formula 

VPm{Ez- Ui)] dr- JVP*(£i- E/i)J dr] j (51.8) 

the possible values of r0 include not only the singular points of and 

Lr2(r), but also the roots of equation (51.7). 

The centrally symmetric case differs also in that the integration over r in 

(51.1) is taken from 0 (and not from — co) to co: 

fa = J Xi fxtdr- 
c 

Here two cases must be distinguished. If the integrand is an even function 

of r, the integration can be formally extended to the whole range from — co 

to co, so that there is no difference from the previous case. This may occur 

if Uj[r) and U2(r) are even functions of r [£/(—r) = t/(r)]. Then the wave 

functions *i(r) and *2(r) are either even or odd functions^ (see §21), and, 

if the function f(r) is also even or odd, the product XifXz may be even. 

If, on the other hand, the integrand is not even (as always happens if U(r) 

is not even), the start of the path of integration cannot be moved away from 

the point r — 0, and this point must be included among the possible values of 
r0 in (51.8). 

t For even U{r), the radial wave function R{r) is even 
is seen from its behaviour for small r (where R ~ r‘). 

(or odd) when l is (or odd). 
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PROBLEMS 

Problem 1. Calculate the quasi-classical matrix elements (exponential factor only) in a 
field U = UDe-ax. 

Solution. U(x) becomes infinite only for x -*■ — oo. Accordingly, we put xt = — oo 
in (51.6). We can extend the integration to + co. 

Each of the integrals diverges at the lower limit. Hence we first calculate them from — x 
to oo, and then pass to the limit x -*■ oo. We find 

where vi = V(2Ei,'m), vz = i/(2Ezi'm) are the velocities of the particle at infinity (x -»■ co), 
where the motion is free. 

Problem 2. The same as Problem 1, but in a Coulomb field U = ajr, for transitions be¬ 
tween states with / = 0. 

Solution. The only singular point of the function U(r) is r = 0. The corresponding 
integral has been calculated in §50, Problem 2. As a result we have by formula (51.8) 

Problem 3. The same as Problem 1, but for an anharmonic oscillator with potential energy 
U(x) = \mw2x2 + under the condition 

hw<ElyE2<m2w*lP. (1) 

Solution. The generalization of the analysis given in the text to the case of finite motion shows 
that (51.6) remains valid. As x0 we must take the points x -* + oo. both of which give contributions 
of the same order. Then 

/12~exp( —^ J V[2m((7 —£2)]dx— J 

With the condition (1), the main contribution comes from the range 

JlEjmw'2), J(E2lmw2) < \x\ <$ J(mw2lP), (2) 

'2ma>2x2pEl,E2,Px\ 

Expanding the exponent in powers of El2jU (the zero-order terms cancel) and neglecting /?x4, 

, (_E, fdW £j_ fd|x|\ 

12 eXp\ hw J |x | + ha> J \x\)' 

The logarithmically divergent integrals are to be cut off at the ends of the range (2): x ~ J (mo]1 IP ) 
above and r ^ ~ yj E-tlmw2), x ~ v/ Ejmto2 below. The result is 

With the state numbers nl % \Ejhw), n2m (E.,lhwh we can 
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Since large values of x are important in the solution, the result is valid if/(x) does not increase too 
rapidly at infinity. If/(x) is a polynomial, its degree must be much less than tt2-n,. 

§52. The transition probability in the quasi-classical case 

Penetration through a potential barrier is an example of a process which 

is entirely impossible in classical mechanics. In the quasi-classical case the 

probability of such processes is exponentially small. The relevant exponent 

can be determined as follows. 

Considering a transition of any system from one state to another, we 

solve the corresponding classical equations of motion and find the “path” of 

the transition; this, however, is complex, in accordance with the fact that the 

process cannot occur in classical mechanics. In particular, it is found that, 

in general, the “transition point” qo at which the formal transition of the 

system from one state to the other occurs is complex; the position of this 

point is determined by the classical conservation laws. We next calculate 

the action Si(qu qo) + Sz(qo, £2) for the motion of the system in the first 

state from some initial position qi to the “transition point” qo, and then in the 

second state from qo to the final position qz. The required probability of the 

process is then given by the formula 

w ~ exp j- j im [Si (qltq0) + Sz (?0,?2)]j. (52.1) 

If the position of the “transition point” is not unique, it must be chosen 

so that the exponent in (52.1) has the smallest absolute value (which must yet, 

of course, be sufficiently large for formula (52.1) to be valid).f 

Formula (52.1) is in accordance with the rule derived in §51 for calculating 

the quasi-classical matrix elements. It should be emphasized, however, that 

it would not be correct to use the square of the matrix element in calculating 

the coefficient before the exponential in the probability of such transitions. 

The method of complex classical paths based on (52.1) is a general one, 

applicable to transitions in systems with any number of degrees of freedom 

(L. D. Landau 1932). If the transition point is real, but lies in the classically 

inaccessible region, then (in the simple case of one-dimensional motion) 

formula (52.1) is the same as (50.5) for the probability of penetration through 

the potential barrier. 

Reflection above the barrier 

Let us apply (52.1) to the one-dimensional problem of reflection above the 

barrier, i.e. reflection of a particle whose energy exceeds the height of the 

barrier. In this case, qo is to be taken as the complex coordinate xo of the 

“turning point” at which the particle reverses its direction of motion, i.e. 

the complex root of the equation U(x) = E. We shall show how the reflection 

t If the potential energy of the 
sidered as possible values of qrj. 

has itself singular points, these also must be con- 
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coefficient may then be calculated more precisely, including the coefficient 

of the exponential. 

We must again (as in §50) establish the relation between the wave functions 

far to the right of the barrier (the transmitted wave) and far to the left (the 

incident and reflected waves). This is easily done by a method similar to 

that used in §§47 and 50, regarding i/r as a function of the complex variable x. 

We write the transmitted wave in the form 

■where xi is any point on the real axis, and follow its variation on passing along 

a path C in the upper half-plane which encloses (at a sufficient distance) the 

turning point rvo (Fig. 19); the whole of the latter part of this path must 

lie so far to the left that the error in the approximate (quasi-classical) wave 

function of the incident wave is less than the required small quantity ^— 

Passage round the point rvo causes a change in the sign of the root \/{E — t/(a:)], 

and after the return to the real axis the function ip+ therefore becomes 

ip-, a wave propagated to the left (i.e. the reflected wave).f Since the ampli¬ 

tudes of the incident and transmitted waves may be regarded as equal, the 

Fig. 19 

required reflection coefficient R is simply the ratio of the squared moduli 

of ip— and ip-: 

= exp(-^im Jpd*)- (52-2) 

c 

Having derived this formula, we can deform the path of integration in the 

exponent in any manner; if we convert it into the path C' shown in Fig. 19, 

the integral reduces to twice the integral from vi to .vq, giving 

. R = exp ( -4a(.vi, x0)'h), cr(.Yi, .Yo) = im j p(x) dx\ (52.3) 

t A passage along a path below the point .v0 (simply going along the real axis 
converts the function into the incident wave. 

5, for example) 
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since p x is real everywhere on the real axis, the choice of x, is 

immaterial. + Note that the coefficient of the exponential in (52.3) is unity 

'X. L. Pokrovskii, S. K. Sawinykh and F. R. Ulinich 1958) 

As already mentioned, among the possible values of x(l we must select the 

one for which the exponent in 52.3) is smallest in absolute magnitude (and 

this value must be large compared with unity).|| It is also implied that, 

if the potential energy lT (*' itselfhas singularities in the upper half-plane, 

the integral o\xuxl}) has larger values for such points§; otherwise the 

exponent would be determined by one of these points, but the coefficient 

of the exponential would not be unity as in (52.3). This condition is 

certainly not satisfied with increasing energy E if U(x) becomes infinite 

anywhere in the upper half-plane: ultimately the point x0 at which U = E 

becomes so close to the point xx where lT = co that the two points give 

comparable contributions to the reflection coefficient (the integral 

a(xx , xn) ~ 1), and formula '52.3) becomes invalid. In the limit where E 

is so large that this integral is small compared with unity, perturbation 

theory becomes applicable (see Problem 2).|t 

PROBLEMS 
Problem 1. Using the quasi-classical approximation, with exponential accuracy, determine 

the probability of disintegration of a deuteron in collision with a heavy nucleus regarded as 
the fixed centre of a Coulomb field (E. M. Lifshitz 1939). 

SoLUTtON. The principal contribution to the reaction probability comes from collisions 
with zero orbital angular momentum. In the quasi-classical approximation these are the 
head-on collisions, in which the movement of the particles becomes one-dimensional. 

Let E be the deuteron energy in units of «, the binding energy of the proton and the neutron 
in the deuteron; En and Ep the energies of the released neutron and proton in the same units. 
We shall also use the dimensionless coordinate q = er-'Zc2 (where Ze is the charge on the 
nucleus), and denote by </„ its value (which is in general complex) at the "transition point”, 
i.e. at the “moment of disintegration” of the deuteron. We can write 

E„ = Ifc*2, Ep = JV + -L. E = f„2 + -; (1) 

here vn, !> and Vd are the velocities of the particles at the moment of disintegration, in units of 
\ (e/m), where m is the nucleon mass; t „ is real and is the same as the velocity of the released 
neutron, but vv and Vd are complex. The conditions for the conservation of energy and 
momentum at the transition point give 

t In some cases. nol onh the amplitude relations bui also the phase relations between the incident 
and reflected waxes arc of interest. These are described bv lhc reflection amplitude, expressed in 
terms of lhe coefficients 1 and /( §25,. It is easih shown bv tile above arguments that, in particular, 
the reflection amplitude for a wave ini idem from the Icfi is 

■M' 
I lie factor - i is due to the change in the phase of the coefficient of the exponential in passing round 
lhe branch point §47 

J l he proof given here is due to L. D Landau ly61 . 
, Of course, oniv points v„ aie considered for which o > 0, i.c. points lying in lhe upper half-plane. 

§ lhe comour ( in fig. 19 must pass below the singularities of f'r . " 
+ +An intermediate case is discussed b> \. L. Pokrovskii and 1. M. Khalatuikov, Soviet Phtucs 

JEEP 13, 1207, 1961. 
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£„ + £„ = £-1, + = 2f„, 

§52 

(2) 

vT = 2i + i'n, = i + ?„, - = £+1-r„2 + 2irn. 
90 

The action of the system before the transition corresponds to the motion of the deuteron 
in the field of the nucleus up to the point of disintegration; its imaginary part is 

-‘■"JH'/K'-i)]- 
= ,m |29o'-d - cosh v'(9o£)|. (3) 

After the transition, the action corresponds to the motion of the neutron and the proton 
away from the point of disintegration: 

= Zez —im <j - vng0 - fpq0 + 
Jh° 

According to (52.1), the probability of the process is 

tv exp | — '-~J~^j~im [^COSh-.y/Wo^) cosh-ly/(90£)]}. 

In accordance with the fact that the two inverse hyperbolic cosines here come from (4) and 
(3), the signs of their imaginary parts must be the same as those of im and im va respectively, 
and the signs of the latter in the solution of equations (2) are chosen so as to make 
i m( -h S%) > 0. 

Because tv depends exponentially on £„, the total probability of disintegration (with any 
values of E„ and Ev = £—1 — £„) is given by the minimum absolute value of the exponent 
as a function of En. Analysis shows that this occurs when En -*■ 0. Then 9o = l/(£ + l), and 
from (5) we find 

-'JM 
The condition for this formula to be valid is that the exponent should be large compared 
with unity. 

Having calculated the imaginary part of the action S = S, + S2 for non-zero values of 
En, we can find the energy distribution of the particles released. Near En = 0, we havef 

im S(£„) - ''^{Tzrk-o 
A calculation of the derivative gives 

d tv 
d En 

Problem 2. Determine the coefficient of reflecti 
such that perturbation theory is applicable. 

\/[2(£- l)3] COS lJE+ l]} 

i above the barrier for particle energies 

f When En = 0, the function im S(En) has a cusp from which it increases for both positive 
and negative En (the negative values corresponding to the capture of the neutron by the 
nucleus). 
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Solution. Formula (43.1) is used, the initial and final wave functions being plane waves 
propagated in opposite directions and normalized respectively by unit current density and the 
delta function of momentum divided by 2nh, with du = dp'jlnh and p' the momentum after 
reflection. Carrying out the integration with respect to p' (taking account of the delta function), 

R =- {/(*>«<!“/» d*2. (1) 

This formula L valid if the conditions for perturbation theory to be applicable are satisfied: 
Ualhv 1, where a is the width of the barrier (see the third footnote to §45), and also 
pa/h <, 1. The latter condition ensures that the function R(p) is not exponential; otherwise 
the question of the validity of formula (1) would require further investigation. 

Problem 3. Determine the coefficient of reflection above the barrier for a quasi-classical 
barrier when the function V(x) has a discontinuity of slope at x — xB. 

Solution. If the function U(x) has a singularity for-real x, the reflection coefficient is 
determined mainly by the field near that point, and perturbation theory can be formally 
applied to calculate it, without having to be valid for all x; the fulfilment of the quasi-classical 
condition is sufficient. We then have formula (1) of Problem 2, the only difference being that 
the momentum of the incident particle must be replaced by the value of p(x) at the singular 

In this case we take the point of discontinuous slope as * = 0, and thus have near this point 

U = -Fix for * > 0, V = -F2x for * < 0, 

with different Fi and Fz. The integration with respect to * is effected by including in the 
integrand a damping factor e*Xz and then letting A -*• 0. The result is 

R (Fs-F.)2. 

where po = p(0). 

§53. Transitions under the action of adiabatic perturbations 

It has already been mentioned in §41 that, in the limit of a perturbation 

■which varies arbitrarily slowly with time, the probability of a transition of 

a system from one state to another tends to zero. Let us now consider this 

problem quantitatively, by calculating the transition probability under the 

action of a slowly varying (adiabatic) perturbation (L. D. Landau 1961). 

Let the Hamiltonian of the system be a slowly varying function of time, 

tending to definite limits as t -> ± co, and let tp„(q, t) and E„(t) be the eigen¬ 

functions and the eigenvalues of the energy (depending on time as a para¬ 

meter) obtained by solving Schrodinger’s equation H(t)ip„ = Enipn\ on 

account of the adiabatic variation of H with time, the time variation of En 

and iftn with time will also be slow. The problem is to determine the proba¬ 

bility zc'2i of finding the system in a certain state ip-? as t -> + oc, if it was in 
the state fi as t - co. 

The slow variation of the perturbation means that the duration of the 

“transition process” is very long, and therefore the change in the action during 
this time (given by the integral — f E{t) df) is large. In this sense the problem 
is quasi-classical, and the required probability is mainly determined by the 
values to of t for which 
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£i(M = Ez{t0) 

§53 

(53.1) 

and which correspond, as it were, to the “instant of transition” in classical 

mechanics (cf. §52); in reality, of course, such a transition is classically 

impossible, as is shown by the fact that the roots of equation (53.1) are 

complex. It is therefore necessary to examine the properties of the "olutions 

of Schrodinger’s equation for complex values of the parameter t in the 

neighbourhood of the point t = fo at which the two eigenvalues of the energy 

become equal. 

As we shall see, the eigenfunctions fa, fa vary rapidly with t near this 

point. To determine this dependence, we first define linear combinations 

fa, fa of ipi, fa which satisfy the conditions 

| fa2 dq = | fa2 dq = 0, | fafa dq = 1. (53.2) 

This can always be achieved by suitable choice of the complex coefficients 

(which are functions of t). The functions fa, fa have no singularity at t = to. 

We now seek the eigenfunctions as linear combinations 

ip = aifa + a2fa. (53.3) 

Here it must be borne in mind that, when the “time” t is complex, the operator 

lp(t) (of the form (17.4)) is still equal to its transpose (li = fl), but is no 

longer Hermitian (/? ^ $*), since the potential energy U(t) ^ U*(t). 

We substitute (53.3) in Schrodinger’s equation, multiply on the left by 

fa or fa, and integrate with respect to q. With the notation 

Hik{t) = jfrfifadq, (53.4) 

and using the fact that H\o — H?i owing to the above-mentioned property 

of the Hamiltonian, we obtain the equations 

Huai + Hi2ao = Eao, 

Hi2ai + H22a2 = Ealm 

The condition for these equations to have non-zero solutions is {Hi2 — E)2 = 

H11H22, and the roots of this give the energy eigenvalues 

E= H12±fa(HnH22). (53.6) 

Then (53.5) gives 

a2/fli = ±\(Hi iIH2S). (53.7) 

It is seen from (53.6) that, for a coincidence at the point t = Zo of the two 

eigenvalues, either Hn or Ho2 must vanish at that point; let Hu vanish there. 

At a regular point, a function in general vanishes as t - to, and therefore 

} (53-5) 
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E(t)-E(t0)= ±constantx \{t-t0), (53.8) 

i.e. E(t) has a branch point at t = t0. We also have ao ~ and so 

there is at the point t ■= t0 only one eigenfunction, fa. 

We now see that the problem is formally completely analogous to the 

problem of reflection above the barrier discussed in §52. We have a wave 

function T(f) which is “quasi-classical with respect to time”, instead of the 

function quasi-classical with respect to the coordinate in §52, and wish to 

find the term of the form c2fae~iEfan in the wave function for t ->► + oo, 

if the wave function Y(f) = fae~iEd/n as t -s- - oo. This is analogous to the 

problem of determining the reflected wave for x -> — oo from the transmitted 

wave for x -> + oo. The required transition probability w2i = |c2|2. The 

action 5 = — J E(t) df is given by the time integral of a function having 

complex branch points (just as the function p(x) in the integral J p dx had 

complex branch points). The problem under consideration is therefore 

dealt with by means of a contour in the plane of the complex variable t 

from large negative to large positive values, just as in §52 for the plane of the 

variable x, and we shall not repeat the derivation here. 

We shall suppose that E2 > E\ on the real axis. Then the contour must lie 

in the upper half-plane of the complex variable t (where the ratio 

g-iEj.'hjg-iEtih increases). The resulting formula (analogous to (52.2)) is 

H’21 = exp^ -imj £(0 dt^, (53.9) 

C' 

where the integration is along the contour shown in Fig. 19 (from left to 

right). 

On the left-hand branch of this .contour E = E\t and on the right-hand 

branch E = E2. We can therefore write (53.9) in the form 

ro2i = exp^-2im J o>2i(0 d^, (53.10) 

where 0121 = (E2 — E\)jh, and t\ is any point on the real axis off; t0 must be 

taken as that root of equation (53.1) lying in the upper half-plane for which 

the exponent in (53.10) is smallest in absolute value.j- In addition, besides 

the direct transition from state 1 to state 2, there may be possible paths 

through various intermediate states; the probabilities of these are given by 

analogous formulae. For example, for a transition 1 -*• 3 -* 2 the integral 

in (53.10) is replaced by a sum of integrals: 

t The possible values of must include any points at which E(t) 
such points the coefficient of the exponential in (53.10) will not be unity 

infinite; for 
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where the upper limits are the “points of intersection” of the terms £,(/), E3(t) 

and E3{t), E2{t) respectively. This result is obtained by means of a contour which 

encloses both these complex points.! 

PROBLEM 

Determine the change in the adiabatic invariant for a classical oscillator which obeys the equation 

d2Jtr/dt2 + w2(t)x = 0, (1) 

when the frequency to (t) varies slowly from its value cu, at t -» - co to co2 at t -* oo (A. M. Dykhne 
1960). 

Solution. Equation (1) is derived from Schrodinger’s equation by a change of notation: 

*-x, *-»<■ f(x)*-*(x)-»«(*); 

the problem is then formally equivalent to that of reflection from a potential barrier (§25). This 
allows the calculation of the change in the adiabatic invariant to be reduced to that of the reflection 
amplitude. 

We write the solution of (1) for t -» + co as 

From (25.6), 

The adiabatic ir 

x = A2e“"’>' + zl2*e“'“'2', x-oo. 

A2 = <xA, + pAf. 

of the oscillator is £/co, so that 

7, = mco,x2 = 2mco1|A1|2, 72 = 2mco2MJ|-. 

(2) 

or, substituting (2), 

h = 2mco2[(|oc|2 + l/MV,I2 + 2 re(e0Mi)]. 

With the relation (25.7), which in the present notation is |a |2 = | /? |2 + co,/co2, we have 

f2 — f, = 4mcu2[|^ |2|/4,|2 + re(ap*A])]. (3) 

The case where co(t) varies slowly corresponds, in the barrier reflection problem, to the 
quasi-classical case in §52. Then j3 is exponentially small, and |a |2 « oj, /oj2 . (It is assumed that oj2 (/) 
has no singularities or zeros on the real I-axis.) The procedure described in §52 for calculating the 
reflection amplitude gives the estimate 

A7 = 72-71~|/?|~exp^-2imJc0(t)d(| 

where la is the singular point in the upper half-plane of t that gives the greatest contribution to A7. 
This formula coincides with the results in Mechanics, §51, for the harmonic oscillator case considered. 
When c>2 (/ j has a simple zero in the upper half-plane, the formulae in §52 allow the coefficient of 
the exponential to be found also; see the footnote on p. 193. 

The second (and principal) term in (3) depends on the initial phase of the oscillations. It becomes 
zero when averaged over that phase, so that 

A7 * 27?7,, 

where R » (cu2/co,)|jS|2 is the “reflection coefficient”. 

t The intermediate states of a continuous spectrum require a special disci 



CHAPTER VIII 

SPIN 

§54. Spin 

In both classical and quantum mechanics, the law of conservation of angular 

momentum is a consequence of the isotropy of space with respect to a closed 

system. This already demonstrates the relation between the angular momen¬ 

tum and the symmetry properties under rotation. In quantum mechanics, 

however, the relation in question is a particularly far-reaching one, and 

essentially constitutes the basic content of the concept of angular momentum, 

especially as the classical definition of the angular momentum of a particle 

as the product r x p has no direct significance in quantum mechanics, owing 

to the fact that position and momentum cannot be simultaneously measured. 

We have seen in §28 that, if the values of l and m are specified, the angular 

dependence of the wave function of the particle is determined, and therefore 

so are all its symmetry properties under rotation. The most general formula¬ 

tion of these properties involves specifying the transformation of the wave 

functions when the coordinate system is rotated. 

The wave function $lm of a system of particles (with specified values of 

the angular momentum L and its component M) remains unchangedf only 

in a rotation of the coordinate system about the 2-axis. Any rotation that 

alters the direction of this axis has the result that the 2-component of the 

angular momentum does not have a definite value. This means that, in the 

new coordinates, the wave function in general becomes a superposition (a 

linear combination) of 2L +1 functions corresponding to the different 

possible values of M for the given L. We can say that the 2L + 1 functions 

ipLM are transformed into linear combinations of one another when the 

coordinate system is rotated. J The law governing this transformation (i.e. the 

coefficients in the superposition as functions of the angles of rotation of the 

coordinate axes) is entirely determined by specifying the value of L. Thus 

the angular momentum acquires the significance of a quantum number 

which classifies the states of the system according to their transformation 

properties under rotation of the coordinate system. This aspect of the 

concept of angular momentum in quantum mechanics is particularly 

important because it is not directly related to the explicit angular dependence 

of the wave functions; the law of mutual transformation of these functions 

can be stated without reference to that dependence. 

t Apart from an unimportant phase factor. 
t In mathematical terms, these functions are the irreducible representations of the rotation 

group. The number of functions which are transformed into linear combinations of one 
another is called the dimension of the :-..-- 
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Let us consider a composite particle, such as an atomic nucleus, which is at 

rest as a whole and is in a definite internal state. In addition to an internal 

energy, it has also an angular momentum of definite magnitude L, due to the 

motion of the particles within the nucleus. This angular momentum can 

have 2L+ 1 different orientations in space. Thus, in considering the move¬ 

ment of a complex particle as a whole, we must assign to it, as well as its 

coordinates, another discrete variable: the projection of its internal angular 

momentum on some chosen direction in space. 

However, with the preceding understanding of the concept of angular 

momentum, the origin of it becomes unimportant, and we naturally arrive at 

the concept of an “intrinsic” angular momentum which must be ascribed 

to the particle regardless of whether it is “composite” or “elementary” 

Thus, in quantum mechanics an elementary particle must be assigned a 

certain “intrinsic” angular momentum unconnected with its motion in space. 

This property of elementary particles is peculiar to quantum theory (it 

disappears in the limit ti -»■ 0), and therefore has in principle no classical 

interpretation.f 

The intrinsic angular momentum of a particle is called its spin, as distinct 

from the angular momentum due to the motion of the particle in space, 

called the orbital angular momentum. \ The particle concerned may be either 

elementary, or composite but behaving in some respect as an elementary 

particle (e.g. an atomic nucleus). The spin of a particle (measured, like the 

orbital angular momentum, in units of h) will be denoted by r. 

For particles having spin, the description of the state by means of the wave 

function must determine the probability not only of its different positions in 

space but also of the possible orientations of the spin. Thus the wave function 

must depend not only on three continuous variables, the coordinates of the 

particle, but also on a discrete spin variable, which gives the value of the 

projection of the spin on a selected direction in space (the cr-axis) and takes a 

limited number of discrete values, which we shall denote by o. 

Let y, z\ a) be such a wave function. It is essentially a set of several 

different functions of the coordinates, corresponding to different values of ct; 

these functions will be called the spin components of the wave function. The 

integral 

/!#*„**; a)|2dF 

determines the probability that the particle has a certain value of a. The 

probability that the particle is in the volume element dT with any value of a is 

dF S |</i(x, y, z\ o-)|2. 

t In particular, it would be wholly meaningless to imagine the “intrinsic” angular 
momentum of an elementarv particle as being the result of its rotation ‘ about its own axis . 

I The physical idea that an electron has an intrinsic angular momentum was put forward 
bv G. Uhlenbeck and S. Goudsmit in 1925. Spin was introduced into quantum mechanics 
in 1927 bv W. Pauli. 
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The quantum-mechanical spin operator, on being applied to the wave 

function, acts on the spin variable a. In other words, it in some way linearly 

transforms the components of the wave function into one another. The form 

of this operator will be established later. However, it is easy to see from very 

general considerations that the operators sJ:, sy, sz satisfy the same com¬ 

mutation conditions as the operators of the orbital angular momentum. 

The angular momentum operator is essentially the same as that of an 

infinitely small rotation. In deriving, in §26, the expression for the orbital 

angular momentum operator, we considered the result of applying the rotation 

operator to a function of the coordinates. In the case of the spin, this 

derivation becomes invalid, since the spin operator acts on the spin variable, 

and not on the coordinates. Hence, to obtain the required commutation 

relations, we must consider the operation of an infinitely small rotation in a 

general form, as a rotation of the system of coordinates. If we successively’ 

perform infinitely small rotations about the x-axis and the y-axis, and then 

about the same axes in the reverse order, it is easy to see by direct calculation 

that the difference between the results of these two operations is equivalent 

to an infinitely small rotation about the ^r-axis (through an angle equal to the 

product of the angles of rotation about the x and y-axes). We shall not pause 

here to carry out these simple calculations, as a result of which we again 

obtain the usual commutation relations between the operators of the com¬ 

ponents of angular momentum; these must therefore hold for the spin oper¬ 

ators also: 

= isx, {4,4} = isv, {sx,sv} = is 2, (54.1) 

together with all the physical consequences resulting from them. 

The commutation relations (54.1) enable us to determine the possible 

values of the absolute magnitude and components of the spin. All the results 

derived in §27 (formulae (27.7)-(27.9)) were based only on the commutation 

relations, and hence are fully applicable here also; vve need only replace L 

in these formulae by s. It follows from formula (27.7) that the eigen¬ 

values of the component of the spin form a sequence of numbers differing 

by unity. However, we cannot now assert that these values must be integral, 

as we could for the component Lz of the orbital angular momentum (the 

derivation given at the beginning of §27 is invalid here, since it was based 

on the expression (26.14) for the operator lz, which holds only for the orbital 

angular momentum). 

Moreover, we find that the sequence of eigenvalues sz is limited above and 

below by values equal in absolute magnitude and opposite in sign, which we 

denote by ±r. The difference 2s between the greatest and least values of sz 

must be an integer or zero. Consequently r can take the values 0, |, 1, 4. 

Thus the eigenvalues of the square of the spin are 

s2 = s(s+l), (54.2) 

where r can be either an integer (including zero) or half an integer. For given 
r, the component sz of the spin can take the values s, s — 1, ... , —s, i.e. 2j+l 
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values in all. Accordingly, the wave function of a particle with spin s has 2s + 1 

components.! 

Experiment shows that the majority of the elementary particles (electrons, 

positrons, protons, neutrons, ^-mesons and all hyperons (A, S, E)) have a spin 

of j. There are also elementary particles, the zr-mesons and the AT-mesons, 

whose spin is zero. 

The total angular momentum of a particle is composed of its orbital angular 

momentum 1 and its spin s. Their operators act on functions of different 

variables, and therefore, of course, commute. The eigenvalues of the total 

angular momentum 

j = 1+s (54.3) 

are determined by the same “vector model” rule as the sum of the orbital 

angular momenta of two different particles (§31). That is, for given 

values of / and s, the total angular momentum can take the values l+s, 

l + s— 1,..., |/—s|. Thus, for an electron (spin ^) with non-zero orbital angular 

momentum /, the total angular momentum can be j = l+\\ for / = 0 the 

angular momentum y has, of course, only the one value y = i. 

The operator of the total angular momentum J of a system of particles is 

equal to the sum of the operators of the angular momentum j of each particle, 

so that its values are again determined by the vector model rules. The angular 

momentum J can be put in the form 

J = L+ S, L = Z la, S = Z s„, (54.4) 

where S may be called the total spin and L the total orbital angular momentum 

of the system. We notice that, if the total spin of the system is half-integral 

(or integral), the same is true of the total angular momentum, since the orbital 

angular momentum is always integral. In particular, if the system consists 

of an even number of similar particles, its total spin is always integral, and 

therefore so is the total angular momentum. 

The operators of the total angular momentum j of a particle (or J, of a 

system of particles) satisfy the same commutation rules as the operators of 

the orbital angular momentum or the spin, since these rules are general com¬ 

mutation rules holding for any angular momentum. The formulae (27.13) 

for the matrix elements of angular momentum, which follow from the com¬ 

mutation rules, are also valid for any angular momentum, provided that the 

matrix elements are defined with respect to the eigenstates of this angular 

momentum. Formulae (29.7)—(29.10) for the matrix elements of arbitrary 

vector quantities also remain valid (with appropriate change of notation). 

t Since s is fixed for each kind of particle, the spin angular momentum tis becomes zero 
in the limit of classical mechanics (ft -» 0). This consideration does not apply to the orbital 
angular momentum, since / can take any value. The transition to classical mechanics is 
represented by h tending to zero and l simultaneously tending to infinity, in such a way that 
the product hi remains finite. 
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PROBLEM 

A particle with spin J is in a state with a definite value Sz = i- Determine the probabilities 
of the possible values of the component of the spin along an axis z' at an angle 8 to the 3-axis. 

Solution. The mean spin vector s is evidently along the 3-axis and has magnitude £. 
Taking the component along the z'-axis, we find that the mean value of the spin in that 
direction is sp = i cos 8. We also have sz- — where iv± are the probabilities 
of the values Sz' = ± i- Since ui+ + ui- = 1, we find ui+ — cos2J0, vi- = sinHO. 

§55. The spin operator 

In the rest of this chapter we shall not be interested in the dependence of 

the wave functions on the coordinates. For example, in speaking of the 

behaviour of the functions <p(x, y, z; o) when the system of coordinates is 

rotated, we can suppose that the particle is at the origin, so that its coordinates 

remain unchanged by such a rotation, and the results obtained will charac¬ 

terize the behaviour of the function / with regard to the spin variable a. 

The variable a differs from the ordinary variables (the coordinates) by 

being discrete. The most general form erf a linear operator acting on functions 

of a discrete variable a is 

(/0W = (55.1) 

where the/ff(T. are constants. We put ftp in parentheses in order to emphasize 

that the spin argument following it is not that of the original function tp but 

that of the function resulting from it under the action of the operator/. It is 

easy to see that the quantities f„a- are the same as the matrix elements of the 

operator, defined by the usual rule (11.5).f 

The integration over the coordinates in (11.5) is here replaced by summa¬ 

tion over the discrete variable, so that the definition of the matrix element is 

=S^*(a)[/^(a)]. (55.2) 

Here /^(ct) and /^(ct) are the eigenfunctions of the operator sz corresponding 

to the eigenvalues sz = o\ and ; each such function corresponds to a state 

in which the particle has a definite value of sz, i.e. in which only one com¬ 

ponent of the wave function is non-zero :J 

4,4o) = 8„if /ffi(a) = 8„,. (55.3) 

+ Note that the suffixes in the matrix elements on the right of (55.1) are written in an 
Drder which is, in a sense, the reverse of the usual order in (11.11). 

1 More precisely, we should write 

^,(e) = Mx,y,z) 8.,.; 

in (55.3) the coordinate factors are omitted, being unimportant in this connection. 
We must once again emphasize the distinction between the specified eigenvalue a, or a2 of 

sz and the independent variable a. 
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According to (55.1), 
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= ?/- *U, 

= /«.. 

and on substitution of this and ^(o-) the equation (55.2) is satisfied iden¬ 

tically ; this completes the proof. 

Thus the operators acting on functions of a can be represented in the form 

of (2s + l)-rovved matrices. In particular, we have for the operator of the spin 

itself, acting on the wave function, by (55.1), 

m(°) = S (55.4) 

According to what has been said at the end of §54, the matrices sx, ssz are 

identical with the matrices Lx, Ly, Lz obtained in §27, where the letters L and 

M need only be replaced by 5 and a\ 

Wc.^1 = (O0-1.C = £%/[(*+ a)(5- ff+1)], 

(Oc.^r = c = -iiV[('+«0(*-°+l)], (55-5) 

(Ooo = a > 

This determines the spin operator. 
In the important case of a spin of £ (s = |, a = ± |), these matrices have 

two rows, and are of the form 

s = iff, (55.6) 

wheref 

0} *-C "»> -?)• (5S-7) 

These are called Pauli matrices. The matrix sz = h °z is diagonal, as it should 

be, since it is defined in terms of the eigenfunctions of the quantity sz itself.J 

The following are some specific properties of the Pauli matrices. Direct 

multiplication of the matrices (55.7) gives the equations 

6x2 = Qy2 — a2 = 1, 

OyOz = tGzi Gz&x = i&yi ~ IGz* 

t In the tabular matrices (55.7) the rows and columns are numbered by the values of 
the row number corresponding to the first and the column number to the second suffix of 
the matrix element. In the present case, these numbers are +i and — 4- The action of the 
operator shown by (55.4) multiplies row a of the matrix by a column matrix containing the 
components of the wave function: 

J, = ( **> V 

I There should be ro misunderstanding because of the use of the same letter to denote the 
spin component and the Pauli matrices, since the latter always have the circumflex. 

1 (55.8) 
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Combining these with the general commutation rules (54.1), we find that 

OiOic + oicOi = 2 Sue, (55.9) 

i.e. the Pauli matrices anticommute with one another. By means of these 

equations, we can easily verify the following useful formulae: 

o2 = 3, (5 . a)(ff .b) = a.b + iff . axb. (55.10) 

where a and b are any vectors.! According to these relations, any scalar 

polynomial formed from the matrices 3■; can be reduced to terms independent 

of a and terms linear in o\ hence it follows that any scalar function of the 

operator a reduces to a linear function (see Problem 1). Lastly, the values of 

the traces (sums of diagonal elements) of the Pauli matrices and their products 

are 

tr o-j = 0, tr oioic = 28j*. (55.11) 

Subsequent sections of this chapter give a more detailed account of the 

spin properties of wave functions, including their behaviour under any 

rotation of the coordinate system, but we may note immediately an important 

property of these functions, namely their behaviour in respect of rotations 

about the 2-axis. 

Let there be an infinitesimal rotation through an angle 8$ about the 

2-axis. The operator of such a rotation is expressed in terms of the angular 

momentum operator (in this case, the spin operator) as 1 +i8<j> . sz. As a 

result of the rotation, the functions therefore become tfj(a) + 8<Jj(o), 

where 

8>Jj(o) = i8<j> . sztp(cr) = ioi}i(o)8<j>. 

Writing this relation in the form dip/d# = iatfj(o) and integrating, we find 

that a rotation through a finite angle <j> changes the functions </i(ct) into 

W = (55-12) 

In particular, a rotation through 2tt multiplies them by a factor e2*ia, which 

is the same for all a and is equal to (— 1)2^ (since 2a always has the same 

parity as 2s). Thus, in a complete rotation of the coordinate system about the 

2-axis, the wave functions of particles with integral spin return to their 

original values, and those of particles with half-integral spin change sign. 

PROBLEMS 
Problem 1. Reduce an arbitrary function of the scalar a + b . 8 linear in the Pauli matrices 

to another linear function. 
Solution. To determine the coefficients in the required formula f(a + b .3 ) = A+ B .3, 

we note that, when the a-axis is taken in the direction of b, the eigenvalues of the operator 

t The terms on the right of (55.8)-(55.l0) which are independent of 3 must, of course, 
be understood as constants multiplying the unit two-by-two matrix. 
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a+ b . & are a±b, and the corresponding eigenvalues of the operator f{a +b . S ) are f(a + b). 
Hence we find A = lU{a + b) + f(a-b)], B = (b/2i) [f(a + b)-f(,a-b)]. 

Problem 2. Determine the values of the scalar product Si . S2 of spins (i) of two particles 
in states in which the total spin of the system, S = Si +s2, has definite values (0 or 1). 

Solution. From the general formula (31.3), which is valid for the addition of any two 
angular momenta, we find Si . s2 = i for 5 = 1, Si . s2 = —J for 5 = 0. 

Problem 3. Which powers of the operator s of an arbitrary spin s are independent? 

Solution. The operator 

(y2—j)(yz—j+1)... (f2+j), 

formed from the differences between y. and all possible eigenvalues sz, gives zero when it is 
applied to any wave function, and is therefore itself zero. Hence it follows that (yz)z'+1 is 
expressed in terms of lower powers of the operator Sz, so that only its powers from 1 to 2s are 
independent. 

§56. Spinors 

When the spin is zero, the wave function has only one component, t/<(0). 

The effect of the spin operator is to reduce it to zero: sip = 0. The relation 

between § and the operator of an infinitesimal rotation implies that the wave 

function of a particle with zero spin is invariant under rotation of the co¬ 

ordinate system, i.e. it is a scalar. 

The wave function of a particle with spin | has two components, </i(|) and 

tfj( — |). For convenience in later generalizations, we shall distinguish these 

components by the superscripts 1 and 2 respectively. The two-component 

quantity 

is called a spinor. 

In any rotation of the coordinate system, the components of the spinor 

undergo a linear transformation: 

01' = a^ + b^, = cp + df2. (56.2) 

This may be written 

P' = (0w, *), (56.3) 

where C is the transformation matrix.f Its elements are in general complex 

functions of the angles of rotation of the coordinate axes. They are con¬ 

nected by relations which follow directly from the physical conditions 

imposed on the spinor as the wave function of a particle. 

Let us consider the bilinear form 

^2 _ ^2^i, (56.4) 

t The notation Uip implies that the rows of the matrix U are multiplied by the column <p. 
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where ip and <j> are two spinors. A simple calculation gives 

207 

0i'02*_02'0i' = (ad-be)(>P1<f>2 - p2^1), 

i.e. (56.4) is transformed into itself when the coordinate system is rotated. 

If, however, there is only one function which is transformed into itself, it can 

be regarded as corresponding to zero spin, and therefore must be a scalar, 

i.e. must remain unchanged when the coordinate system is rotated in any 

manner. Hence we have 

ad-bc = 1: (56.5) 

the determinant of the transformation matrix is unity.f 

Further relations follow from the requirement that the expression 

0i0i*+ 0202* (56.6) 

which determines the probability of finding the particle at a given point in 

space, should be a scalar. A transformation which leaves unchanged the sum 

of the squared moduli of the quantities is a unitary transformation, i.e. we 

must have 0+ = O'1 (see §12). With the condition (56.5) the inverse 

matrix is 

Equating this to the Hermitian conjugate matrix 

we find 

a = d*, b = -c*. (56.7) 

By virtue of the relations (56.5) and (56.7), the four complex quantities 

a, b, c, d actually contain only three independent real parameters, corres¬ 

ponding to the three angles which define a rotation of a three-dimensional 

system of coordinates. 

Comparison of the expressions for the scalars (5614) and (56.6) shows that 

p1* and ip2* must be transformed as ip2 and - ip1 respectively. It is easy to 

verify that this is in fact so, using (56.5) and (56.7).J 

It is possible to put the algebra of spinors in a form analogous to that of 

tensor algebra. This is done by introducing, in addition to contravariant 
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spinor components ip1, ip2 (with superscripts), the covariant components (with 

subscripts), defined by 

4>i = <P2, <p2 = - >PK (56.8) 

The invariant combination (56.4) of the two spinors may also be written as a 

scalar product 

<px<p>. — = ip^-<p2 — ip2<p^-\ (56.9) 

here and below, summation over repeated {dummy) indices is implied, as in 

tensor algebra. VVe may note the following rule which has to be borne in 

mind in spinor algebra. We have 

Thus 

ipf-tj), = ip^tpx + = — >p2<P2 — 

Vtx = ~■ (56.10) 

Hence it is evident that the scalar product of any spinor with itself is zero: 

= 0. (56.11) 

According to the foregoing discussion, the quantities ipi and 'Pi are 

transformed as ip1* and ip2*, i.e. 

= (0*<P)X. (56.12) 

The product 0*ip may also be written as >pC*, with the transposed matrix C*. 

Since 0 is unitary, we have 0* = £?_1, so that ip'x = {'P10~l)x orf 

4>, = (56.13) 

Analogously to the transition from vectors to tensors in ordinary tensor 

algebra, we can introduce the idea of spinors of higher rank. Thus, a quantity 

having four components which are transformed as the products tptyi* 

of the components of two spinors of rank one, is called a spinor of rank two. 

Besides the contravariant components </rV we can consider the covariant 

components tp^ and the mixed components <p^ which are transformed as 

the products ip,,(p„ and ip^ respectively. Spinors of any rank are similarly 

defined. 

The transition from contravariant to covariant spinor components and 

vice versa may be written 

<Px = gx^P1S P* = £"* (56.14) 
where 

1) 
t The notation 4>U (with (4 to the left of U) denotes that the com 

are multiplied by the columns of the matrix U. 
iponents (<pi 02) 
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is the metric spinor in a vector space of two dimensions. Thus we have, for 

example, 

= giv’P'"1’ ^ = g*.vg»p4'VP, 

so that ip 12 = — ipi1 = — ip21, ipn = pi2 = ip22, and so on. 

The quantities gthemselves form an antisymmetric unit spinor of rank 

two. It is easy to see that the values of its components remain unchanged 

under transformations of the coordinates, and that 

givg“v = V. (56.16) 

where 811 = 822 = 1, S21 = §i2 = 0. 

As in ordinary tensor algebra, there are two fundamental operations in 

spinor algebra: multiplication, and contraction with respect to a pair of in¬ 

dices. The multiplication of two spinors gives a spinor of higher rank; thus, 

from two spinors of ranks two and three, ipX/j. and ipvpo, we can form a spinor 

of rank five, ipxfi<pvpo- Contraction with respect to a pair of indices (i.e. sum¬ 

mation of the components over corresponding values of one covariant and 

one contravariant index) decreases the rank of a spinor by two. Thus, a 

contraction of the spinor ipXppo with respect to the indices u and v gives the 

spinor ipXy.ppa of rank three; the contraction of the spinoripf gives the scalar 

<p>.x. Here there is a rule similar to that expressed by formula (56.10) d if we 

interchange the upper and lower indices with respect to which the contraction 

is effected, the sign is changed (i.e. ip^ = —<p*x)- Hence, in particular, it 

follows that, if a spinor is symmetrical with respect to any two of its indices, 

the result of a contraction with respect to these indices is zero. Thus, for a 

symmetrical spinor <pKfl of rank two, we have = 0- 

A spinor of rank n symmetrical with respect to all its indices is called a 

symmetrical spinor of rank n. From an asymmetrical spinor we can construct a 

symmetrical one by the process of symmetrization, i.e. summation of the com¬ 

ponents obtained by all possible interchanges of the indices. From what has 

been said above, it is impossible to construct (by contraction) a spinor of lower 

rank from the components of a symmetrical spinor. 

Only a spinor of rank two can be antisymmetrical with respect to all its 

indices. For, since each index can take only two values, at least two out of 

three or more indices must have the same value, and therefore the compo¬ 

nents of the spinor are zero identically. Any antisymmetrical spinor of rank 

two is a scalar multiple of the unit spinor gXlt. We may notice here the fol¬ 
lowing relation: 

g^.+gyJx+g^ = 0 (56.17) 

(where is any spinor), which follows from the above; this rule is simply a 

consequence of the fact that the expression on the left is (as we may easily 
verify) an antisymmetrical spinor of rank three. 

The spinor which is the product of a spinor i/iAfl with itself, on contraction 
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with respect to one pair of indices, becomes antisymmetrical with respect to 

the other pair: 

</%<V = ~ 

Hence, from what was said above, this spinor must be a scalar multiple of 

the spinor g^. Defining the scalar factor so that contraction with respect to 

the second pair of indices gives the correct result, we find 

<hAV = (56.18) 

The components of the spinor 4>^.* which is the complex conjugate of 

are transformed as the components of a contravariant spinor <f>*"•••, 

and conversely. The sum of the squared moduli of the components of any 

spinor is consequently invariant. 

§57. The wave functions of particles with arbitrary spin 

Having developed a formal algebra for spinors of any rank, we can now 

turn to our immediate problem, to study the properties of wave functions of 

particles with arbitrary spin. 

This subject is conveniently approached by considering an assembly of 

n particles with spin The greatest possible value of the 0-component of the 

total spin is which is obtained when sz = J for every particle (i.e. all the 

spins are directed the same way, along the 0-axis). In this case we can 

evidently say that the total spin 5 of the system is also \n. 

All the components of the wave function <p{oi, o%, ..., an) of the system 

of particies are then zero, except for </<(£, £,..., £). If we write the wave 

function as a product of n spinors <p\f>r..., each of which refers to one of the 

particles, only the component with A, p,... = 1 in each spinor is not zero. 

Thus only the product ... is not zero. The set of all these products, 

however, is a spinor of rank n which is symmetrical with respect to all its 

indices. If we transform the coordinate system (so that the spins are not 

directed along the 0-axis), we obtain a spinor of rank n, general in form except 

that it is symmetrical as before. 

The spin properties of wave functions, being essentially their properties 

with respect to rotations of the coordinate system, are identical for a particle 

with spin i and for a system of n = 2s particles each with spin \ directed so 

that the total spin of the system is s. Hence we conclude that the wave function 

of a particle with spin s is a symmetrical spinor of rank n = 2s. 

It is easy to see that the number of independent components of a sym¬ 

metrical spinor of rank 2s is equal to 2s +1, as it should be. For all those 

components are the same whose indices include 2s ones and 0 twos; so are 

all those with 2s — 1 ones and 1 two, and so on up to 0 ones and 2s twos. 
Mathematically, the symmetrical spinors provide a classification of the 

possible types of transformation of quantities when the coordinate system 
is rotated. If there are 2s +1 different quantities which are transformed 
linearly into one another (and which cannot be reduced in number by any 
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choice of linear combinations of them), then we can assert that their law of 

transformation is equivalent to that of the components of a symmetrical spinor 

of rank 2s. Any set of any number of functions which are transformed linearly 

into one another when the coordinate system is rotated can be reduced (by 

an appropriate linear transformation) to one or more symmetrical spinors.f 

Thus an arbitrary spinor of rank n can be reduced to symmetrical 

spinors of ranks n, n—2, n—4, ... . In practice, such a reduction can be made 

as follows. By symmetrizing the spinor fxUv... with respect to all its indices, 

we form a symmetrical spinor of the same rank n. Next, by contracting the 

original spinor with respect to various pairs of indices, we obtain 

spinors of rank n — 2, of the form which, in turn, we symmetrize, so 

that symmetrical spinors of rank n - 2 are obtained. By symmetrizing the 

spinors obtained by contracting with respect to two pairs of indices, 

we obtain symmetrical spinors of rank n— 4, and so on. 

We have still to establish the relation between the components of a sym¬ 

metrical spinor of rank 2s and the 2r + l functions f(o), where a = s, s — 1, ... , 

—s. The component 

in whose indices 1 occurs r + o times and 2 s —a times, corresponds to a value 

a of the projection of the spin on the z-axis. For, if we again consider a system 

of n = 2s particles with spin £, instead of one particle with spin 5, the product 

ip1^1... x2P2- •. corresponds to the above component; this product belongs to a 

state in which j + ct particles have a projection of the spin equal to 4, and 

r — era projection of — 4, so that the total projection is i(s + 0) — l(s — cr) = 0. 

Finally, the proportionality coefficient between the above component of 

the spinor and f(o) is chosen so that the equation 

J; \f(a)|2 = Jj^-12 (57.i) 

holds; this sum is a scalar, as it should be, since it determines the probability 

of finding the particle at a given point in space. In the sum on the right-hand 

side, the components with (s + cr) indices 1 occur 

(2QI 

(r+a)!(r—a)! 

times. Hence it is clear that the relation between the functions ip(o) and the 

components of the spinor is given by the formula 

(57-2> 

f-f In er words, the symmei 
tion group (see §98). 

ailed irreducible 
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The relation (57.2) ensures the fulfilment not only of the condition (57.1), 

but also, as we easily see, of the more general condition 

... = S(-1 y-°4,{c)4>{-a), (57.3) 

where 0^*"* and are two different spinors of the same rank, while 

are functions derived from these spinors by formula (57.2); the 

factor ( —1)'-<T is due to the fact that, when all the indices of the spinor com¬ 

ponents are raised, the sign changes as many times as there are twos among 

the indices. 

Formulae (55.5) determine the result of the action of the spin operator 

on the wave functions <p(o). It is not difficult to find how these operators act 

on a wave function written in the form of a spinor of rank 2s. For a spin £, 

the functions >p{£), <fi( — £) are the same as the components i/r1, </(2 of the spinor. 

According to (55.6) and (55.7), the result of the spin operators’ acting on them 

will be 

(W = w, (sjy = -w, (ur = w, 
(4</02 = W, (<V)2 = -W- 

To pass to the general case of arbitrary spin, we again consider a system 

of 2s particles with spin £, and write its wave function as a product of 2s 

spinors. The spin operator of the system is the sum of the spin operators 

of each particle, acting only on the corresponding spinor, the result of this 

action being given by formulae (57.4). Next, returning to arbitrary symmetri¬ 

cal spinors, i.e. to the wave functions of a particle with spin s, we obtain 

(57-5) 

(/W—— = —■ V Zr/8+0 8-0 T 8+0 8-0 } 

Hitherto we have spoken of spinors as wave functions of the intrinsic angular 

momentum of elementary particles. Formally, however, there is no difference 

between the spin of a single particle and the total angular momentum of any 

system regarded as a whole, neglecting its internal structure. It is therefore 

evident that the transformation properties of spinors apply equally to the 

behaviour, with respect to rotations in space, of the wave functions tpjm of any 

particle or system of particles with total angular momentum;, independent of 

whether orbital or spin angular momentum is concerned. There must therefore 

be some definite relation between the laws of transformation for the eigen¬ 
functions 4>jm under rotations of the coordinate system and those for the 

components of a symmetrical spinor of rank 2j. 
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In establishing this relation we must, however, make a clear distinction 

between two aspects of the dependence of the wave functions on the component 

m (for a given value of;). The wave function may be regarded as the probability 

amplitude for various values of m, or may be considered for a given value of m. 

These two aspects have already been discussed at the beginning of §55, 

where we dealt with the eigenfunction SCTCTn of the operator sz which corres¬ 

ponds to sz = cjo- The mathematical difference between them is especially 

clear for a particle of spin r = |. In this case the spin function is, with respect 

to the variable a, a contravariant spinor of rank 1, i.e. must be written in spinor 

notation as . With respect to cto it is therefore a covariant spinor. 

This is evidently a general result: the eigenfunctions ipjm can be put in 

correspondence with the components of a covariant symmetrical spinor of 

rank 2; by means of formulae analogous to (57.2) 

<Pl7 "Vi 
(2;)! 

(j+m)l(j—m)l 
,011... 25 (57.6) 

The eigenfunctions of integral angular momentum ; are spherical har¬ 

monics Yjm- The case; = 1 is of particular importance. The three spherical 

harmonics Y\m are 

y,„ = i / — cos 6 = i / — n„ 
V 4-7T V 4ir 

where n is a unit vector along the radius vector. It is seen that these three 

functions are equivalent, as regards their transformation properties, to the 

components of a vector a, with the relations 

0io = toz, 0ii =--~{ax+iOy), 01,-1 = ——(ax—iay). (57.7) 
V2 V2 

Comparing with (57.6), we see that the components of a symmetrical spinor 

of rank two can be brought into correspondence with the components of the 

t This result can also be regarded somewhat differently. If the wave function 0 of a particle 
in a state with angular momentum j is expanded in terms of the eignfunctions i/ijm: 

ifi = I. am ifijm. 

then the coefficients a,„ are the probability amplitudes for various 
they correspond to the “components” 4,(m) of a spin wave functic 
of transformation. On the other hand, the value of at a given po 
on the choice of the coordinate system, i.e. the sum I amipim mu 
with the scalar (57.3), we see that a,„ must transform as ( — l)i-m 

values of m. In this sense 
un, and this gives their law 
int in space cannot depend 
ist be a scalar. Comparing 
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vector by the formulae 
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0n = rffix + iay), 022 = -{ax-iay), 
V2 V2 

012 =-—a* 0U = -{az-iay), 022 =--{ax + iay). 

Conversely V V 

at = W 2012. =-^.<P22-<Pn), °v = ~ (0n + 022). 
V2 \/2 

(57.8) 

(57.9) 

(57.10) 

It is easily verified that with these definitions we have 

0^"= a.b, (57.11) 

where a and b are vectors corresponding to the symmetrical spinors 0^ and 

0^. It is also not difficult to see that there is a correspondence between the 

spinor and the vectorf 

0?0',v+0v0*v and -^/2a xb. (57.12) 

Formulae (57.10) may be compactly written by means of the Pauli matrices: 

V2 0S = - 
V2 

(57.13) 

the matrix indices of 8 are written as superscript and subscript in corres¬ 

pondence with the position of the spinor indices in 0?. The origin of this 

formula is easily understood by considering the particular case where the 

spinor of rank two 0“ reduces to a product of a spinor of rank one 0" and its 

complex conjugate 0**. Then the quantity is the mean value of the 

spin (for a particle with wave function 0n) and it is therefore evidently a 

vector. 

The relations (57.8) or (57.9) are a particular case of a general rule: any 

symmetrical spinor of even rank 2j, where/ is integral, can be correlated with a 

symmetrical tensor of half the rank (j) which gives zero on contraction with 

respect to any pair of indices; we call this an irreducible tensor. 

This follows from the fact that the numbers of independent components 

of the spinor and of the tensor are the same (2; + 1), as may easily be seen.I 

The relation between the components of the spinor and of the tensor can be 

found by means of formulae (57.8)—(57.1(J), if we consider a spinor of the rank 

concerned as the product of several spinors of rank tw'o, and the tensor as a 

product of vectors. 

t The mixed components of a symmetrical spinor may t 
distinction between „ and (i/. 

1 We can say that the 2j +1 components of an irreduc 
the 2j+ 1 spherical harmonics Yjm, and the 2j + 1 compc 
rank 2 j give the same irreducible representation of the rot! 

be written in the form without 

cible tensor of rank j (an integer), 
onents of a symmetrical spinor of 
:ation group. 
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PROBLEMS 

Problem 1. Rewrite the definition (57.4) of the operator of spin J in terms of the spinor 

components of the vector s. 
Solution. By means of formulae (57.9), which give the relation between the vector s 

and the spinor s~Xu, the definition (57.4) can be written as 

Problem 2. Derive formulae which determine the effect of the spin operator on a vector 
wave function of a particle with spin 1. 

Solution. The relation between the components of the vector function and the com¬ 
ponents of the spinor is given by formulae (57.9), and from (57.5) we have 

= —iL, = 0-, fz'/'z = 0 

(where ip± = or 

I'z'/'I = -I0K, SZlfly = ilflX, Stiff, - 0. 

The remaining formulae are derived from these by cyclic permutation of the suffixes x, y, z. 
They can be written together as 

Si4>k = —ietidipi. 

The complex vector t|l can be put in the form Lp = eia(u + iv), where u and v are real 
vectors, which can be taken to be mutually perpendicular if the common phase a is suitably 
chosen. The two vectors u and v determine a plane which has the property that the spin 
component perpendicular to it can take only the values ± 1. 

§58. The operator of finite rotations 

Let us now return to the transformation of spinors, and show how the 

coefficients of this transformation can in fact be expressed in terms of the 

angles of rotation of the coordinate axes. 

By the definition of the angular momentum operator (in this case, the spin 

operator), 1 +i8f . n . § is the operator of a rotation through an angle h<f> 

about a direction specified by the unit vector n; for application to the wave 

function of a particle with spin i, i.e. a spinor of rank one, we must take 

s = iff in this operator. The operator of a rotation through a finite angle <j> 

about the same direction will be correspondingly given by 

Un = exp(iz‘0n . ff); (58.1) 

cf. (15.13). Like any function of the Pauli matrices (see §55, Problem 1), this 
expression reduces to one that is linear in these matrices: 

£?„ = cos \<f> + zn . a sin %<f>. (58.2) 



216 Spin 

For example, with a rotation about the z-axis, 

IJz(</>) = cos \<f> + ioz sin \<j> 

= /«**/2 0\ 

VO e-*W/ 

§58 

(58.3) 

This means that the components of the spinor are transformed in such 

rotation according to 

01' = 0V4/2, 02' = 02c-i*/2_ 

In particular, in a rotation through an angle 2tr the spinor components change 

sign; spinors of any odd rank must therefore have the same property (cf. the 

end of §55). ' 

Similarly, we can find the matrices of transformations consisting of a 

rotation through an angle 0 about the x-axis or the y-axis: 

Cx(<j>) = 
'cos h<f> i sin \<j>' 

f sin cos \<j>, 

= ( cos b<j> 

— sin \<j> 

sin 

cos J0, 

(58.4) 

We may note the particular case of a rotation through an angle tt about the 

y-axis, for which 

01' = 02, 02' = — 01, 

i.e. 

01' = 0i, 02' = 02. (58.5) 

It is now easy to write down the transformation matrix for any rotation of 

the coordinate axes, as a function of the Eulerian angles which specify the 

rotation. 

A rotation of the axes, defined by the Eulerian angles a, /S, y, is carried out 

in three stages: (1) a rotation through the angle a (0 ^ a < 2-n) about the 

z-axis, (2) a rotation through the angle /S (0 ^ f3 < 7r) about the new position 

of the y-axis (OA7 in Fig. 20, called the line of nodes), (3) a rotation through 

the angle y (0 y =% 2tt) about the resulting final position z of the z-axis.f 

It is evident that the angles a and j3 are the spherical polar angles 0 and 8 

of the new z'-axis with respect to the xyz axes: a = 0, /S = 8. 

In accordance with this manner of rotating the axes, the matrix of the 

t The systems xyz and x'y' 
to the movement of a corksc 

The definition of the Euleri 

are, as always, right-handed, and a positive angle corresponds 
v advanced in the positive direction of the axis of rotation, 
l angles given here (and usual in quantum mechanics) differs 

from that in Mechanics, §35, in that the si- , , 
The angles ct, /9, y are related to the angles 4>, 6, used in Mechanics (not the spherical polar 
angles and’ 0)’ by 4 = a +B = 0, tt = y-i-r- 
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complete transformation is equal to the product of three matrices (58.3) and 

(58-4): _ ...... 
U(«, jS, y) = Uz(y)Uy(p)Uz(a). 

By direct multiplication of the matrices we finally obtain 

U(a, p, y) = (C0S +?)/2 

Spinors of higher ranks are, by definition, transformed as products of 

components of a spinor of rank one. In physical applications, however, we 

are interested in the wave functions rather than the transformation laws 

of the spinors themselves. 

Let the functions (m =j,j— 1, ..., —j) describe, in a coordinate system 

xyz, a state having a definite value of the angular momentum j, and ip3-m- the 

same state for the axes x'y'z'; in the first case m is the value of jz, and in the 

second case m' is the value of jz-. The two sets of functions are connected by 

linear relations, which we write in the form 

4>}m = L DWn.n{a, p, y) (58.7) 

The coefficients form a matrix of order 2j + 1 with respect to m' and 
m, called the finite-rotation matrix £MJ>; its elements are functions of the 
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angles a, /3, y of rotation of the system x'y'z' relative to xyc. 

The finite-rotation matrix can be built up by means of the spinor represen¬ 

tation of the functions >pjm. For j = |, the two functions = - 2) f°rm 

a covariant spinor of rank 1. According to (56.13), its transformation from 

x'y'z' to xyz is effected by the matrix U (58.6), so that Dil,2) = t/.f Its 

elements may be written 

where 

= 

EfU* = e™'rd%%(p)e™*, 

| cos i/3 sin -i/3 (58.8) 

~i -sin I/S cos I/S 

For any value of j, the functions iftjm are related to the components of a 

symmetrical covariant spinor of rank 2j by (57.6), The transformation 

matrix for the components of a spinor of rank 2j is the product of 2j matrices 

^d/2)i each acting on one of the spinor indices. Carrying out the multipli¬ 

cation and returning to the functions tpjm, we find their transformation 

matrix: 

P' Y) = eim'y dm-m(P)eim*’ (58-9) 

the functions d$m (/3) being given byj 

(/S) = r0'4-^)!0'-^)!]1/2 (cos */3)"»'+" 

x (sin mm‘~m ^-m'w+m\cos /S), (58.10) 

x V[(l-cos /S)°-(l+cos jB)*>-»] (58 11) 
\d cos pj 

t Note that the matrix indices in (58.7) are placed in the order that corresponds to multi¬ 
plying the columns of the matrix by the functions ipjm' arranged in a row. In the symbolic 
notation, (58.7) would have to be written ipjm = in accordance with (56.13). 

t The calculations are described by A R. Edmonds, Angular Momentum in Quantum 
Mechanics, Princeton, 1957. The definition of the functions by (58.9) differs from 
that used in Edmonds’s book by the interchange of a and y, this being the more natural 
treatment in the approach given here. 
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are called Jacobi polynomials.f We may note that 

pn(a, f»(_C0S p) = (-l)”P„<6.a>(C0S p). (58.12) 

The functions d(J)m possess a number of symmetry properties which 

might be derived from the expressions (58.11) and (58.12), but it is simpler 

to obtain them directly from the definition as coefficients in the rotational 

transformation. 

The matrix £>^"> is unitary, being the matrix of a rotational transformation. 

Since the transformation inverse to the rotation (a, p, y) is the rotation 

( — y, — p, — a), we have for the real matrix dW the relations 

(58.13) 

The following equations are also valid: 

dm'm(P) = d<-m. -w(/3). (58-14) 

^«(rr) = (-iy+wS«.,-w, 

dH}m(~”) = -m, (58.15) 

0) = hm.m. 

When j = \ these are evident from (58.8); the generalization to arbitrary j is 

evident from the manner of construction of the transformation matrix, 

described above. 

A rotation through an angle n — ft can be carried out as two successive 

rotations through -tt and — /S: 

= S d%m„(Tr)d%,m(-p) 

= (-iy-mdUJnJ-p), 

or, using (58.13), 

d^Jn-p) = {-iy-m'dlj]_m.(p). (58.16) 

The result of two rotations about the same axis is independent of the 

sequence in which they occur. We must therefore arrive at the same result 

by carrying out the rotations through — p and n in the opposite order. 

Comparison of the result with (58.16) gives the relation 

dm-m(P) = (-1)™'-“^. _Jp). (58.17) 

From (58.17), (58.14) and (58.13), it follows that 

= ( - l)m = (-1 )«'-»<fW)m(_jg). (58.18) 

t See §e of the Mathematical Appendices, 
polynomials and the hypergeometric series. 

formula (e.ll), fot 
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Using (58.13)—(58.18), we can deduce various symmetry properties of the 

complete matrix elements D{j)m. In particular, the complex conjugate 

function is given by 

P'V) = ft -y) 

= (58.19) 

Mathematically, the matrices D& give the unitary irreducible represen¬ 

tations of the rotation group having dimension 2j +1 (see §98 below). Hence 

we have immediately the orthonormality relation 

j DT,nS«' ft y) Dnram(a> ft ^ ^ V (58-20) 

where dot = sin P da d^S dy. 

The orthogonality of the functions with respect to the suffixes m and m' is 

ensured by the factor that with respect to the index) arises from 

the functions d\^}m, for which we have 

f i sin /? d/3 = —8,,,,. (58.21) 
J mm 2;i+l 

Lastly, we shall give for reference the expressions for the functions d^,m 

for various particular values of the parameters. For) = 1, we have 

m = 1 0 -1 

1 4(1+cos £) -i- sin B 
V2 

4(1-cos p) 

41^03) = 0 -±-smp 
\ 2 

COS /3 sin p (58.22) 

-1 4(1 — cos p) -— sin B 
V2 

4(1+cos p) 

For integral) = / and m' = 0, formulae (58.10) and (58.11) give 

- (-!)"<.(« - <58'23) 

The derivation of this formula is easily seen from the original definition (58.7). 
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We shall assign the values of the functions on the right of (58.7) to the 

2-axis, on which (forj = /) 

Ylm.(nz.) = H J‘M±Lsm.0. (58.24) 

The function on the left is then the spherical harmonic function Yim()3, a) 

of the spherical polar angles <j> = a, 6 = /3 giving the direction of the s'-axis. 

Substitution of (58.24) in (58.7) leads to 

YlmW, «) = p, y), (58.25) 

which is equivalent to (58.23). 

Lastly, there is the following expression for the function with the maximum 

possible value of m or m': 

<£(/9) = (-l)>-^« 
(2;)! 

-G 
“11/2 

cosi+m 1/3 sin^~TO 1 (58.26) 

§59. Partial polarization of particles 

By a suitable choice of the direction of the 2-axis, we can always cause one 

component (e.g. f2) of a given spinor <//A, the wave function of a particle with 

spin 2', to vanish. This is evident from the fact that a direction in space is 

determined by two quantities (angles), i.e. the number of disposable parameters 

is just equal to the number of quantities (the real and imaginary parts of the 

complex f2) which it is desired to make zero. 

Physically this means that, if a particle with spin 4 (for definiteness, we shall 

speak of an electron) is in a state described by a spin wave function, then there 

is a direction in space in which the component of the particle spin has the 

definite value a = We can say that in such a state the electron is completely 

polarized. 

There are also, however, states of an electron which may be said to be 

partially polarised. Such states are not described by wave functions but only 

by density matrices, i.e. they are mixed states (with respect to spin) (see §14). 

The spin or polarization density matrix of an electron is a spinor pk» of rank 

two normalized by the condition 

p\ = Pli + Ph= 1, (59.1) 

and satisfying the “Hermitian” condition 

(p\)* = p"i. (59.2) 
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For a pure (i.e. completely polarized) spin state of the electron the spinor 

pxy reduces to a product of components of the wave function <: 

p\ = (59.3) 

The diagonal components of the density matrix determine the probabilities 

of the values + t and — A of the s-component of the electron spin. The mean 

value of this component is therefore 

*7 = iiph-ph), 
or, using (59.1), 

ph = 2 + ^7, p2z — b-Sz- (59.4) 

In a pure state the mean value of the quantities s± — sx ± isy is calculated as 

r+ = 4<x*s+4<\ 

sz = 

Since, according to (55.6) and (55.7), the operators s± are given by the 

matrices 

we find that 

r+ = «/,i *</<2, n = 02*0h 

Accordingly we have in a mixed state 

P12 = sZ, P21 = j+- (59.5) 

Using the Pauli matrices, formulae (59.4) and (59.5) can be combined as 

p\ = i(S\ + 2ff\,.s). (59.6) 

Thus all the components of the polarization density matrix of the electron 

are expressed in terms of the mean values of components of its spin vector. In 

other words, the real vector s entirely determines the polarization properties of 

a particle with spin i. In the limit of complete polarization one of the com¬ 

ponents of this vector (with an appropriate choice of the directions of the 

axes) is \ and the other two are zero. In the opposite case of an unpolarized 

state all three components are zero. In the general case of an arbitrary partial 

polarization and any choice of the coordinate system we have 0 < p < 1, 

where 
P = 2^+s-^+r^ 

is a quantity which may be called the degree of polarization of the electron. 
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For a particle of arbitrary spin s, the density matrix is a spinor p^--p„... 

of rank 4s, symmetrical in the first 2s and the last 2s indices and satisfying the 

conditions 

P*--*,... = 1, (59.7) 

(p^-,,...)* = P"-*,.... (59.8) 

To calculate the number of independent components of the density matrix, 

we note that, among the possible sets of values of the indices A, p,... (or p, o,...) 

there are only 2s +1 which are essentially different. Using also the fact that 

the components of the spinor p^—pa... are related by (59.7), we find that the 

number of different components is (2j+1)2—1 = 4s(s+l). Although these 

components are complex, the relation (59.8) shows that this does not increase 

the total number of independent quantities describing the state of partial 

polarization of the particle, which is therefore 4$($+ l).f For comparison, it 

may be remarked that the state of complete polarization of the particle is de¬ 

scribed by only 4s quantities (the 2s +1 complex components of the wave function 

irelated by one normalization condition and containing one common 

phase which is unimportant in the description of the state). 

Like any spinor of rank 4s, the spinor pX/t--pa... is equivalent to a set of 

irreducible tensors of ranks 4s, 4s —2, ... , 0. In the present case there is only 

one tensor of each rank, since, on account of the symmetry properties of the 

spinor p^—pa..., each contraction of it can be carried out in only one way: 

with respect to any one of the indices A, p, ... , and one of p, a,.... In addition, 

the scalar (tensor of rank 0) does not appear, reducing to unity by virtue of the 

condition (59.7). 

§60. Time reversal and Kramers’ theorem 

The symmetry of motion with respect to a change in the sign of the time is 

expressed in quantum mechanics by the fact that, if >p is the wave function of 

a stationary state of the system, the “time-reversed” wave function (which we 

denote by <//rev) describes a possible state with the same energy. At the end of 

§18 it has been pointed out that <//rev is the same as the complex conjugate 

function ip*. In this simple form the statement applies to wave functions where 

the spin of particles is neglected. When spin is present, a refinement is necessary. 

Let us take the wave function of a particle of spin s in the form of the contra- 

variant spinor i(of rank 2r). On taking the complex conjugate function 

vve obtain a set of quantities which are transformed as components of a 

covariant spinor. Hence the pperation of time reversal corresponds to a change 

from the wave function 0A/*— to a new wave function whose covariant com¬ 
ponents are given by 

■C'. (60.1) 

f When these quantities are given, so are the mean values of the components of the vector s 
and all their powers and products 2, 3, 2s at a time, which do not reduce to lower powers 
(see §55, Problem 3). 
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For a given set of values of the indices A, y., ... , the components of covariant 

and contravariant spinors correspond to values of the angular-momentum 

component which differ in sign. In terms of the functions ipSa> therefore, time 

reversal corresponds to a change from ipSa to ips,-a< as it should, since a change 

in the sign of the time changes the direction of the angular momentum. The 

exact relation is given by (60.1): 

1)S_0'- (60.2) 

Thus the change -> 0S(T* required by the operation of time reversal 

signifies the changef 

</C-c = hSi-lY-*- (60.3) 

When this operation is repeated, we have 

. 'I’s.+'hM-i)'-’1)8*. 

Thus a twofold time reversal restores the wave function to its original value 

only if the spin is integral; if the spin is half-integral, the sign of the wave 

function is changed. 

Let us consider an arbitrary system of interacting particles. The orbital and 

spin angular momenta of such a system are not in general separately conserved 

w'hen relativistic interactions are taken into account. Only the total angular 

momentum J is conserved. If there is no external field, each energy level of the 

system ha= (27+ l)-fold degeneracy. When an external field is applied, the 

degeneracy is removed. The question arises whether the degeneracy can be 

removed completely, i.e. so that the system has only simple levels. This is 

closely related to the symmetry with respect to time reversal. 

In classical electrodynamics the equations are invariant with respect to a 

change in the sign of the time, if the electric field is left unchanged and the sign 

of the magnetic field is reversed. J This fundamental property of motion must 

be preserved in quantum mechanics. Hence, not only in a closed system but in 

any external electric field (there being no magnetic field), there is symmetry 

with respect to time reversal. 

The wave functions of the system are spinors i/A''---, whose rank n is twice 

the sum of the spins sa of all the particles (n = 2 2 r0); this sum may not be 

equal to the total spin 5 of the system. 

According to what was said above, we can assert that, in any electric field, 

the wave function and its time reversal must correspond to states with the same 

energy. If a level is non-degenerate, it is necessary that these states should be 

identical, i.e. the corresponding wave functions must be the same apart from a 

f Note that the rule for the complex conjugate of a spherical harmonic function, according 
to (28 9) coincides with the general rule (60.3). 

t See, for example, Fields, §17, and the end of §111 below. 
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constant factor (both, of course, being expressed as similar (covariant or contra- 

variant) spinors). 

We write <//^v = or, by (60.1), 

= CVv.., (60.4). 

where C is a constant. 

Taking the complex conjugate of both sides of this equation, we obtain 

We lower the indices on the left-hand side of the equation and correspond¬ 

ingly raise them on the right. This means that we multiply both sides of the 

equation by gasgpy.... and sum over the indices A, /u,... ; on the right-hand side 

we must use the fact that 

SaXSfifj. - =(-l)^V- • 
As a result we have 

^... = C*(-l)"^ ■*. 

Substituting $*■»■■■* from (60.4), we find 

This equation must be satisfied identically, i.e. we must have (— l)nCC* = 1. 

Since, however, |C|2 is always positive, it is clear that this is possible only 

for even n (i.e. for integral values of the sum 2 sa). For odd n (half-integral 

values of 2 sa) the condition (60.4) cannot be fulfilled.f 

Thus we reach the result that an electric field can completely remove the 

degeneracy only for a system with an integral value of the sum of the spins of 

the particles. For a system with a half-integral value of this sum, in an 

arbitrary electric field, all the levels must be doubly degenerate, and complex 

conjugate spinors correspond to two different states with the same energy]; 

(H. A. Kramers 1930). 

One further, mathematical, comment may be made. A relation of the form 

(60.4) with a real constant. C is mathematically the condition that the com¬ 

ponents of the spinor may be put in correspondence with a set of real 

quantities, and may be called the condition for the spinor to be “real”.|| The 

impossibility of fulfilling the condition (60.4) for odd n signifies that no real 

quantity can correspond to a spinor of odd rank. For even n, on the other 

hand, the condition (60.4) can be satisfied, and C can be real. In particular, a 

t When the sum X s„ is integral (or half-integral), all possible values of the total spin S of 
the system are also integral (or half-integral). 

I If the electric field possesses a high (cubic) symmetry, fourfold degeneracv may occur 
(see §99, including the Problem). 
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real vector can correspond to a symmetrical spinor of rank two if the condition 

(60.4) is satisfied with C = 1: 

^* = 'Pxm 

(as is easily seen by means of (57.8) and (57.9)). The condition (60.4) with 

C = 1 is in fact the condition for a symmetrical spinor of any even rank to be 

“real”. 



CHAPTER IX 

IDENTITY OF PARTICLES 

§61. The principle of indistinguishability of similar particles 

In classical mechanics, identical particles (electrons, say) do not lose their 

“individuality”, despite the identity of their physical properties. For we 

can imagine the particles at some instant to be “numbered”, and follow the 

subsequent motion of each of these in its path; then at any instant the particles 

can be identified. 

In quantum mechanics the situation is entirely different. We have 

already mentioned several times that, by virtue of the uncertainty principle, 

the concept of the path of an electron ceases to have any meaning. If the 

position of an electron is exactly known at a given instant, its coordinates have 

no definite values even at the next instant. Hence, by localizing and num¬ 

bering the electrons at some instant, we make no progress towards identifying 

them at subsequent instants; if we localize one of the electrons, at some other 

instant, at some point in space, we cannot say which of the electrons has 

arrived at this point. 

Thus, in quantum mechanics, there is in principle no possibility of separ¬ 

ately following each of a number of similar particles and thereby distinguish¬ 

ing them. We may say that, in quantum mechanics, identical particles 

entirely lose their “individuality”. The identity of the particles with respect 

to their physical properties is here very far-reaching: it results in the complete 

indistinguishability of the particles. 

This principle of the indistinguishability of similar particles, as it is called, 

plays a fundamental part in the quantum theory of systems composed of 

identical particles. Let us start by considering a system of only two particles. 

Because of the identity of the particles, the states of the system obtained 

from each other by merely interchanging the two particles must be com¬ 

pletely equivalent physically. This means that, as a result of this inter¬ 

change, the wave function of the system can change only by an unimportant 

phase factor. Let £2) be the wave function of the system, & and £2 con¬ 

ventionally denoting the three coordinates and the spin projection for each 

particle. Then we must have 

m.h) = 
where a is some real constant. By repeating the interchange, we return to 

the original state, while the function </< is multiplied by e2'“. Hence it follows 
that «*■'“ = 1, or «*“ = ±1. Thus 

= iiKfi.fi). 
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We thus reach the result that there are only two possibilities: the wave 

function is either symmetrical (i.e. it is unchanged when the particles are inter¬ 

changed) or antisymmetrical (i.e, it changes sign when this interchange is 

made). It is obvious that the wave functions of all the states of a given system 

must have the same symmetry; otherwise, the wave function of a state which 

was a superposition of states of different symmetry would be neither sym¬ 

metrical nor antisymmetrical. 

This result can be immediately generalized to systems consisting of any 

number of identical particles. For it is clear from the identity of the particles 

that, if any pair of them has the property of being described by, say, sym¬ 

metrical wave functions, any other pair of such particles has the same pro¬ 

perty. Hence the wave function of identical particles must either be un¬ 

changed when any pair of particles are interchanged (and hence when the 

particles are permuted in any manner), or change sign when any pair are 

interchanged. In the first case we speak of a symmetrical wave function, and in 

the second case of an antisymmetrical one. 

The property of being described by symmetrical or antisymmetrical wave 

functions depends on the nature of the particles. Particles described by 

antisymmetrical functions are said to obey Fermi-Dirac statistics (or to be 

fermions), while those which are described by symmetrical functions are 

said to obey Bose-Einstein statistics (or to be £o$o«$).f 

From the laws of relativistic quantum mechanics it can be shown (see 

RQT, §25) that the statistics obeyed by particles is uniquely related to their 

spin: particles with half-integral spin are fermions, and those with integral 

spin are bosons. 

The statistics of complex particles is determined by the parity of the 

number of elementary fermions entering into their composition. For an 

interchange of two identical complex particles is equivalent to the simul¬ 

taneous interchange of several pairs of identical elementary particles. The 

interchange of bosons does not change the wave function, while the inter¬ 

change of fermions changes its sign. Hence complex particles containing 

an odd number of elementary fermions obey Fermi statistics, while those 

containing an even number obey Bose statistics. This result is, of course, 

in agreement with the above rule, since a complex particle has an integral 

or a half-integral spin according as the number of particles with half-integral 

spin entering into its composition is even or odd. 

Thus atomic nuclei of odd atomic weight (i.e. containing an odd number of 

neutrons and protons) obey Fermi statistics, and those of even atomic weight 

obey Bose statistics. For atoms, which contain both nuclei and electrons, the 

statistics is evidently determined by the parity of the sum of the atomic 

weight and the atomic number. 

t This terminology refers to the statistics which describes a perfect gas composed of 
particles with antisymmetrical and symmetrical wave functions respectively. In actual fact 
we are concerned here not only with a different statistics, but essentially with a different 
mechanics Fermi statistics was proposed by E. Fermi for electrons in 1926, and its relation 
to quantum mechanics was elucidated by P. A. M. Dirac (1926). Bose statistics was proposed 
by S. N. Bose for light quanta, and generalized by A. Einstein (1924). 
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Let us consider a system composed of N identical particles, whose mutual 

interaction can be neglected. Let </i2, ... be the wave functions of the vari¬ 

ous stationary states which each of the particles separately may occupy. 

The state of the system as a whole can be defined by giving the numbers of 

the states which the individual particles occupy. The question arises how 

the wave function f of the whole system should be constructed from the 

functions </i2, ... . 

hetp1,p2, ... ,pN be the numbers of the states occupied by the individual 

particles (some of these numbers may be the same). For a system of bosons, 

the wave function </r(£j, £2, •••, €n) is given by a sum of products of the form 

(for). (6U) 

with all possible permutations of the different suffixes p!, p2,... ; this.sum 

clearly possesses the required symmetry property. For example, for a 

system of two particles in different states (pi # pz), 

lKft.f.) = (61.2) 

The factor l/\/2 is introduced for normalization purposes; all the functions 

ipi, fa, ... are orthogonal and are supposed normalized. 

In the general case of a system containing an arbitrary number N of 

particles, the normalized wave function is 

/iV.liVJ \ 1/2 
tow - = ( 2 to,(fi)to.(fc) - iM&). (6i.3) 

where the sum is taken over all permutations of the different suffixes 

pi, p2, ■■■, Pn and the numbers Nf show how many of these suffixes have the 

same value i (with £ Nt = N). In the integration of |</i|2 over £i, £2. •••. £v, 

all terms vanish except the squared modulus of each term of the sum;f 

since the total number of terms in the sum (61.3) is evidently ..., 

the normalization factor in (61.3) is obtained. 

For a system of fermions, the wave function </r is an antisymmetrical 

combination of the products (61.1). For a system of two particles we have 

m. (») = i)to.(&) - to.(&)to,(fi)]/ V2. (61.4) 

For the general case of N particles, the wave function can be written in the 

t The integration over f is conventionally understood 
over the coordinates and summation over <j 

in §§63—65 as including integratic 
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form of a determinant 

§62 Identity of Particles 

l) *•,(« • •• <Mfw) 

^(fl) ^(fs) ■ ... ^(fAr) 

- 

Here an interchange of two particles corresponds to an interchange of two 

columns of the determinant, as a result of which the latter changes sign. 

The following important result is a consequence of the expression 

(61.5). If among the numbers pi, pi, ... two are the same, two rows of the 

determinant are the same, and it therefore vanishes identically. It will be 

different from zero only when all the numbers pi,p2, ... are different. Thus, 

in a system consisting of identical fermions, no two (or more) particles can 

be in the same state at the same time. This is called Pauli's principle (1925). 

§62. Exchange interaction 

The fact that Schrodinger’s equation does not take account of the spin 

of particles does not invalidate this equation or the results obtained by means 

of it. This is because the electrical interaction of the particles does not 

depend on their spins.f Mathematically, this means that the Hamiltonian 

of a system of electrically interacting particles (in the absence of a magnetic 

field) does not contain the spin operators, and hence, when it is applied to the 

wave function, it has no effect on the spin variables. Hence Schrodinger’s 

equation is actually satisfied by each component of the wave function; in 
other words, the wave function of the system of particles can be written in 

the form of a product 

Hh, 6) = *2, •••). 

where the function $ depends only on the coordinates of the particles and the 

function y only on their spins. We call the former a coordinate or orbital wave 

function, and the latter a spin wave function. Schrodinger’s equation essen¬ 

tially determines only the coordinate function <f>, the function y remaining 

arbitrary. In any instance where we are not interested in the actual spin of 

the particles, we can therefore use Schrodinger’s equation and regard as the 

wave function the coordinate function alone, as we have done hitherto. 

However, despite the fact that the electrical interaction of the particles 

is independent of their spin, there is a peculiar dependence of the energy 

t This is true only so long as we consider the non-relativistic approximation. When 
relativistic effects are taken into account, the interaction of charged particles does depend 
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of the system on its total spin, arising ultimately from the principle of 

indistinguishability of similar particles. 

Let us consider a system consisting of only two identical particles. By 

solving Schrod'nger’s equation we find a series of energy levels, to each of 

which there corresponds a definite symmetrical or antisymmetrical co¬ 

ordinate wave function <£(rx, r2). For, by virtue of the identity of the particles, 

the Hamiltonian (and therefore the Schrodinger’s equation) of the system 

is invariant with respect to interchange of the particles. If the energy levels 

are not degenerate, the function <£(rx, r2) can change only by a constant 

factor when the coordinates rx and r2 are interchanged; repeating this 

interchange, we see that this factor can only bef ± 1. 

Let us first suppose that the particles have zero spin. The spin factor for 

such particles is absent altogether, and the wave function reduces to the 

coordinate function <£(rx, r2), which must be symmetrical (since particles with 

zero spin obey Bose statistics). Thus not all the energy levels obtained by a 

formal solution of Schrodinger’s equation can actually exist; those to which 

antisymmetrical functions correspond are not possible for the system under 

consideration. 

The interchange of two similar particles is equivalent to the operation of 

inversion of the coordinate system (the origin being taken to bisect the line 

joining the two particles). On the other hand, the result of inversion is to 

multiply the wave function $ by ( — l)1, where / is the orbital angular momen¬ 

tum of the relative motion of the two particles (see §30). By comparing 

these considerations with those given above, we conclude that a system of two 

identical particles with zero spin can have only an even orbital angular mo¬ 

mentum. 

Next, let the system consist of two particles with spin i (say, electrons). 

Then the complete wave function of the system (i.e. the product of the 

function <£(rx, r2) and the spin function x(crx, °z)) must certainly be anti¬ 

symmetrical with respect to an interchange of the two particles. Hence, if 

the coordinate function is symmetrical, the spin function must be anti¬ 

symmetrical, and vice versa. We shall write the spin function in spinor form, 

i.e. as a spinor xkt“ of rank two, each of whose indices corresponds to the 

spin of one of the electrons. A symmetrical spinor (xA" = xuX) corresponds 

to a function symmetrical with respect to the spins of the two particles, 

and an antisymmetrical spinor (xkli = ~ X"A)t0 an antisymmetrical func¬ 

tion. We know, however, that a symmetrical spinor of rank two describes a 

system with total spin unity, while an antisymmetrical spinor reduces to a 

scalar, corresponding to zero spin. 

Thus we reach the following conclusion. The energy levels to which there 

correspond symmetrical solutions <£(rx, r2) of Schrodinger’s equation can 

actually occur when the total spin of the system is zero, i.e. when the spins 

of the two electrons are “antiparallel”, giving a sum of zero. The values of 

the energy belonging to antisymmetrical functionsr2), on the other hand, 

t When there is degeneracy we can always choose linear combinations of the functions 
belonging to a given level, such that this condition is again satisfied. 



232 Identity of Particles §62 

require a value of unity for the total spin, i.e. the spins of the two electrons 

must be “parallel’’. 

In other words, the possible values of the energy of a system of electrons 

depend on their total spin. For this reason we can speak of a peculiar inter¬ 

action of the particles which results in this dependence. This is called 

exchange interaction. It is a purely quantum effect, which entirely vanishes 

(like the spin itself) in the passage to the limit of classical mechanics. 

The following situation is characteristic of the case of a system of two 

electrons which we have discussed. To each energy level there corresponds 

one definite value of the total spin, 0 or 1. This one-to-one correspondence be¬ 

tween the spin values and the energy levels is preserved, as we shall see below 

(§63), in systems containing any number of electrons. It does not hold, 

however, for systems composed of particles whose spin exceeds 

Let us consider a system of two particles, each with arbitrary spin 5. Its 

spin wave function is a spinor of rank 4r: 

half (2i) of whose indices correspond to the spin of one particle, and the other 

half to that of the other particle. The spinor is symmetrical with respect to 

the indices in each group. An interchange of the two particles corresponds 

to an interchange of all the indices A, p,... of the first group with the indices 

p, a, ... of the second group. In order to obtain the spin function of a state of 

the system with total spin S, we must contract this spinor with respect to 

2s—S pairs of indices (each pair containing one index from A, p, ... and one 

from p, a, ...), and symmetrize it with respect to the remainder; as a result 

we obtain a symmetrical spinor of rank 25. However, the contraction of a 

spinor with respect to a pair of indices means, as we know, the construction 

of a combination antisymmetrical with respect to these indices. Hence, 

when the particles are interchanged, the spin wave function is multiplied 

by ( —l)2s-s. 

On the other hand, the complete wave function of a system of two particles 

must be multiplied by ( — l)2s when they are interchanged (i.e. by +1 for 

integral s and by —1 for half-integral s). Hence it follows that the symmetry 

of the coordinate wave function with respect to an interchange of the particles 

is given by the factor ( — l)s, which depends only on 5. Thus we reach the 

result that the coordinate wave function of a system of two identical particles 

is symmetrical when the total spin is even, and antisymmetrical when it is 

odd. 
Recalling what was said above concerning the relation between interchange 

of the particles and inversion of the coordinate system, we conclude also 

that, when the spin 5 is even (odd), the system can have only an even (odd) 

orbital angular momentum. 
We see that here also a certain dependence is revealed between the possible 

values of the energy of the system and the total spin, but this dependence is 
not necessarily one-to-one. The energy levels to which there correspond 
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symmetrical (antisymmetrical) coordinate wave functions can occur for any 

even (odd) value of S. 

Let us calculate how many different states of the system there are with even 

and odd S. The quantity S takes 2$ + l values: 2s, 2s— 1, .... 0. For any 

given S there are 25+1 states differing in the value of the ^-component of the 

spin ((2$+l)2 different states altogether). Let s be -'ntegral. Then, among 

the 2i + l values of 5, $ + 1 are even and odd. The total number of states 

with even 5 is equal to the sum 

.it ,.(2S+0-(WX*+i); 

the remaining s(2$ + l) states have odd 5. Similarly, we find that, when s is 

half-integral, there are $(2i + l) states with even values of 5 and (r + l)(2r + l) 

with odd values. 

PROBLEMS 

Problem 1. Determine the exchange splitting of the energy levels of a system of two 
electrons, regarding the interaction of the electrons as a perturbation. 

Solution. Let the particles be (when their interaction is neglected) in states with orbital 
wave functions +(r) and ^a(r). The states of the system with total spin S = 0 and S = 1 
correspond to symmetrized and antisymmetrized products respectively: 

•t> = —[t4i(ri)tJ2(r2) ± +(r2)<i2(ri)]. 
V 2 

The mean value of the operator of the interaction U(r2—n) of the particles in these states 
is A ± J, where 

A = \ j'uWrOl^ro^d^dK.. 

J = j j U4l(r1)tJ,*(r2)+(r2)+*(ri) dP, dP2, 

the latter being called the exchange integral. Omitting the additive constant A, which is not 
an exchange term, we therefore find the level shifts AEo = J, A£i = —J (where the suffix 
indicates the value of 5). These quantities can be represented as the eigenvalues of the spin 
exchange operatorf 

Pexch = -*7(1+41!. Is); (1) 

the eigenvalues of the product si . S2 are derived in §55, Problem 2. 
If the electrons belong to different atoms, for example, the exchange integral decreases 

exponentially with increasing distance R between the atoms. It is clear from the form of the 
integrand that this integral is determined by the “overlap” of the wave functions of the states 
0i(r,) and +(r2); using the asymptotic law of decrease of the wave functions of states of a 
discrete spectrum (cf. (21.6)), we find that 

J ~ Kl _ v'(2m|£i|);/i, = v(2m\E2\)lh, 

where Ei and Ez are the energy levels of the electron in the two atoms. 

Problem 2. The same as Problem 1, but for a system of three electrons. 

Solution. Using formula (1), Problem 1, we can write the operator of pairwise exchange 
interaction in a systerh of three electrons as 

Peso = - SJa6(J + 2s„.se), (1) 

t First us sed by Dirac. 
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where the summation is over pairs of particles 12, 13 and 23. The matrix elements of the 
operators sa . si, between states with different values of the pair of numbers c0, ob are given 
by formulae (55.6) as 

<J. -1. 

We first determine the energy corresponding to the greatest possible value of the total-spin 
component Ms = °i + C2+°3, viz. Ms = 'ill. This gives the energy of the state with total 
spin S = 3/2. On calculating the corresponding diagonal matrix element of the operator 
(1), we find 

hEw = -(Jn+Ja+Jiz). 

Next we take states with Ms — i- This value can occur in three ways, depending on which 
of the numbers oi, <72, 03 is — J (the other two being J). Thus for these states we should 
have a secular equation of the third degree. The calculation can, however, be simplified 
immediately by noting that one of the roots of this equation must correspond to the energy 
already found for the state with 5 = 3/2, and the secular equation must therefore have the 
factor AE—AE3/2. In this way the calculation of the free term in the cubic equation can 
be avoided-t 

The leading terms of the equation are found to be 

(AE)3 +(/i2 + /13 + J 23) (AE)2 + [/12/13 +/12/23+J13 J 23 — 

-(/l22 + /l32 + /232)]AE+ ... = 0. 

Dividing by &E + Ji2+Ji3+Jz3, we find the two energy levels corresponding to states with 
spins S = i : 

A£i,s = ± [(^i22+2i33+2233)-JizJn—JizJza-JisJii]1’2. 

Thus there are three energy levels, in accordance with the calculation in §63, Problem 1. 

Problem 3. In which states can the 8Be nucleus decay into two a-particles ? 

SOLUTION. Since the oc-particle has no spin, a system of two a-particles can only have an 
even orbital angular momentum (equal to the total angular momentum), and its states are 
even.' The decay in question is therefore possible only from even states of the 8Be nucleus 
with even total angular momentum. 

§63. Symmetry with respect to interchange 

By considering a system composed of only two particles, we have been able 

to show that its coordinate wave functions r2) for the stationary states 

must be either symmetrical or antisymmetrical. In the general case of a sys¬ 

tem of an arbitrary number of particles, the solutions of Schrodinger’s 

equation (the coordinate wave functions) need not necessarily be'either sym¬ 

metrical or antisymmetrical with respect to the interchange of any pair of 

particles, as the complete wave functions (which include the spin factor) 

must be. This is because an interchange of only the coordinates of two par¬ 

ticles does not correspond to a physical interchange of them. The physical 

identity of the particles here leads only to the fact that the Hamiltonian of the 

system is invariant with respect to the interchange of the particles, and hence, 

if some function is a solution of Schrodinger’s equation, the functions ob¬ 

tained from it by various interchanges of the variables will also be solutions. 

Let us first of all make some remarks regarding interchanges in general. 

f This device is particularly useful in similar calculations for systems with a larger number 
of particles. 
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In a system of N particles, N\ different permutations in all are possible. If 

we imagine all the particles to be numbered, each permutation can be 

represented by a definite sequence of the numbers 1, 2, 3. Every such 

sequence can be obtained from the natural sequence 1, 2, 3, ... by successive 

interchanges of pairs of particles. The permutation is called even or odd, 

according as it is brought about by an even or odd number of such inter¬ 

changes. We denote by P the operators of permutations of N particles, and 

introduce a quantity SP which is +1 if P is an even permutation and - 1 

if it is odd. If (j> is a function symmetrical with respect to all the particles, 

we have 

H = 

while, if <f> is antisymmetrical with respect to all the particles, then 

P<f> = hr4. 

From an arbitrary function <£(1^, r2,... , rA.), we can form a symmetrical 

function by the operation of symmetrization, which can be written 

&ym = constant x E P<j>, (63.1) 

where the summation extends over all possible permutations. The formation 

of an antisymmetrical function (an operation sometimes called alternation) 

can be written as 

= constant x E SPP<j>. (63.2) 

Let us return to considering the behaviour, with respect to permutations, 

of the wave functions ^ of a system of identical particles.f The fact that the 

Hamiltonian i? of the system is symmetrical with respect to all the particles 

means, mathematically, that H commutes with all the permutation operators 

P. These operators, however, do not commute with one another, and so 

they cannot be simultaneously brought into diagonal form. This means that 

the wave functions <£ cannot be so chosen that each of them is either symmetri¬ 

cal or antisymmetrical with respect to all interchanges separately. | 

Let us try to determine the possible types of symmetry of the functions 

r2,... , rN) of N variables (or of sets of several such functions) with 

respect to permutations of the variables. The symmetry must be such that 

it cannot be increased, i.e. such that any additional operation of symmetri¬ 

zation or alternation, on being applied to these functions, would reduce them 

either to linear combinations of themselves or to zero identically. 

We already know two operations which give functions with the greatest 

t From the mathematical point of view, the problem is to find irreducible representations 
of the permutation group. A detailed account of the mathematical theory of permutation 
(or symmetry) groups is given by H. Weyl, The Theory of Groups and Quantum Mechanics, 
Methuen, London 1931; M. Hamermesh, Group Theory and its Application to Physical 
Problems, Pergamon, London, 1962; I. G. Kaplan, Symmetry of Many-Electron Systems, 
Academic Press, New York, 1974. 

t Except for a system of only two particles, where there is a single interchange operator, 
multaneously with the Hamiltonian. which can be brought into diagonal 
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possible symmetry': symmetrization with respect to all the variables, and 

alternation with respect to all the variables. These operations can be general¬ 

ized as follows. 

We divide the set of all the N variables rl5 r2, ... , rjV (or, what is the same 

thing, the suffixes 1, 2, 3, ... , N) into several sets, containing Nlt N2, ... ele¬ 

ments (variables); Nx+Ns+ ... = N. This division can be conveniently 

shown by a diagram (known as a Young diagram) in which each of the num¬ 

bers Nu .V2,... is represented by a line of several cells (thus, Fig. 21 gives a 

diagram of the divisions 6+4+4+3+3+1+1 and 7+5+5 + 3 + 1+1 for 

N = 22); one of the numbers 1, 2, 3, ... is to be placed in each square. If 

we place the lines in order of decreasing length (as in Fig. 21), the diagram 

contains not only successive horizontal rows, but also vertical columns. 

Fic. 21 

Let us symmetrize an arbitrary function <£(ri, r2, ..., r.v) with respect to the 

variables in each row. The alternation operation can then be performed only 

with respect to the variables in different rows; alternation with respect to a 

pair of variables in the same row clearly gives zero identically. 

Having chosen one variable from each row, we can, without loss of gener¬ 

ality, regard them as being in the first cells in each row (after symmetrization, 

the order of the variables among the cells in each row is immaterial); let us 

alternate with respect to these variables. Having then deleted the first column, 

we alternate with respect to variables chosen one from each row in the thus 

“curtailed” diagram; these variables can again be regarded as being in the 

first cells of the “curtailed” rows. Continuing this process, we finally have 

the function first symmetrized with respect to the variables in each row and 

then alternated with respect to the variables in each column. After alternation, 

of course, the function in general ceases to be symmetrical with respect to 

the variables in each row. The symmetry is preserved only with respect to 

the variables in the cells of the first row which project beyond the other rows. 

Having distributed the N variables in various ways among the rows of a 

Young diagram (the distribution among the cells in each row is immaterial), 

we thus obtain a series of functions, which are transformed linearly into one 

another when the variables are permuted in any manner.f However, it must 

t It would be possible to perform the symmetrization and alternation in the reverse order: 
to alternate with respect to the variables in each column, and then to symmetrize with respect 
to those in the rows. This, however, would give effectively the same thing, since the functions 
obtained by the two methods are linear combinations of one another. 
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be emphasized that not all these functions are linearly independent; the 

number of independent functions is in general less than the number of possi ble 

distributions of the variables among the rows of the diagram. We shall not 

pause here, however, to discuss this more closely.f 

Thus any Young diagram determines some type of symmetry of functions 

with respect to permutations. By constructing all the possible Young dia¬ 

grams (for a given N), we find all possible types of symmetry. This amounts 

to dividing the number N in all possible ways into a sum of smaller terms, 

including the number N itself; thus for N = 4 the possible partitions are 

4, 3 + 1, 2+2, 2 + 1+1, 1 + 1+1+1. 

To each energy level of the system we can make correspond a Young dia¬ 

gram which determines the permutational symmetry of the appropriate 

solutions of Schrodinger’s equation; in general, several different functions 

correspond to each value of the energy, and these are transformed linearly into 

each other by permutations. The existence of this “permutational de¬ 

generacy” is related to the fact that the operators P each commute with the 

Hamiltonian but not with one another (see the middle of §10). However, it 

must be emphasized that this does not signify any additional physical 

degeneracy of the energy levels. All these different coordinate wave functions, 

multiplied by the spin functions, enter into a single definite combination— 

the complete wave function—which satisfies (according to the spin of the 

particles) the condition of symmetry or antisymmetry. 

Among the various types of symmetry there are always (for any given N) 

two to each of which only one function corresponds. One of these cor¬ 

responds to a function symmetrical with respect to all the variables, and the 

other to one which is similarly antisymmetrical; in the first case, the Young 

diagram consists of a single row of N cells, and in the second case of a single 

column. 

Let us now consider the spin wave functions x(CTi> ff2> ••• > °a)- Their kinds 

of symmetry with respect to permutations of the particles are given by the 

same Young diagrams, with the components of the spins of the particles 

taking the part of variables. There arises the questioh of what diagram must 

correspond to the spin function for a given diagram of the coordinate func¬ 

tion. Let us first suppose that the spin of the particles is integral. Then the 

complete wave function ip must be symmetrical with respect to all the particles. 

For this to be so, the symmetry of the spin and coordinate functions must be 

given by the same Young diagram, and the complete wave function >p is 

expressed as definite bilinear combinations of the two; vve shall not here pause 

to examine more closely the problem of constructing these combinations. 

Next, suppose the spin of the particles to be half-integral. Then the com¬ 

plete wave function must be antisymmetrical with respect to all the particles. 

It can be shown that, for this to be so, the Young diagrams for the coordinate 



238 Identity of Particles §63 

and spin functions must be in dual relation, i.e. obtained from each other by 

interchanging rows and columns (as in the two diagrams shown in Fig. 21). 

Let us consider in more detail the important case of particles with spin £ 

(electrons, for instance). Each of the spin variables olt o2, ... here takes only 

the two values Since a function antisvmmetrical with respect to any 

two variables vanishes when these variables take the same value, it is clear 

that the function y can be alternated only with respect to pairs of variables; 

if we alternate with respect to even three variables, two of them must always 

take the same value, so that we have zero identically. 

Thus, for a system of electrons, the Young diagrams for the spin functions 

can contain columns of only one or two cells (i.e. only one or two rows); in 

the Young diagrams for the coordinate functions, the same is true of the 

number of columns. The number of possible types of permutational sym¬ 

metry for a system of N electrons is therefore equal to the number of possible 

partitions of the number N into a sum of ones and twos. When N is even, 

this number is £AT+1 (partitions with 0, 1, twos), while if N is odd 

it is $(N+1) (partitions with 0, 1, ..., i{N— 1) twos). Thus, for instance, 

Fig. 22 shows the possible Young diagrams (coordinate and spin) for N = 4. 

™ F3 E 
5=2 5=1 5=0 

Fic. 22 

It is easy to see that each of these types of symmetry (i.e. each of the 

Young diagrams) corresponds to a definite total spin S of the system of 

electrons. We shall consider the spin functions in spinor form, i.e. as spinors 

0f rank N, whose indices (each of which corresponds to the spin of 

an individual particle) will be the variables that are arranged in the cells of 

the Young diagrams. Let us examine the Young diagram consisting of two 

rows with Nx and N2 cells {Nx+N2 = N, and Nx > N2). In each of the first 

N2 columns there are two cells, and the spinor must be antisymmetrical with 

respect to the corresponding pairs of indices. With respect to the indices in 

the last n = N1 — N2 cells in the first row, however, it must be symmetrical. 

As we know, such a spinor of rank N reduces to a symmetrical spinor of rank 

n, to which there corresponds a total spin S = \n. Returning to the Young 

diagrams for the coordinate functions, we can say that the diagram with n 

rows each of one cell corresponds to a total spin S = \n. For even N, the 

total spin can take integral values from 0 to %N, while for odd Ar|it can take 

half-integral values from i to iN, as it should. 
We emphasize that this one-to-one correspondence between the Young 
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diagrams and the total spin holds only for systems of particles with spin £; 

we have seen this, for a system of two particles, in the previous section. For a 

system of A' particles with spin s, the spin wave function is made up of a 

product of N symmetrical spinors of rank 2s, i.e. is a spinor of rank 2Ns. If 

this spinor is symmetrized according to a particular Young diagram of N 

cells, we can usually construct from the independent components of the 

symmetrized spinor several sets of linear combinations, each set corres¬ 

ponding to a different total spin 5 of the system. 

In the same way as the Young diagram for the spin functions of particles 

with spin | cannot contain columns of more than two cells, so for particles 

with any spin 5 the columns cannot contain more than 2s + 1 cells. 

If the number N of particles in the system is an integral multiple of 2s + 1, 

the possible Young diagrams include a rectangle with 2r+l cells in each 

column. This corresponds to one definite value of the total spin, S = 0. 

Hence we can conclude that the same value of S corresponds to any two 

(spin) Young diagrams which can be fitted together to form a rectangle of 

height 2s+l.f This is a simple consequence of the fact that the addition 

of two angular momenta can give zero only if they have the same absolute 

magnitude. 

To conclude this section, let us return to the fact already mentioned in the 

footnote at the end of §20 that, for a system of several identical particles, we 

cannot assert that the wave function of the stationary state of lowest energy is 

without nodes. We can now amplify this statement and elucidate its origin. 

The wave function (that is, the coordinate function), if it has no nodes, 

must certainly be symmetrical with respect to all the particles; for, if it were 

antisymmetrical with respect to the interchange of any pair of particles 1, 2, it 

would vanish for ri = r2. If, however, the system consists of three or more 

electrons, no completely symmetrical coordinate wave function is possible 

(the Young diagram of the coordinate function cannot have rows with more 

than two cells). Thus, although the solution of Schrodinger’s equation 

which corresponds to the lowest eigenvalue is without nodes (by the theorem 

of the variational calculus), this solution may be physically inadmissible; 

the smallest eigenvalue of Schrodinger’s equation will not then correspond 

to the normal state of the system, and the wave function of this state will in 

general have nodes. For particles with a half-integral spin s, this situation 

occurs in systems with more than 2s + 1 particles. For systems of bosons, a 

completely symmetrical coordinate wave function is always possible. 

PROBLEMS 
Problem 1. Determine the number of energy levels with different values o 

spin S, for a system of N particles with spin £. 
jf the 
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Solution. A given value of the projection of the total spin of the system, Ms = Io, can 
be obtained in 

f{Ms) = A"!/(o A’ + Mg)!(J A' - Ms)! 

ways, with iN+Ms particles taken to have a = £ and the remainder a — — J. To each 
energy level with a given S, there correspond 2S + 1 states with Ms = 5, S —1, ..., —S. 
Hence it is easy to see that the number of different energy levels with a given value of .S is 

n(S) = HS)-f(S+ 1) = A'!(25+ l)/(JAr + £+ l)l(JA'-S)!. 

The total number of different energy levels is 

» = |»(S)=/(0) = A'!/[(iJV)!r 

for even N, and 

n = /(£) = mi(\N+miN-l)l 

for odd N. 
Problem 2. Find the values of the total spin S that occur for various types of symmetry 

of the spin functions of a system of two, three or four particles with spin 1. 
SOLUTION. For two particles, the correspondence is established by the fact that the factor 

by which the spin function is multiplied when the particles are interchanged must be ( —l)2t_s 
(see the end of §62). For particles with spin s = 1 this gives 

< 0 ) I I I < t> ) Q 

S = 0 or 2 S = l 

(1) 

The Young diagrams for a system of three particles are obtained by adding to the diagrams 
(1) one cell in every possible way. The result may be written as the symbolic equations 

( O ) ( b ) 

I, I, 2,3 

( b ) ( C ) 

0, 1,2 

The values of S are shown beneath each diagram, and the values of the total spin of the 
system of three particles (the diagrams on the right) are found from the spins of the two- 
particle and one-particle systems (the diagrams on the left) by the rule of addition of angular 
momenta.f The distribution of the resulting values of S among the diagrams on the right is 
established by noting that diagram (c) (a column of three cells) corresponds to S = 0. and 
(b) therefore to the remaining values 1 and 2 in the second equation, while (a) belongs to the 

t The repetition of 1 beneath the right-hand diagrams occurs because this value of the 
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values 1 and 3 that are left after (b) has been labelled in the first equation: 

241 

S-lor 2 

The Yjung diagrams for a system of four particles are obtained by adding o 
diagrams (2), with the condition that no column should contain more than thr 

(2) 

cell to the 
cells: 

1,3 

1,2 

□ 

n 

(a ) < b ) 

i i i ti - gn 

V 
0,1,2,2,3,4 

* EB * 
0,1, 1,2,2, 3 

□ 
I 

□□ 

Diagram (c) can be added to (a) in (1) to form a rectangle with three-cell columns, and there¬ 
fore corresponds to the same values S = 0, 2. The values of S for diagram (b) are found 
from the remainder of the second equation, and then those for (a) from the remainder of the 
first equation: 

S -0,2 or 4 

(d ) in 

S z I 

§64. Second quantization. The case of Bose statistics 

In the theory of systems consisting of a large number of identical particles, 

there is a widely used method of considering the problem, known as second 

quantization. This method is especially necessary in relativistic theory, 

where we have to deal with systems in which the number of particles is itself 
variable.f 

t The method of second quantization was developed by P. A. M. Dirac (1927) for photons 
i radiation theory, and later extended to fermions by E. Wigner and P. Jordan (1928). 
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Let ipi(i), <p2{i), ... be some complete set of orthogonal and normalized 

wave functions of stationary states of a single particle.f These may be states 

of a particle in some arbitrarily chosen external field, but are usually taken to 

be simply plane waves, i.e. the wave functions of a free-particle having definite 

values of the momentum (and spin projection). In order to make the spectrum 

of states discrete, we shall consider the motion of particles in a large but finite 

region, for which the eigenvalues of the momentum components form a 

discrete series, the intervals between adjacent values being inversely .pro¬ 

portional to the linear dimensions of the region and tending to zero as these 

increase. 

In a system of free particles, the particle momenta are separately con¬ 

served. The occupation numbers of the states are therefore also conserved, 

i.e. the numbers AT AT ••• which show how many particles are in each of the 

states t/11, tp2, In a system of interacting particles, the momentum of each 

particle is not conserved, and so the occupation numbers are not conserved. 

For such a system we can consider only the probability distribution of the 

various values of the occupation numbers. Let us seek to construct a 

mathematical formalism in which the occupation numbers (and not the 

coordinates and spin projections of the particles) play the part of independent 

variables. 

In this formalism, it is convenient to use the Dirac notation (see the end of 

§11), taking NUN2, ... as quantum numbers defining the state. The states 

corresponding to the wave functions (61.3) and (61.5) will be denoted by 

| AT AT •-->• The coordinate and spin variables of the particles are not 

shown explicitly. 

In accordance with this choice of the independent variables, the operators 

of the various physical quantities (including the Hamiltonian of the system) 

must be formulated in terms of their action on functions of the occupation 

numbers. Such a formulation can be obtained on the basis of the usual matrix 

representation of operators. The operator matrix elements must be con¬ 

sidered in relation to the wave functions of the stationary states of a system 

of non-interacting particles. Since these states can be described by speci¬ 

fying definite values of the occupation numbers, this will also show the nature 

of the action of the operators on these variables. 

Let us first consider systems of particles obeying Bose statistics. Let/ <*>„ 

be the operator of some quantity pertaining to the ath particle, i.e. acting only 

on functions of the variables £n. We introduce the operator 

(64.1) 

which is symmetrical with respect to all the particles (the summation being 

over all particles), and determine its matrix elements with respect to the wave 

functions (61.3). First of all, it is easy to see that the matrix elements will 

t As in §61, f denotes the set of the coordi 
and integration with respect to f is taken to n 

and the spin projection a of the particle, 
integration over the coordinates and sum- 
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be different from zero only for transitions which leave the numbers Nlt N2, ... 

unchanged (diagonal elements) and for transitions where one of these numbers 

is increased, and another decreased, by unity. For, since each of the operators 

f (1>a acts only on one function in the product 

its matrix elements can be different from zero only for transitions whereby 

the state of a single particle is changed; this, however, means that the number 

of particles in one state is diminished by unity, while the number in another 

state is correspondingly increased. The calculation of these matrix elements 

is in principle very simple; it is easier to do it oneself than to follow an account 

of it. Hence we shall give only the result of this calculation. The non¬ 

diagonal elements are 

<Nh Nk - l\F™\Nt - 1, Nky = / d>„V(NiNk). (64.2) 

We shall indicate only those suffixes with respect to which the matrix element 

is non-diagonal, omitting the remainder for brevity. Here fa)ik is the matrix 

element 

^ I r/ w(1>.* = { d£: (64.3) 

since the operators/ differ only in the naming of the variables on which 

they act, the integrals (64.3) are independent of a, which is therefore 

omitted. The diagonal matrix elements of F(1> are the mean values of the 

quantity FW in the states >Pn,n2.. ■ Calculation gives 

(64.4) 

We now introduce the operators di, which play a leading part in the method 

of second quantization; they act, not on functions of the coordinates, but on 

functions of the occupation numbers. By definition, the operator di acting on 

the function |A\, N2, ...> decreases the value of the variable N, by unity, 

and at the same time it multiplies the function by Vtyrt 

fiilM, N2, ..., Nit ...> = V|A\, N2, ..., Ni-1, ...>. (64.5) 

We can say that the operator d{ diminishes by one the number of particles in 

the tth state; it is therefore called a particle annihilation operator. It can be 

represented in the form of a matrix whose only non-zero element is 

<JV<-1HJV,> = VNi. (64.6) 

The operator di+ which is the Hermitian conjugate of di is, by definition 

(see (11.9)), represented by a matrix whose only non-zero element is 

<iVi|fli+|iV*-l> = <.Nt-\\ai\Nt'>* = VNt. (64.7) 

thl^tate wtve^uncUon^mS W'th 'he natural sense of the result of the operator a acting on 
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This means that, when acting on the function <$(Ni, N2, ...), it increases the 

number Nt by unity: 

at\Ni, N2, .... N,, ...> = V(N/+1)|N1, N2, .... /V,+l, ...>. (64.8) 

In other words, the operator dt+ increases by one the number of particles in 

the fth state, and is therefore called a particle creation operator. 

The product of the operators di+dit acting on the wave function, must 

multiply it by a constant simply, leaving unchanged all the variables IVi, N2, 

...: the operator di diminishes Nt by unity, and ap then restores it to its 

original value. Direct multiplication of the matrices (64.6) and (64.7) shows 

that di+di is represented, as we should expect, by a diagonal matrix whose 

diagonal elements are Nt. We can write 

di+di = Ni. (64.9) 

Similarly, we find that 

didi+ = Nt + 1. (64.10) 

The difference of these equations gives the commutation rule for the 

operators di and ap: 

didi + — di+di = 1. (64.11) 

The operators with i and k different act on different variables (Ni and Nk), 

and commute: 

didk — dkdi = 0, didk + -dk+di = 0 (1 # k). (64.12) 

From the above properties of the operators a0 d{+ it is easy to see that the 

operator 

= £kfmikdt+dk (64.13) 

is the same as the operator (64.1). For all the matrix elements calculated from 

(64.6), (64.7) are the same as the elements (64.2), (64.4). This is a very 

important result. In formula (64.13), the quantities fwik are simply 

numbers. Thus we have been able to express an ordinary operator, acting on 

functions of the coordinates, in the form of an operator acting on functions 

of new variables, the occupation numbers Nt. 
The result which we have obtained is easily generalized to operators of 

other forms. Let 

pz) = E /<2)ob» (64.14) 

where / wah is the operator of a physical quantity pertaining to two particles 
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at once, and hence acts on functions of $a and Similar calculations show 

that this operator can be expressed in terms of the operators dit af by 

= i / (2)l Imyat *&k +dmdu (64.15) 

where 

<t^i/(2)|/m>= {{ 

The generalization of these formulae to operators of any other form sym¬ 

metrical with respect to all the particles (of the form .F<3> = 2/ (3>0&c, etc.) is 

obvious. 

These formulae can be used to express, in terms of the operators di and &i+, 

the Hamiltonian of the physical system of N identical interacting particles 

that is being considered. The Hamiltonian of such a system is, of course, 

symmetrical with respect to all the particles. In the non-relativistic approxi¬ 

mation,! it is independent of the spins of the particles, and can be represented 

in a general form as follows: 

fl = S/H+ E ^U»(ra,rb)+ £/®(r0,r„rc)+ .... (64.16) 

Here is the part of the Hamiltonian which depends on the coordinates 

of the ath particle only: 

= - (^/2w)Aa+ £/<»( rj, (64.17) 

where U(1>(ra) is the potential energy of a single particle in the external field. 

The remaining terms in (64.16) correspond to the mutual interaction energy 

of the particles; the terms depending on the coordinates of two, three, etc. 

particles have been separated. 

This representation of the Hamiltonian enables us to apply formulae 

(64.13), (64.15) and their analogues directly. Thus 

fi = ^Jik | f/<2> \lm}di +dk +dmdi + .... (64.18) 

This gives the required expression for the Hamiltonian in the form of an 

operator acting on functions of the occupation numbers. 

For a system of non-interacting particles, only the first term in the expres¬ 

sion (64.18) remains: 

n = Ymikdfdk. (64.19) 

If the functions *pt are taken to be the eigenfunctions of the Hamiltonian 

f?(1) of an individual particle, the matrix is diagonal, and its diagonal 

elements are the eigenvalues of the energy of the particle. Thus 

H = 2 c,d,+a,.; 

t In the abac jgnetic field. 
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replacing the operator ac&i by its eigenvalues (64.9), we have for the energy 

levels of the system the expression 

E = ? ttNit 

a trivial result which could have been foreseen. 

The formalism which we have developed can be put in a more compact 

form by introducing the tp-operators\ 

<£(£) = ? 0+(£) = s &*(£)£+, (64.20) 

where the variables £ are regarded as parameters. By what has been said 

above concerning the operators au it is clear that the operator $ de¬ 

creases the total number of particles in the system by one, while increases 

it by one. 

It is easy to see that the operator 4i+(£o) creates a particle at the point £o- 

For the result of the action of the operator ai+ is to create a particle in a state 

with wave function tpi(£). Hence it follows that the result of the action of 

the operator $+(£o) is to create a particle in a state with wave function 

2 <jji*{£)<pi{£o) = &{£~£o), which corresponds to a particle with definite 

values of the coordinates (and spin). Here we have used formula (5,12).]; 

The commutation rules for the iji operators are obtained at once from those 

for the operators ai, ai + : 

mkn-knfot) = o, (64.21) 

kM+in-fankt) = ? = m-n (64.22) 

The second-quantized operator F(1) can be written by means of the 

1// operators in the form 

pto = (64.23) 

where it is understood that the operator / M acts on functions of the para¬ 

meters £ in $(£)■ For, substituting $ and in the form (64.20) and using 

the definition (64.3), we return to (64.13). Similarly, (64.15) becomes 

f<2> = hi Ht)Hnfi2)knkt) (64-24) 

t Note the analogy between (64.20) and the expansion 

- "Zaepi 

of any wave function in terms of a complete set of functions. Here it is ■■re-quantized”, and 
this is the reason for the term second quantization method. 

t S(f-fo) conventionally denotes the product 

S(x-x0)S(y-yc)l>(z-zA,- 
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In particular, the Hamiltonian of the system, expressed in terms of the 

i/< operators, is 

+ + •••• (64.25) 

*-J-£ 

The operator i/<+(£)i/r(£), constructed from the ip operators by analogy 

with the product ip*>p which determines the probability density for a particle 

in a state with wave function ip, is called the particle density operator. The 

integral 

N = J <W d£ (64.26) 

represents in the second-quantization formalism the operator of the total 

number of particles in the system. For, substituting the tp operators in the 

form (64.20) and using the normalization and the orthogonality of the wave 

functions, we have 

N = 2 at +di. 

Each term in this sum is the operator of the number of particles in the fth 

state; according to (64.9), its eigenvalues are equal to the occupation numbers 

Nu and the sum of all these numbers is the total number of particles in the 

system.f 

Lastly, if the system consists of bosons of various kinds, operators a and a + 

for each kind of particle must be defined in the second quantization method. 

It is evident that operators pertaining to particles of different kinds commute. 

§65. Second quantization. The case of Fermi statistics 

The basic theory of the method of second quantization remains wholly 

unchanged for systems of identical fermions, but the actual formulae for the 

matrix elements of quantities and for the operators di are naturally different. 

The wave function 4>n,n, -- now has the form (61.5). Because of the 

antisymmetry of this function, the question of its sign arises first of all. 

This question did not arise in the case of Bose statistics, since, because of 

the symmetry of the wave function, its sign, once chosen, was preserved 

under all permutations of the particles. In order to make definite the sign 

of the function (61.5), we shall agree to choose it as follows We number 

successively, once and for all, all the states ipt. We then complete the rows 

+ For systems containing a specified number of particles these statements are trivial, as 
are the properties of the Hamiltonian (64.19) of a system of free particles. Their generalization 
in the relativistic theory, however, yields new results that are by no means trivial (cf. RQT, 
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of the determinant (61.5) so that always 

§65 

Pi < P2 < Pz < ■</>*'. (65.1) 

whilst in the successive columns we have functions of the different variables 

in the order £lt £2,... , £v. Xo two of the numbers p1,p2, ... can be equal, 

since otherwise the determinant would vanish. In other words, the occupa¬ 

tion numbers TV* can take only the values 0 and 1. 

Let us again consider an operator of the form (64.1), F(1) = Z/ a>fi. As 

in §64, its matrix elements will be non-zero only for transitions where all the 

occupation numbers remain unchanged and for those where one occupation 

number (Nt) is diminished by unity (becoming zero instead of one) and an¬ 

other (Nk) is increased by unity (becoming one instead of zero). We easily 

find that, for i < k, 

<lf, (klfWIOi, 1 a.-> — /(1)ik(—1)I(I+1’fc_11, (65.2) 

where by 0t-, L we signify Nt = 0, Nt = 1 and the symbol H(k, l) denotes 

the sum of the occupation numbers of all states from the &th to the /th:f 

S (*, /) = AV 

For the diagonal elements we obtain our previous formula (64.4): 

= Z/w.AV (65.3) 

In order to represent the operator F’(1> in the form (64.13), the operators 

must be defined as matrices whose elements are 

<0iNL> = <li|fli+|0,>=(-l)r<i.<-u (65.4) 

On multiplying these matrices, we find, for k > i, 

<li, 0fc|ai_!'afc|0j, I*) = <lj, 0fc|a/+|0i, 0fc><0i, 0fc|afc|0j, 1*> 

or 

( _ 1 )Itl. i-l)( _ 1 )£<1. 

<L, 0*|<n-fl*|0f, 1*> = (_i)5W+i.ft-u (65.5) 

If i — k, the matrix of af&i is diagonal, and its elements are unity for Nt — 1, 

and zero for Ah = 0; this can be w-ritten 

= Nt. (65 6) 

t For i > k the exponent in (65.2) becomes I (£ + 1, i' — 1). The sum must be taken as 
zero when i = k ± 1. 
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On substituting these expressions in (64.13), we in fact obtain (65.2), (65.3). 

Multiplying ci+, ak in the opposite order, we have 

<li, 0*|ata,+|0,, h-> = <l„Ot|a*|l,, 1*><1„ 1*> 

= (- 1)^(1. i-H+Z'i+i. 

or 

<li, 0*|a*fii+|0,, lfc>= -(-l)S*--M.fc-n. (65.7) 

Comparing (65.7) with (65.5), we see that these quantities have opposite signs, 

i.e. 

dTdk+dkdj+ =0 (» # k). 

For the diagonal matrix we find 

did* = 1--V4. (65.8) 

Adding this to (65.6), we obtain 

didf+dfdi = 1. 

Both the above equations can be written in the form 

dtdk++dk+di = S(k. (65.9) 

On carrying out similar calculations, we find for the products aiak the re¬ 

lations 

didk-bdkdt = 0, (65.10) 

and in particular d^i = 0. 

Thus we see that the operators a,- and ak (or ak+) for i ^ k anticommute, 

whereas in the case of Bose statistics they commuted with one another. This 

difference is perfectly natural. In the case of Bose statistics, the operators 

Gj and ak were completely independent; each of the operators acted only 

on a single variable Nu and the result of this action did not depend on the 

values of the other occupation numbers. In the case of Fermi statistics, 

however, the result of the action of the operator a\ depends not only on the 

number Ni itself, but also on the occupation numbers of all the preceding 

states, as we see from the definition (65.4). Hence the action of the various 

operators dt, ak cannot be considered independent. 

The properties of the operators ait at+ having been thus defined, all the 

remaining formulae (64.13)—(64.18) remain valid. The formulae (64.23)- 

(64.25), which express the operators of physical quantities in terms of the 

</i-operators defined by (64.20), also hold good. The commutation rules 
(64.21), (64.22), however, are now replaced by 

$-&)&£)+kot+in = s(f-n, 

^(n</'(f)+</'(f)<£(o = o. 

(65.11) 

(65.12) 



250 Identity of Particles §65 

If the system consists of particles of different kinds, second quantization 

operators must be defined for each kind of particle (as already mentioned at 

the end of §64). Operators belonging to bosons and fermions commute; 

those belonging to different fermions may formally be regarded as either 

commutative or anticommutative within the limits of non-relativistic theory. 

On either assumption the results obtained by means of the-second quantiza¬ 

tion method are the same. 

However, with a view to later applications in the relativistic theory, which 

allows different particles to be transformed into one another, we should 

assume that the creation and annihilation operators for different fermions 

anticommute. This becomes evident if we regard as “different” particles 

two different internal states of a single complex particle. 



CHAPTER X 

THE ATOM 

§66. Atomic energy levels 

In the non-relativistic approximation, the stationary states of the atom are 

determined by Schrodinger’s equation for the system of electrons, which 

move in the Coulomb field of the nucleus and interact electrically with one 

another; the spin operators of the electrons do not appear in this equation. 

As we know, for a system of particles in a centrally symmetric external field 

the total orbital angular momentum L and the parity of the state are conserved. 

Hence each stationary state of the atom will be characterized by a definite 

value of the orbital angular momentum L and by its parity. Moreover, the 

coordinate wave functions of the stationary states of a system of identical 

particles have a certain permutational symmetry. We have seen in §63 that, 

for a system of electrons, a definite value of the total spin of the system cor¬ 

responds to each type of permutational symmetry (i.e. to each Young dia¬ 

gram). Hence every stationary state of the atom is characterized also by the 

total spin 5 of the electrons. 

The energy level having given values of 5 and L is degenerate to a degree 

equal to the number of different possible directions in space of the vectors S 

and L. The degree of the degeneracy from the directions of L and S is re¬ 

spectively 2L + 1 and 25 + 1. Consequently, the total degree of the degener¬ 

acy of a level with given L and 5 is equal to the product (2L + 1)(25+1). 

In fact, however, the electromagnetic interaction of the electrons contains 

relativistic effects, which depend on their spins. These effects have the 

result that the energy of the atom depends not only on the absolute magni¬ 

tudes of the vectors L and S but also on their relative positions. Strictly 

speaking, when the relativistic interactions are taken into account the orbital 

angular momentum L and the spin S of the atom are not separately conserved. 

Only the total angular momentum J =L + S is conserved; this is a universal 

and exact law which follows from the isotropy of space relative to a closed 

system. For this reason, the exact energy levels must be characterized by 

the values J of the total angular momentum. 

However, if the relativistic effects are comparatively small (as often 

happens), they can be allowed for as a perturbation. Under the action of 

this perturbation, a degenerate level with given L and 5 is “split” into a 

number of distinct (though close) levels, which differ in the value of the 

total angular momentum/. These levels are determined (in the first approxi¬ 
mation) by the appropriate secular equation (§39), while their wave functions 
(in the zeroth approximation) are definite linear combinations of the wave 
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functions of the initial degenerate level with the given L and 5. In this 

approximation we can therefore, as before, regard the absolute values of the 

orbital angular momentum and spin (but not their directions) as being 

conserved, and characterize the levels by the values of L and 5 also. 

Thus, as a result of the relativistic effects, a level with given values of L 

and 5 is split into a number of levels with different values of /. This splitting 

is called the fine structure (or the multiplet splitting) of the level. As we know, 

J takes values from L + S to \L — 5|; hence a level with given L and 5 is split 

into 25 +1 (if L > 5) or 2L +1 (if L < S) distinct levels. Each of these is 

still degenerate with respect to the directions of the vector J; the degree of 

this degeneracy is 2 J +1. It is easily verified that the sum of the numbers 

2J +1 for all possible values of J is equal to (2L + 1)(25 + 1), as it should be. 

There is a generally accepted notation to denote the atomic energy levels 

(or, as they are called, the spectral terms of the atoms), similar to that used 

for the states of individual particles with definite values of the angular 

momentum (§32): states with different values of the total orbital angular 

momentum L are denoted by capital Latin letters, as follows: 

L = 0123456789 10 ... 

SPDFGHIKLMN ... 

Above and to the left of this letter is placed the number 25 + 1, called the 

multiplicity of the term (though it must be borne in mind that this num¬ 

ber is the number of fine-structure components of the level only when 

L ^ 5).f Below and to the right of the letter is placed the value of the total 

angular momentum J. Thus the symbols 2P1/2, 2-P3/2 denote levels with 

L = 1, 5= lj= iandi. 

§67. Electron states in the atom 

An atom with more than one electron is a complex system of mutually 

interacting electrons moving in the field of the nucleus. For such a system 

we can, strictly speaking, consider only states of the system as a whole. 

Nevertheless, it is found that we can, with fair accuracy, introduce the idea 

of the states of each individual electron in the atom, as being the stationary 

states of the motion of each electron in some effective centrally symmetric 

field due to the nucleus and to all the other electrons. These fields are in 

general different for different electrons in the atom, and they must all be 

defined simultaneously, since each of them depends on the states of all the 

other electrons. Such a field is said to be self-consistent. 

Since the self-consistent field is centrally symmetric, each state of the elec¬ 

tron is characterized by a definite value of its orbital angular momentum 7. 

The states of an individual electron with a given 7 are numbered (in order 

of increasing energy) by the principal quantum number n, which takes the 

values n = 7+1, 7+2, ... ; this choice of the order of numbering is made in 

t The levels with 2S + 1 = 1,2, 3, ... are called singlet, doublet, triplet, etc., levels. 
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accordance with what is usual for the hydrogen atom. However, the sequence 

of levels of increasing energy for various / in complex atoms is in general 

different from that found in the hydrogen atom. In the latter, the energy 

is independent of /, so that the states with larger values of n always have 

higher energies. In complex atoms, on the other hand, the level with n = 5, 

l = 0, for example, is found to lie below that with n = 4, / = 2 (this is 

discussed in more detail in §73). 

The states of individual electrons with different values of n and l are 

customarily denoted by a figure which gives the value of the principal 

quantum number, followed by a letter which gives the value of /:f thus 4d 

denotes the state with n = 4, / = 2. A complete description of the atom 

demands that, besides the values of the total L, 5 and J, the states of all the 

electrons should also be enumerated. Thus the symbol lr 2p 3Po denotes a 

state of the helium atom in which L=l,S=l,/=0 and the two electrons 

are in the Is and 2p states. If several electrons are in states with the same / 

and n, this is usually shown for brevity by means of an index: thus 3p2 

denotes two electrons in the 3p state. The distribution of the electrons in the 

atom among states with different / and n is called the electron configuration. 

For given values of n and l, the electron can have different values of the 

projections of the orbital angular momentum (m) and of the spin (a) on the 

2-axis. For a given l, the number m takes 2Z+1 values; the number o is 

restricted to only two values, + \. Hence there are altogether 2(2/+1) 

different states with the same n and /; these states are said to be equivalent. 

According to Pauli’s principle there can be only one electron in each such 

state. Thus at most 2(2/+1) electrons in an atom can simultaneously have 

the same n and /. An assembly of electrons occupying all the states with the 

given n and / is called a closed shell of the type concerned. 

The difference in energy between atomic levels having different L and S 

but the same electron configuration^ is due to the electrostatic interaction 

of the electrons. These energy differences are usually small, and several 

times less than the distances between the levels of different configurations. 

The following empirical principle (Hand's rule\ F. Hund 1925) is known 

concerning the relative position of levels with the same configuration but 

different L and 5: 

The term with the greatest possible value of S (for the given electron con¬ 

figuration) and the greatest possible value of L (for this S) has the lowest energy. || 

We shall show how the possible atomic terms can be found for a given elec¬ 

tron configuration. If the electrons are not equivalent, the possible values 

+ Another terminology often used is that in which electrons with principal quantum 
numbers n = 1, 2, 3, ... are said to belong to the K, L. M. ... shells (see §74). 

t We here ignore the fine structure of each multiple! level. 
I The requirement that S should be as large as possible can be explained as follows. Let 

us consider, for example, a system of two electrons. Here we can have S = 0 or S = 1; the 
spin 1 corresponds to an antisymmetrical coordinate wave function ^fr„ r+ For = r„ 
this function vanishes; in other words, in the state with S = 1 the probability of finding the 
two electrons dose together is small. This means that their electrostatic repulsion is com¬ 
paratively small, and hence the energy is less. Similarly, for a system of several electrons, the 
“most antisymmetrical" coordinate wave function corresponds to the greatest spin. 
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of L and 5 are determined immediately from the rule for the addition of 

angular momenta. Thus, for instance, with the configurations np, n'p (n, n' 

being different) the total angular momentum L can take the values 2, 1,0, 

and the total spin 5 = 0, 1; combining these, we obtain the terms 1>35, 
1,3 P 1,3 T) 

If we are concerned with equivalent electrons, however, restrictions im¬ 

posed by Pauli’s principle make their appearance. Let us consider, for 

example, a configuration of three equivalent p electrons. For / = 1 (the p 

state), the projection m of the orbital angular momentum can take the values 

m = 1, 0, —1, so that there are six possible states, with the following values 

of m and a: 

WU 0)0, i {c)~ 1,1 

m-i 0')O,-4 (0-1,-i- 

The three electrons can be one in each of any three of these states. As a 

result we obtain states of the atom with the following values of the projections 

Ml = Em, Ms = Ic of the total orbital angular momentum and spin: 

(a+a'+b) 2, 4 (a+fl'+c) 1, | (a+b+c) 0, 4 

{a+b+b') I,* (a+b+c') 0,| 

(a+b'+c) 0,4 

(a'+b+c) 0, 4. 

The states with ML or Ms negative need not be written out, since they give 

nothing different. The presence of a state with ML = 2, Ms = 4 shows that 

there must be a 2Z) term, and to this term there must correspond one state 

(1,4) ar>d one (0, 4)- Next, there remains one state with (1, 4), so that there 

must be a 2P term; one of the states (0, 4) corresponds to this. Finally, there 

remain the states (0, §) and (0, 4), corresponding to a 4S term. Thus, for a 

configuration of three equivalent p electrons, the only possibilities are one 

term of each of the types 2D, 2P, *S. 

Table 1 gives the possible terms for various configurations of equivalent 

p and d electrons. The figures below the letters of the terms show the num¬ 

ber of terms of the type concerned that exist for the given configuration, if 

this number is more than one. For the configuration with the greatest 

possible number of equivalent electrons (r2, p6, d10, ...), the term is always lS. 

Like terms always correspond to configurations which differ in that one of 

them has as many electrons as the other lacks to form a closed shell. This is 

an evident result of the fact that the absence of an electron from the shell can 

be regarded as a “hole”, whose state is defined by the same quantum numbers 

as the state of the missing electron. 
When Hund’s rule is applied to determine the ground term of an atom 

from a known electron configuration, only the unfilled shell need be con¬ 
sidered, since the moments of electrons in closed shells cancel out. For 
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Table 1 

Possible terms for configurations of equivalent electrons 

255 

p, ps 
p2, p* 

p3 

2p 

lSD 
3PD 

•P 
‘S 

d, d> 3D 
d\d* 1SDG 3PF 
d3, d> 3PDFGH *PF 

d\ d* j 1SDFGl 3PDFGH SD 

d° 1 3SPDFGHI , *PDFG «S 

example, let there be four d electrons outside the closed shells in an atom. 

The magnetic quantum number of the d electron can take five values: 

0, ±1, ±2. Hence all four electrons can have the same spin component 

a = and the maximum possible total spin is S = 2. We must then assign 

to the electrons different values of m so as to give the maximum value of 

Ml, = 'Em, namely 2, 1, 0, —1, Ml — 2. This means that the maximum 

value of L for 5 = 2 is also 2, and the term is 5D. 

PROBLEM 

Find the orbital wave functions of the possible states of a system of three equivalent p 
electrons. 

Solution. In the states 4S the spin projections a of all the electrons are the same, and the 
values of m are therefore different. The wave function is given by a determinant of the form 
(61.5) composed of the functions ip0, ip-i (where the suffix shows the value of m). 

For the 2D term we consider the state with the maximum possible value Ml = 2. Two 
of the components m will be 1 and the other 0. Let electrons 2 and 3 have <7 = +£ and 
electron 1 have a — — £ (corresponding to total spin S = i). The orbital wave function 
having the required symmetry is 

4> = ^M1)[M2)M3)-,/,o(3)M2)], 

the argument of each function 4i being the number of the electron to which if refers. 
For the 2P term we consider the state with Ml = 1 and the same values of the electron 

spin components as previously. This state can be obtained with two different sets of values 
of m, so that the orbital wave function is given by the linear combination 

4l = Qt/i-u 1+40(00, 

4-m = U l)[^-i(2Wi(3)—^,(3)^(2)], 

*Aioo = W1)[l!'i(2)W3)-^1(3)v(io(2)]. 

To determine the coefficients, we use the relation 

= (/,»>+/♦«!>+£. I3.ty, = 0, 

which must be satisfied by the wave function with Ml = L (see (27.8)). Using the matrix 
elements (27.12), we find that 

L0! = 0, = v/2^0, u<h = \Z20i, 
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L+ii — \ 2(a — t)iton = 0. 

Hence o—b — 0, and using also the normalization condition, «i have a = b = i 
The wave functions of states with Ml < L are obtained trom those found above by applv- 

ing to them the operator £_. 

§68. Hydrogen-like energy levels 

The only atom for which Schrodinger’s equation can be exactly solved 

is the simplest of all atoms, that of hydrogen. The energy' levels of the hydro¬ 

gen atom, and of the ions He+, Li++. ... which each have only one electron, 

are given by Bohr’s formula (36.10) 

mZV 

~2h2(l + mlM) 
(6S.1) 

Here Ze is the charge on the nucleus, M its mass, and m the mass of the elec¬ 

tron. We notice that the dependence on the mass of the nucleus is only very 

slight. 

The formula (68.1) does not take account of any relativistic effects. In 

this approximation there is an additional (accidental) degeneracy, peculiar 

to the hydrogen atom, of which we have already spoken in §36; for a given 

principal quantum number n, the energy' is independent of the orbital angular 

momentum /. 

Other atoms have states whose properties recall those of hydrogen. We 

refer to highly excited states, in which one of the electrons has a large principal 

quantum number, and so is mostly at large distances from the nucleus. The 

motion of such an electron can be regarded, to a certain approximation, as 

motion in the Coulomb field of the rest of the atom, whose effective charge is 

unity. The values of the energy levels thus obtained are, however, too in¬ 

exact; it is necessary to apply to them a correction to take account of the devia¬ 

tion of the field from the pure Coulomb field at small distances. The nature 

of this correction is easily ascertained from the following considerations. 

Since the states with large quantum numbers are quasi-classical, the energy' 

levels can be determined from Bohr and Sommerfeld’s quantization rule 

(48.6). The deviation from the Coulomb field at distances from the nucleus 

small compared with the “orbit radius” can be formally allowed for by an 

alteration in the boundary condition imposed on the wave function at 

r = 0. This brings about a change in the constant y in the quantization 

condition for radial motion. Since this condition is otherwise unchanged, 

we can conclude that we obtain for the energy levels an expression which 

differs from that for hvdrogen in that the radial, that is, the principal, quantum 

number n is replaced bv n -r A;, where A; is some constant (known as 

Rydberg's correction): 

me4 1 

E = ~m{n+\ly-' 
(68.2) 
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Rydberg’s correction is (by definition) independent of n, but it is of course 

a function of the azimuthal quantum number l of the excited electron (which 

we add as a suffix to A), and of the angular momenta L and S of the whole 

atom. For given L and S, Ai decreases rapidly as l increases. The greater l, 

the less time the electron spends near the nucleus, and hence the energy’ levels 

must approach more and more closely those of hydrogen as l increases.| 

PROBLEM 

Find the asymptotic form of the wave function for the hvdrogen-like j state of an electron 
at large distances from the rest of the atom. 

Solution. At large distances, where the field U — —l'r (in atomic units), the required 
function satisfies Schrodinger’s equation 

V + -V- + ^ = U, 

where k = (2|£'|). Seeking the solution in the form i= constant x rye~K' and neglecting 
terms in the equation that decrease more rapidly than 0/r, we find 

§69. The self-consistent field 

Schrodinger’s equation for atoms containing more than one electron 

cannot be solved in an analytical form. Approximate methods of calculating 

the energies and wave functions of the stationary states of the atoms are 

therefore important. The most important of these methods is what is called 

the self-consistent field method. The idea of this method consists in regarding 

each electron in the atom as being in motion in the “self-consistent field” 

due to the nucleus together with all the other electrons. 

As an example, let us consider the helium atom, restricting ourselves to 

those terms in which both the electrons are in r states (with or without the 

same n)\ the states of the whole atom will then be S states also. Let ^(rj) 

and fi2(r2) be the wave functions of the electrons; in the r states they are 

functions only of the distances rv r2 of the electrons from the nuclei. The 

wave function f(ri, /••>) of the atom as a whole is a symmetrized 

<A = (69.1) 

or antisymmetrized 

f = 'Pl(rl)f2(r2)-MrMrl) (69.2) 

t As an illustration, we nta\ give the experimental values of Rvdberg’s correction for the 
highlv excited states of the helium atom. The total spin of this atom can have the values 
S = 0 and 1. while the total orbital angular momentum L is, in the states considered, the 
6ame as the angular momentum / of the excited electron (the other electron being in the 

for S = 0: Ao = -0140, Ai = +0012, As = -0 0022; 

for 5 - 1: Ao i = -0-296, Ai = -0 068. As = -0-0029 
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product of the two functions, according as we are concerned with states of 

total spinf 5 = 0 or 5 = 1 . We shall consider the second of these. The 

functions ^ and <//2 can then be regarded as orthogonal.J 

Let us try to determine the function of the form (69.2) which is the best 

approximation to the true wave function of the atom. To do so, it is natural 

to start from the variational principle, allowing only functions of the form 

(69.2) to be considered; this method was proposed by V. A. Fok (1930). 

As we know, Schrodinger’s equation can be obtained from the variational 

principle 

with the additional condition 

JJ l^l2 dFjdFj = 1 

(the integration is extended over the coordinates of both electrons in the 

helium atom). The variation gives the equation 

JJ fy*(J?-.E)0 dFjdF,, = 0, (69.3) 

and hence, with an arbitrary variation of the wave function <//, we obtain the 

usual Schrodinger’s equation. In the self-consistent field method, the 

expression (69.2) for <p is substituted in (69.3), and the variation is effected 

with respect to the functions ^ and separately. In other words, we seek 

an extremum of the integral with respect to functions <p of the form (69.2); 

as a result wTe obtain, of course, an inexact eigenvalue of the energy and an 

inexact wave function, but the best of the functions that can be represented 

in this form. 

The Hamiltonian for the helium atom is of the form|| 

n =#,+#,+l/ria, A = —iAi—2/r„ (69.4) 

where r12 is the distance between the electrons. Substituting (69.2) in (69.3), 

carrying out the variation, and equating to zero the coefficients of Si/^ and Si/r2 

in the integrand, we easily obtain the following equations: 

[iA + 2 lr+E-H22-GAr)WM^+Gu(r))Ur) = 0, 
HA+2/r+£-ff11-G11(r)]0a(r)+[ff1I+G„(r)]0l(r) = 0, 

GaM = J Mh)Utz) d F2/r12, 

Hab = f U~iA-2/r]^6 dF (a, b = 1, 2). (69.6) 
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These are the final equations resulting from the self-consistent field method; 

they can, of course, be solved only numerically.! 

The equations are similarly derived in more complex cases. The wave 

function of the atom to be substituted in the integral in the variational 

principle is in the form of a linear combination of products of the wave func¬ 

tions of the individual electrons. This combination must be so chosen that, 

firstly, its permutational symmetry corresponds to the total spin 5 of the 

state of the atom considered and, secondly, it corresponds to the given value 

of the total orbital angular momentum L of the atom.| 

By using, in the variational principle, the wave function having the neces¬ 

sary permutational symmetry, we automatically take account of the exchange 

interaction of the electrons in the atom. Simpler equations (though leading 

to less accurate results) are obtained if we neglect the exchange interaction 

and also the dependence on L of the energy of the atom for a given electron 

configuration (D. R. Hartree 1928). As an example, let us again consider the 

helium atom; we can then write the equations for the wave functions of the 

electrons immediately in the form of ordinary Schrodinger’s equations: 

[iA»+£»-W]0.(ro)=O (a = 1.2), (69.7) 

where Va is the potential energy of one electron moving in the field of the 

nucleus and in that of the distributed charge of the other electron: 

Vfr,) = -2/r1+ J (l/r12)i/i22(r2) dV2, (69.8) 

and similarly for V2. In order to find the energy E of the whole atom, we 

must notice that, in the sum E1 + E2, the electrostatic interaction between the 

two electrons is counted twice, since it appears in the potential energy Vfa) 

of the first electron and in that—V2(r2)—of the second. Hence E is obtained 

from the sum E1+E2 by subtracting once the mean energy of this interaction; 

that is. 

E = Ex+E2- Jj (1 IrMirMrJ dVfiV2. (69.9) 

To refine the results obtained by this simplified method, the exchange 

interaction and the dependence of the energy on L can afterwards be taken 

into account as perturbations. 

PROBLEMS 

Problem 1. Determine approximately the energy of the ground level of the helium atom 
and helium-like ions (a nucleus of charge Z and two electrons), regarding the interaction 
between the electrons as a perturbation. 

t A comparison of the energy levels of light atoms, calculated by the self-consistent field 
method, with spectroscopic data enables us to estimate the accuracy of the method at about 
5 per cent, and in some cases even better. For complex atoms, however, the error may be¬ 
come comparable with the intervals between adjacent levels, and hence give an incorrect 
sequence of levels. 

1 An account of general methods of constructing wave functic 
in a central field is given in Kaplan's book quoted in §63. 

for a system of electrons 
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Solution. In the ground state of the ion, both electrons are in s states. The unperturbed 
value of the energy is twice the ground level of a hydrogen-like ion (because of the two 

£ioi = 2(_iZ2)= _Z2. 

The correction in the first approximation is given by the mean value of the electron inter¬ 
action energy in a state with wave function 

0 = MrlYk 62) = ——t-»n+r.) 

I the product of two hydrogen functions with l — 0). The integral 

is most simply calculated as 

£i»= 2jdF2.p2—JprdF!, dTfi = W^dri, 

0)’ 

d I 2 ~ 4rrr22dr2, 

the energy of the charge distribution P2 = | fa I2 in the field of the spherically symmetric 
distribution p, = the integrand with dVs is the energy of the charge p2(rs) in the field 
of the sphere rr < r2, and the factor 2 takes account of the contribution from configurations 
in which r2 > r2. Thus we find E(1) = 5Z/8, and finally 

E=B<» + £“> = -Z2+|Z, 

For the helium atom (Z = 2) this gives —£=11/4 = 2-75; the actual value of the ground- 
state energy of this atom is —£ = 2-90 atomic units = 78-9 eV 

Problem 2. The same as Problem 1, but using the variational principle, approximating 
the wave function by a product of two hydrogen functions with some effective nuclear charge. 

Solution. We calculate the integral 

JJ\u?0dFidF2, /? = — i(Ai + As)—-- 

with the function <J, given by (1), Problem 1, but with Zeff instead of Z. The integral of i/>2/r12 
is calculated as in Problem 1; the integral of i/iAj i// can be reduced to that of </f2/r1, since, by 
Schrodinger’s equation, 

(—iAi-—)0i = —iZeafyi. 
r l 

The result is 

JJ^/fydlW;, = ZcH2 — 2ZZcH + fZeH. 

This expression as a function of Zeri has a minimum at Zett = Z— -fi. The corresponding 
value of the energy is 

For the helium atom this gives —£ = 2-85. . 
It mav be noted that the wave function (1) with the above value of Zetr is in fact the best 

not only of all functions of the form (1) but of all functions which depend only on the sum 
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§70. The Thomas-Fermi equation 

Numerical calculations of the charge distribution and field in the atom by 

the self-consistent field method are extremely cumbersome, especially for 

complex atoms. For these, however, there is another approximate method, 

whose value lies in its simplicity; its results are admittedly much less accurate 

than those of the self-consistent field method. 

The basis of this method (E. Fermi, and L. Thomas, 1927) is the fact that, 

in complex atom6 with a large number of electrons, the majority of the elec¬ 

trons have comparatively large principal quantum numbers. In these condi¬ 

tions the quasi-classical approximation is applicable. Hence we can apply 

the concept of “cells in phase space” (§48) to the states of the individual 

electrons. 

The volume of phase space corresponding to electrons which have momenta 

less than p and are in the volume element dV of physical space is &rp3 dV. 

The number of cells, i.e. possible states, corresponding to this volume isf 

4trp3 d F/3(27r)3, and in these states there cannot at any one time be more than 

4tt63 i>3 
2——dV = — dV 

3(2?r)3 3tt2 

electrons (two electrons, with opposite spins, in each cell). In the normal 

state of the atom, the electrons in each volume element dV must occupy (in 

phase space) the cells corresponding to momenta from zero up to some maxi¬ 

mum value p0. Then the kinetic energy of the electrons will have its smallest 

possible value at every point. If we write the number of electrons in the 

volume dV as ndV (where n is the number density of electrons), we can say 

that the maximum value p0 of the momenta of the electrons at every point 

is related to n by 

A>3/3-2 = n. 

The greatest value of the kinetic energy of an electron at a point where the 

electron density is n is therefore 

W = i(3 ^nfl3. (70.1) 

Next, let 4>(r) be the electrostatic potential, which we suppose zero at 

infinity. The total energy of the electron is ip2—(f>. It is evident that the 

total energy of each electron must be negative, since otherwise the electron 

moves off to infinity. We denote the maximum value of the total energy of 

the electron at each point by — $0, where <£0 is a positive constant; if this quan¬ 

tity were not constant, the electrons would move from points with smaller 
4>o to those with greater ■/>„. Thus we can write 

iPo2 = P — 'r’o- (70.2) 
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Equating the expressions (70.1) and (70.2), we obtain 

n = [2(^0)]3/2/3^, (70 3) 

a relation between the electron density and the potential at every point in the 

atom. 

For4> = <f>0 the density n vanishes; n must clearly be put equal to zero also 

in the whole of the region where <f> < <f>0, and where the relation (70.2) would 

give a negative maximum kinetic energy. Thus the equation <}> = <f>0 deter¬ 

mines the boundary of the atom. There is, however, no field outside a 

centrally symmetric system of charges whose total charge is zero. Hence we 

must have <f> = 0 at the boundary of a neutral atom. It follows from this that, 

for a neutral atom, the constant 4>0 must be put equal to zero. On the other 

hand, (f>0 is not zero for an ion. 

Below we shall consider a neutral atom, putting accordingly (f>0 = 0. 

According to Poisson’s electrostatic equation, we have A<f> = 4rr«; substitut¬ 

ing (70.3) in this, we obtain the fundamental equation of the Thomas-Fermi 

method: 

' A <j> = (8v/2/37t)<£3/2. (70.4) 

The field distribution in the normal state of the atom is determined by the 

centrally symmetric solution of this equation that satisfies the following 

boundary conditions: for r -* 0 the field must become the Coulomb field of 

the nucleus, i.e. 4>r -* Z, while for r -* co we must have <f>r 0. Introducing 

here, in place of the variable r, a new variable x according to the definitions 

r = xbZ-W, b = i(H2/3 = 0-885, 

and, in place of <}>, a new unknown function x by f 

Z (rZ^\ Z*vx(x) 

#w"7<T')”T“r 
we obtain the equation 

*i'2d2x/dx2 =x3/2, 

with the boundary conditions x = 1 for x = 0 and x = 0 for x = co. This 

equation contains no parameters, and thus defines a universal function X(x). 

Table 2 gives values of this function obtained by numerical integration of 

equation (70.7). The function X(x) decreases monotonically, and vanishes 

only at infinity.^ In other words, the atom has no boundaries in the Thomas- 

Fermi model, and formally extends to infinity. 

(70.5) 

(70.6) 

(70.7) 

4>{r) = (Zf/r)x(rZ‘/W/0-885/i2). 

J The equation (70.7) has the exact solution *(*) = 144x~s, which vanishes at infinity 
but does not satisfy the boundary condition at x = 0. It could be used as an asymptotic 
expression for the function x(x) for large x. However, this expressioi 
only for very large x, whilst the Thomas-Fermi equation becon 



§70 The Thomas-Fermi equation 263 

Table 2 

Values of the function x(x) 

* xM * x(*) * x(.*) 

0-00 1-000 1-4 0-333 b 0-0594 
0-02 0-972 1-6 0-298 7 0-0461 
0-04 0-947 1-8 0-268 8 0-0366 
0-06 0-924 2-0 0-243 9 0-0296 
0-08 0-902 2-2 0-221 10 0-0243 
0-10 0-882 2-4 0-202 11 0-0202 
0-2 0-793 2-6 0-185 12 00171 
0-3 0-721 2-8 0-170 13 0-0145 
0-4 0-660 3-0 0-157 14 0-0125 
0-5 0-607 3-2 0-145 15 0-0108 
0-6 0-561 3-4 0-134 20 0-0058 
0-7 0-521 3-6 0-125 25 0-0035 
0-8 0-485 3-8 0-116 30 0-0023 
0-9 0-453 4-0 0-108 40 0-0011 
1-0 0-424 4-5 0-0919 50 0-00063 
1-2 0-374 5-0 0-0788 60 0-00039 

The value of the derivative y'(x) for x = 0 is y'(0) = —T59. Hence, as 

a: -» 0, the function x(x) >s of the form y « 1 - 1-59.V, and accordingly the 

potential <f>(r) is 

4>(r) » Z/r—1-80Z4/3. (70.8) 

The first term is the potential of the field of the nucleus, while the second 

is the potential at the origin due to the electrons. 

Substituting (70.6) in (70.3), we find for the electron density an expression 

of the form 

n = Z-f(rZ1/3lb), f(x) = (32/9^)(x/*F2. (70.9) 

We see that, in the Thomas-Fermi model, the charge density distribution in 

different atoms is similar, with Z~V3 as the characteristic length (in ordinary 

units H2jme2ZV3, i.e. the Bohr radius divided by Z1'3). If we measure 

distances in atomic units, the distances at which the electron density has its 

maximum value are the same for all Z. Hence we can say that the majority 

of the electrons in an atom of atomic number Z are at distances from the 

nucleus of the order of Z~V3. A numerical calculation shows that half the 

total electron charge in an atom lies inside a sphere of radius 1-33 Z_1 3. 

Similar considerations show that the mean velocity of the electrons in the 
atom (taken, as an order of magnitude, as the square root of the energy) is of 
the order of Z2/3. 

The Thomas-Fermi equation becomes inapplicable both at very small and 
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at very large distances from the nucleus. Its range of applicability for small r 

is restricted by the inequality (49.12); at smaller distances the quasi-classical 

approximation becomes invalid in the Coulomb field of the nucleus. Putting 

in (49.12) a = Z, we find 1/Z as the lower limit of distance. The quasi- 

classical approximation becomes invalid for large r also in a complex atom. 

In fact, it is easy to see that, for r ~ 1, the de Broglie wavelength of the elec¬ 

tron becomes of the same order of magnitude as the distance itself, so that the 

quasi-classical condition is undoubtedly violated. This can be seen by esti¬ 

mating the values of the terms in equations (70.2) and (70.4); indeed, the 

result is obvious without calculation, since equation (70.4) does not involve 

Z. Thus the applicability of the Thomas-Fermi equation is limited to dis¬ 

tances large compared with 1/Z and small compared with unity. In complex 

atoms, however, the majority of the electrons in fact lie in this region. 

This means that the “outer boundary” of the atom in the Thomas-Fermi 

model is at r~ 1, i.e. the dimensions of the atom do not depend on Z. The 

energy of the outer electrons, i.e. the ionization potential of the atom, is 

likewise independent of Z.\ 

By means of the Thomas-Fermi method we can calculate the total ioniza¬ 

tion energy E, i.e. the energy needed to remove all the electrons from the 

neutral atom. To do this, wTe must calculate the electrostatic energy of the 

Thomas-Fermi distribution for the charges in the atom; the required total 

energy is half this electrostatic energy, since the mean kinetic energy in a 

system of particles interacting in accordance with Coulomb’s law is (by the virial 

theorem; see Mechanics, §10) minus half the mean potential energy. The 

dependence of £on Z can be determined a priori from simple considerations: 

the electrostatic ''nergv of Z electrons at a mean distance Z”1/3 from a 

nucleus of charge Z, and moving in its field, is proportional to Z-Z/Z"1/3 = 

Z7/3. A numerical calculation gives the result E = 20-8Z7'3 eV. The 

dependence on Z is in good agreement with the experimental data, though 

the empirical value of the coefficient is close to 16. 

We have already mentioned that positive (non-zero) values of the constant 

<f>o correspond to ionized atoms. If we define the function x by 4> - <j>o = Z%lr, 

we obtain the same equation (70.7) for x as previously. We must now, how¬ 

ever, consider only solutions which vanish not at infinity as for the neutral 

atom, but for finite values x0 of x. Such solutions exist for any x0. At the 

point x = x0, the charge density vanishes together with x, but the potential 

remains finite. The value of *o is related to the degree of ionization in the 

following manner. The total charge inside a sphere of radius r is, by Gauss’s 

theorem, — r2&/>/5r = Z[^(x)—xx'(x)]. The total charge z on the ion is 

obtained by putting jc = in this; since x(*o) = 0, we have 

z = - Zx0x'{x0). (70.10) 

t This model does not, of course, show the periodic dependence of the dimensions and 
ionization potential of the atom on Z, which appears in the periodic system of the elements. 
Moreover, experimental data indicate the existence of a slight but steady increase in dimen¬ 
sions and decrease in the ionization potential as Z increases. 
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The thick line in Fig. 23 shows the curve of *(*) for a neutral atom; below 

it are two curves for ions of different degrees of ionization. The quantity 

zjZ is shown graphically by the length of the segment intercepted on the 

axis of ordinates by the tangent to the curve at x = x0. 

i i 1 1 i 

Ll? 
% 

2 ===== 
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Fig. 23 

Equation (70.7) also has solutions which are nowhere zero; these diverge 

at infinity. They can be regarded as corresponding to negative values of the 

constant fo. Figure 23 also shows two such curves of x(x); they lie above the 

curve for the neutral atom. At the point x = where 

= o, (70.11) 

the total charge inside the sphere x < ^ is zero (graphically, this point is 

evidently the one where the tangent to the curve passes through the origin). 

If we cut off the curve at this point, we can say that it defines *(*) for a neutral 

atom at whose boundary the charge density remains non-zero. Physically, 

this corresponds to a “compressed” atom confined to some given finite 

volume, f 

The Thomas-Fermi equation does not take account of the exchange inter¬ 

action between electrons. The effects which this involves are of the next 

order of magnitude with respect to Z~m. Hence an allowance for the ex¬ 

change interaction in the Thomas-Fermi method requires a simultaneous 

consideration of both these effects and others of the same order of magnitude. J 

PROBLEM 
Find the relation between the energy of the electrostatic interaction between electrons 

and that of their interaction with the nucleus in a neutral atom, using the Thomas-Fermi 

Solution. The potential <f>e of the field due to the electrons is found by subtracting the 
potential Z.r of the nucleus from the total potential <j>. The energy of the interaction between 

t This approach may be useful in sti 

t This has been done by A. S. Komp 
328, 1957) and by D. Kirzhnits {ibid. S, 

he equation of state of highly compressed 

id E. S Pavlovskii (SOT-ier Physics JETP 4, 
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the electrons is therefore 

The Atom 

l'r,= 

= iz[—dV-if^dV 

= izj-dV- I"„5 3d|' 

(where 4> has been expressed in terms of n by means of (70.3)). The energy Uen of the 
interaction between the electrons and the nucleus and their kinetic energy T are therefore 

J J (2tt/,)3 

(37,2)2/3 f 
= 3—  - 7,3.'3d t-’. 

10 J 

Comparing these expressions with the previous equation, we find 

According to the virial theorem (see Mechanics, §10), for a system of particles interacting 
according to Coulomb’s law we have 27" = — U = — Uen — Uec Thus finally 

§71. Wave functions of the outer electrons near the nucleus 

We have seen, on the basis of the Thomas-b'ermi model, that the outer 

electrons in complex atoms (Z large) are mainly at distances r ~ 1 from the 

nucleus.f A number of properties of atoms, however, depend significantly 

on the electron density near the nucleus; such properties will be considered 

in §§72 and 120. To determine the order of magnitude of this density we 

may examine the variation of the wave function >p(r) of the electron in the 

atom when r varies from large (r ~ 1) to small distances. 

In the region r ~ 1, the field of the nucleus is screened by the remaining 

electrons, so that the potential energy U(r) ~ 1/r — 1. The energy of the 

electron level in this field E ~ 1. At distances of the order of the Bohr 

radius in the field of a charge Z, r ~ 1 /Z, the field of the nucleus may be 

regarded as unscreened, and U = - Z/r. In the transitional region, 1/Z < r 

< 1, the potential energy | U | is large compared with the electron energy E, 

and the condition 

M-Y- d r\pj dr A ' i ^ I 
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holds (where/; is the momentum), so that the motion of the electron is quasi- 

classical. The spherically symmetrical quasi-classical wave function is 

f” r^1- (7U> 

the order of magnitude of the coefficient (~ 1) being determined by the con¬ 

dition >p ~ 1 for “joining” to the wave function for r ~ 1. 

Applying the expression (71.1) in order of magnitude for r ~ 1 jZ (sub¬ 

stituting U = — Z/r), we obtain the required value of the wave function 

near the nucleus :f 

0O/ZWZ- (71-2) 

In accordance with the general properties of wave functions in a central 

field (§32), when the distance decreases further >p(r) either remains constant 

■ in order of magnitude (for an s electron) or begins to decrease (for l # 0). 

The probability of finding the electron in the region r < 1 \Z is 

zv~\<jj\2r3~HZ2. (71.3) 

The formulae (71.2) and (71.3) of course determine only the systematic 

variation with increasing Z, and do not take into account non-systematic 

variations from one element to the next. 

§72. Fine structure of atomic levels 

A consistent derivation of the formulae for relativistic effects in the inter¬ 

action of electrons belongs to the next volume (see RQT, §§33 and 83). 

Here we shall give only a general account of these effects as they relate to 

atomic terms. It is found that the relativistic terms in the Hamiltonian of 

an atom fall into two classes. One of these contains terms linear with respect 

to the spin operators of the electrons, while the other includes quadratic 

terms. The former correspond to the interaction between the orbital 

motion of the electrons and their spin (this interaction is called spin-orbit 

interaction), while the latter correspond to the interaction between the 

spins of the electrons (spin-spin interaction). Both interactions are of the 

same order (the second) with respect to v/c, the ratio of the velocity of the 

electrons to that of light; in practice, the spin-orbit interaction considerably 

exceeds the spin-spin interaction in heavy atoms. This is because the spin- 

orbit interaction increases rapidly with the atomic number, whereas the 

spin-spin interaction is essentially independent of Z (see below). 

The spin-orbit interaction operator is of the form 

P~sl = E A0 . sa (72.1) 

(the summation being over all the electrons in the atom), where s0 are the 

t To determine the coefficient in this formula (when the wave function is known in the 
region r - 1), we should have to use the expression (36.25) in the range r < 1 /Z. 
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spin operators of the electrons, and A0 are some “orbital” operators, i.e. opera¬ 

tors acting on functions of the coordinates. In the self-consistent field 

approximation the operators A0 are proportional to the operators la of the 

orbital angular momentum of the electrons, and Psi can then be written in 

the form 

l^=£aja.s0. (72.2) 

The coefficients in the sum are given in terms of the potential energy U(r) 

of the electron in the self-consistent field by 

h2 d U(ra) 

2m2c2ra dra ' (72.3) 

Since | £/(r)| decreases away from the nucleus, all the aa > 0. 

Regarding the interaction (72.2) as a perturbation, we should, in order to 

calculate the energy, average it with respect to the unperturbed state. The 

main contribution to the energy is given by distances close to the nucleus, 

of the order of the Bohr radius (~ h2/Zme2) for a nucleus with charge Ze. 

In this region the field of the nucleus is almost unscreened and the potential 

ene-gy is 

\U(r)\~Ze*lr~Z2me*lh2, 

so that 

ol~ h2Ujm2c2r2 

~Z\e2jhc)2m^jh2. 

The mean value of a is obtained by multiplying by the probability w of 

finding the electron near the nucleus. According to (71.3), w~Z~z, so that 

we have finally that the energy of the spin-orbit interaction of the electron is 

given by 

/ Ze2 \2 me4 

a \~fe7 

i.e. differs from the fundamental energy of the outer electrons in the atom 

(~wie4/^2) only by the factor (Ze2/hc)2. This factor increases rapidly with 

the atomic number, and reaches values of the order of unity in heavy atoms. 

The actual averaging of the operator (72.2) over the unperturbed states 

of the electron envelope is done in two steps. First of all, we average over 

electron states of the atom with given values L and S of the total orbital 

angular momentum and spin, but not with given directions of these. After 

this averaging Pn is still an operator, which, however, we must now express 

only in terms of operators of quantities characterizing the atom as a whole, 

not its individual electrons. These are the operators L and S. We denote by 

Psl the operator of the spin-orbit interaction thus averaged. Being linear 

in §, it has the form 

9sl = A S.L, (72.4) 
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where A is a constant characterizing a given (unsplit) term, i.e. depending 

on S and L but not on the total angular momentum J of the atom.} 

To calculate the energy of the splitting of a degenerate level, we must 

now solve the secular equation formed from the matrix elements of the 

operator (72.4). In this case, however, we already know the correct functions 

in the zeroth approximation, in which the matrix of Vsl is diagonal. These 

are the wave functions of states with definite values of the total angular 

momentum J. The averaging with respect to such a state involves replacing 

the operator S.L by its eigenvalues, which, according to (31.3), are 

L.S =i[/(/+l)-L(L+l)-S(S+l)]. 

Since the values of L and S are the same for all the components of a multiplet, 

and we are interested only in their relative position, we can write the energy 

of the multiplet splitting in the form 

M/C/+1)- (72.5) 

The intervals between adjacent components (with numbers J and J— 1) are 

consequently 

A Ejj-r = AJ. (72.6) 

This formula gives what is called Landes interval rule (1923). 

The constant A can be either positive or negative. For A > 0 the lowest 

component of the multiplet level is the one with the smallest possible J, i.e. 

J = \L — Sj; such multiplets are said to be normal. If A < 0, on the other 

hand, the lowest level of the multiplet is that with J = L+S; these multi¬ 

plets are said to be inverted. 

It is easy to determine the sign of A for the normal states of atoms if the 

electron configuration is such that there is only one shell not completely 

filled. If this shell is not more than half filled, then according to Hund’s 

rule (§67) all n electrons in it have parallel spins, so that the total spin has 

the greatest possible value, 5 = \n. Substituting in (72.2) sa = Sjn and 

taking aa (which is the same for all electrons in a given shell) outside the 

sum we obtain 

P5fc = (a/2S)S.L, 

i.e. A = 0./2S > 0. If the shell is more than half full, we first add and sub- 

t In order to clarify the meaning of this operation, it may be noted that averaging in 
quantum mechanics has the general significance of taking the appropriate diagonal matrix 
element. A partial averaging consists in taking a set of matrix elements that are diagonal with 
respect to only some of the quantum numbers describing the state of the system. For example, 
in this case the averaging of the operator (72.2) denotes the construction of a matrix with 
elements <,nM'LM's\Vs,\nMLMs with all possible ML, M'l and Ms, M’s and diagonal with 
respect to all the other quantum numbers (the assembly of which we denote bv n). Correspond¬ 
ingly, the operators S and L are to be regarded as matrices (.Vf's|S|Ms> and <M’l\UMl>, 
whose elements are given by (27.13). A similar device of stepw.se averaging will be needed 
in several subsequent treatments. 
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tract in (72.2) the same sum taken over the unoccupied places or holes in 

the incomplete shell. Since, for a completely filled shell, we should have 

Vsi — 0, the operator Psi is thereby represented as a sum 

P,i = - 2 aa ia.sa> 

taken only over the holes, the total spin and orbital angular momentum 

of the atom being S = - S sa, L = - Il„. By the same method as pre¬ 

viously we therefore find A — — &/2S, i.e. A < 0. 

From the above we have a simple rule which gives the value of / in the 

normal state of an atom with one incompletely filled shell. If this shell 

contains not more than half the greatest possible number of electrons for 

that shell, then / = | L — 5 |; if the shell is more than half full, / = L + S, 

As already mentioned, the spin-spin interaction, unlike the spin-orbit 

interaction, is essentially independent of Z. This is evident from the fact 

that it is a direct interaction between electrons and does not involve the field 

of the nucleus. 

For the averaged spin-spin interaction operator we should obtain, analog¬ 

ously to formula (72.4), an expression quadratic in S. The expressions S2 

and (S.L)2 are quadratic in S. The former has eigenvalues independent 

of /, and therefore does not give any splitting of the term. Hence it can be 

omitted, and we can write 

V.s.s = B(§.L)2, (72.7) 

where B is a constant. The eigenvalues of this operator contain terms inde¬ 

pendent of /.terms proportional to /(/+1), and finally a term proportional 

to /2(/ +1)2. The first of these do not give any splitting and hence are without 

interest; the second can be included in the expression (72.5), which simply 

means a change in the constant A. Finally, the last term gives an energy 

\BP<J+1)2. (72.8) 

The scheme for the construction of the atomic, levels discussed in §§66-67 

is based on the supposition that the orbital angular momenta of the electrons 

combine to give the total orbital angular momentum L of the atom, and their 

spins to give the total spin S. As has already been mentioned, this supposi¬ 

tion is legitimate only when the relativistic effects are small; more exactly, 

the intervals in the fine structure must be small compared with the differences 

between levels with different L and S. This approximation is called the 

Russell-Saunders case (H. N. Russell and F. A. Saunders 1925), and we 

speak also of LS coupling. 
In practice, however, this approximation has a limited range of applica¬ 

bility. The levels of the light atoms are arranged in accordance with the LS 
model, but as the atomic number increases the relativistic interactions in the 
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atom become stronger, and the Russell-Saunders approximation becomes 

inapplicable.! It must also be noticed that this approximation is, in parti¬ 

cular, inapplicable to highly excited levels, in which the atom contains an 

electron which is in a state with large n, and which is therefore mainly at large 

distances from the nucleus (see §68). The electrostatic interaction of this 

electron with the motion of the other electrons is comparatively weak, but 

the relativistic interaction in the rest of the atom is not diminished. 

In the opposite limiting case the relativistic interaction is large compared 

with the electrostatic (or, more precisely, compared with that part of it which 

governs the dependence of the energy on L and S). In this case we cannot 

speak of the orbital angular momentum and spin separately, since they are 

not conserved. The individual electrons are characterized by their total 

angular momenta j, which combine to give the total angular momentum J of 

the atom. This scheme of arrangement of the atomic levels is called jj coupl¬ 

ing. In practice, this coupling is not found in the pure state, but various types 

of coupling intermediate between LS and jj are observed among the levels of 

very heavy atoms. J 

A peculiar type of coupling is observed in certain highly excited states. 

Here the rest of the atom may be in a Russell-Saunders state, i.e. may be 

characterized by the values of L and S, while its coupling with the highly 

excited electron is of the jj type; this is again due to the weakness of the elec¬ 

trostatic interaction for this electron. 

The fine structure of the energy levels of the hydrogen atom has certain 

characteristic properties. It will be calculated exactly in RQT (§34), but here 

we shall only mention that, for a given principal quantum number n, the energy 

depends only on the total angular momentum j of the electron. Thus the 

degeneracy of the levels is not completely removed; to a level with given 

n and j there correspond two states with orbital angular momenta l = j ± \ 

(unless j has the value n — b, which is the greatest possible for a given n). 

Thus the level with n = 3 is split into three levels, of which the states 

$1 '2, pi -'2 correspond to one, pz<2 and J3/2 to another, and J5/2 to the third. 

§73. The Mendeleev periodic system 

The elucidation of the nature of the periodic variation of properties, ob¬ 

served in the series of elements when they are placed in order of increasing 

atomic number (D. I. Mendeleev 1869), requires an examination of the 

peculiarities in the successive completion of the electron shells of atoms. 

The theory of the periodic system is due to N. Bohr (1922). 

When we pass from one atom to the next, the charge is increased by unity 

t Nevertheless, although the quantitative formulae which describe this type of coupling 
become inapplicable, the method of classifying levels according to this scheme may itself 
st«e*n rneanin8ful for heavier atoms- especially for the lowest states (including the normal 

t For further details regarding types of coupling and the quantitative aspect of the problem, 
see, for instance. Condon and G H. Shortley, The Theory of Atomic Spectra, Cambridge 
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and one electron is added to the envelope. At first sight vve might expect 

the binding energy of each of the successively added electrons to vary 

monotonically as the atomic number increases. The actual variation, how¬ 

ever, is entirely different. 

In the normal state of the hydrogen atom there is only one electron, in 

the 1$ state. In the atom of the next element, helium, another 1j electron is 

added; the binding energy of the Is electrons in the helium atom is, however, 

considerably greater than in the hydrogen atom. This is a natural conse¬ 

quence of the difference between the field in which the electron moves 

in the hydrogen atom and the field encountered by an electron added to the 

He+ ion. At large distances these fields are approximately the same, but 

near the nucleus with charge Z = 2 the field of the He+ ion is stronger than 

that of the hydrogen nucleus with Z = 1. In the lithium atom (Z = 3), the 

third electron enters the 2s state, since no more than two electrons can be 

in Is states at the same time. For a given Z the 2s level lies above the Is 

level; as the nuclear charge increases, both levels become lower. In the 

transition from Z = 2 to Z = 3, however, the former effect is predominant, 

and so the binding energy of the third electron in the lithium atom is con¬ 

siderably less than those of the electrons in the helium atom. Next, in the 

atoms from Be (Z = 4) to Ne (Z = 10), first one more 2s electron and then 

six 2p electrons are successively added. The binding energies of these 

electrons increase on the average, owing to the increasing nuclear charge. 

The next electron added, on going to the sodium atom (Z = 11), enters 

the 3s state, and the binding energy again diminishes markedly, since the 

effect of going to a higher shell predominates over that of the increase of the 

nuclear charge. 

This picture of the filling up of the electron envelope is characteristic of the 

whole sequence of elements. All the electron states can be divided into 

successively occupied groups such that, as the states of each group are occu¬ 

pied in a series of elements, the binding energy increases on the average, but 

when the states of the next group begin to be occupied the binding energy 

decreases noticeably. Figure 24 shows those ionization potentials of elements 

that are known from spectroscopic data; they give the binding energies of 

the electrons added as we pass from each element to the next. 

The different states are distributed as follows into successively occupied 

groups: 

Is 

2s, 2p 

3s, 3p 

4i, 3d, 4p 

5s, 4d, 5p 

6s, 4f, 5 d, 6p 

7s, 6d, 5/... 

2 electrons 

18 

18 

32 

l (73.1) 
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The first group is occupied in H and He; the occupation of the second and 

third groups corresponds to the first two (short) periods of the periodic 

system, containing 8 elements each. Next follow two long periods of 18 ele¬ 

ments each, and a long period containing the rare-earth elements and 32 

elements in all. The final group of states is not completely occupied in the 

natural (and artificial transuranic) elements. 

To understand the variation of the properties of the elements as the states 

of each group are occupied, the following property of d and / states, which 

distinguishes them from s and p states, is important. The curves of the effec¬ 

tive potential energy of the centrally symmetric field (composed of the electro¬ 

static field and the centrifugal field) for an electron in a heavy atom have a 

rapid and almost vertical drop to a deep minimum near the origin; they then 

begin to rise, and approach zero asymptotically. For s and p states, the rising 

parts of these curves are very close together. This means that the electron 

is at approximately the same distance from the nucleus in these states. The 

curves for the d states, and particularly for the / states, on the other hand, 

pass considerably further to the left; the classically accessible region which 

they delimit ends considerably closer in than that for the s and p states 

with the same total electron energy. In other words, an electron in the d and/ 

states is mainly much closer to the nucleus than in the r and p states. 

Many properties of atoms (including the chemical properties of elements; 

see §81) depend principally on the outer regions of the electron envelopes. The 

above characteristic of the d and /states is very important in this connection. 

Thus, for instance, when the 4/ states are being filled (in the rare-earth ele¬ 

ments ; see below), the added electrons are located considerably closer to the 

nucleus than those in the states previously occupied. As a result, these 

electrons have practically no effect on the chemical properties, and all the 

rare-earth elements are chemically very similar. 

The elements containing complete d and f shells (or not containing these 

shells at all) are called elements of the principal groups; those in which the 

filling up of these states is actually in progress are called elements of the inter¬ 

mediate groups. These groups of elements are conveniently considered separ¬ 

ately. _ 

Let us begin with the elements of the principal groups. Hydrogen and 

helium have the following normal states: 

iH : Is 2S1/s 2He : Is2 »S0 

(the number with the chemical symbol always signifies the atomic number). 

The electron configurations of the remaining elements of the principal groups 

are shown in Table 3. 
In each atom, the shells shown on the right of the table in the same line 

and above are completely filled. The electron configuration in the shells 

that are being filled is shown at the top, while the principal quantum number 
of the electrons in these states is shown by the figure on the left of the table 
in the same line. The normal states of the whole atom are shown at the bot- 
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tom. Thus, the aluminium atom has the electron configuration Is2 2s2 2p6 3s2 

3p 2P1/2. 

The values of L and 5 in the normal state of the atom can be determined 

(the electron configuration being known) by means of Hund’s rule (§67), and 

the value of J is determined by the rule given in §72. 

Table 3 

Electron configurations of the atoms of elements in the principal groups 

5 1 lP* *!/>s s*ps I'p* 

n = 2 3Li $Be 5b eC 7N sO SF ioNe ls» 
3 
4 

iiNa 
isK 

uMg 
soCa 

isAl 14S1 15P 10S 17CI isAr 2s1 2 p' 
33p' 

4 
5 

sgCu 
37Rb 3§Sr 

3iGa 3sGe 33AS 34Se 35Br 36Kr 3d10 
4sa 4p> 

6 
4?Ag 
55Cs 

4§Cd 
56Ba 

49In 50Sn 5lSb 52Te 53I 54Xe 4 d10 
5s* 5p* 
4yi4 5rf.o 

6 s1 6 p* 
6 
7 

79AU 
87Fr 

soHg 
ssRa 

8iTl 8SPb 83Bi 84P0 85At seRn 

’SI/s ‘S„ *Pl/t 3P0 ‘Sa/2 3A ‘A/2 

The atoms of the inert gases (He, Ne, Ar, Kr, Xe, Rn) occupy a special 

position in the table: the filling up of one of the groups of states listed in 

(73.1) is completed in each of them. Their electron configurations have 

unusual stability (their ionization potentials are the greatest in their respective 

series). This causes the chemical inertness of these elements. 

We see that the occupation of different states occurs very regularly in the 

series of elements of the principal groups: first the s states and then the p 

states are occupied for each principal quantum number n. The electron 

configurations of the ions of these elements are also regular (until electrons 

from the d and /shells are removed in the ionization): each ion has the con¬ 

figuration corresponding to the preceding atom. Thus, the Mg+ ion has 

the configuration of the sodium atom, and the Mg++ ion that of neon. 

Let us now turn to the elements of the intermediate groups. The filling 

up of the 3d, 4d, and 5d shells takes place in groups of elements called 

respectively the iron group, the palladium group and the platinum group. 

Table 4 gives those electron configurations and terms of the atoms in these 

groups that are known from experimental spectroscopic data. As is seen from 

this table, the d shells are filled up with considerably less regularity than the 

s and p shells in the atoms of elements of the principal groups. Here a 

characteristic feature is the “competition” between the s and d states. It is 

seen in the fact that, instead of a regular sequence of configurations of the 

type dv s2 with increasing/), configurations of the type dp^ls or dv+2 are often 

found. Thus, in the iron group, the chromium atom has the configuration 
3d5 4s, and not 3d4 4s2; after nickel with 8 d electrons, there follows at once 
the copper atom with a completely filled d shell (and hence we place this 
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Table 4 

Electron configurations of the atoms of elements in the iron, palladium and 

platinum groups 

Iron group 

2iSc zzTi 23V ZjCr jjMn z6Fe 27C0 zsNi 

3 d 4s1 3 d8 4s! 3d3 4s3 3d3 4s 3d5 4s1 3d6 4s! 3d7 4s! 3d8 4ss 
Ar envelope + 

w3/2 3f2 T,/, ;S3 'St/J lDt ‘Ft/! ‘F, 

Palladium group 

39Y 4oZr 4iNb 42M0 43TC 44RU 4sRh 46Pd 

4d 5s! 4d! 5ss 4d4 5s 4ds 5s 4d5 5s2 4d’ 5s 4d8 5s 4d1» 
Kr envelope + 

2o3/2 SF, 'A/S '‘S3 655/z 5F* lF,/2 'St 

Platinum group 

57La 

Xe envelope + 

7lLu 72Hf 73Ta 74W 75 Re 7gOs 77lr 78Pt 

Xe envelope 1 
5d 6s! 5d8 6s! 5d3 6s2 5d‘6s! Sdb 6s2 5 d6 6s2 5d7 6s2 5d8 6s 

+V14+ 1 ‘A/s ‘F2 4F3/2 ‘A 6*Ss/2 5A 4Fs/z 8D, 

element in the principal groups). This lack of regularity is observed in the 

terms of ions also: the electron configurations of the ions do not usually 

agree with those of the preceding atoms. For instance, the V+ ion has the 

configuration 3d4 (and not 3d2 is2 like titanium); the Fe+ ion has 3d6 is 

(instead of 3d5 is2 as in manganese). We may remark that all ions found 

naturally in crystals and solutions contain only d (not $ or p) electrons in their 

incomplete shells. Thus iron is found in crystals or solutions only as the 

ions Fe++ and Fe+++, whose configurations are 3d6 and 3d5 respectively. 

A similar situation occurs in the filling up of the if shell; this takes place 

in the series of elements known as the rare earths (Table 5).f The filling up 

of the if shell also occurs in a slightly irregular manner characterized by the 

competition between if, 5d and 6s states. 

+ In books on chemistry, lutetium is also usually placed with the 
however, is incorrect, since the 4/shell is complete in lutetium; it 
in the platinum group, as in Table 4. 

;-earth elements. This, 
ust therefore be placed 
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The last group of intermediate elements begins with actinium. In this 

group the 6d and 5/ shells are filled, similarly to what happens in the group 

of rare-earth elements (Table 6). 

To conclude this section, let us examine an interesting application of the 

Thomas-Fermi method. We have seen that the electrons in the p shell first 

appear in the fifth element (boron), the d electrons for Z = 21 (scandium), 

and the/ electrons for Z = 58 (cerium). These values of Z can be predicted 

by the Thomas-Fermi method, as follows. 

An electron with orbital angular momentum / in a complex atom moves 

with an “effective potential energy”-}- of 

Ufr) = -*(r)+i(/+i)*/r*. 

The first term is the potential energy in an electric field described by the 

Thomas-Fermi potential <f>(r). The second term is the centrifugal energy, 

in which we put (1+ £)2 instead of since the motion is quasi-classical. 

Since the total energy of the electron in the atom is negative, it is clear that, 

if (for given values of Z and l) Ut{r) > 0 for all r, there can be no electrons 

in the atom concerned with the given value of the angular momentum /. If 

we consider any definite value of l and vary Z, it is found that in fact U^r) > 0 

everywhere when Z is sufficiently small. As Z is increased, a value is reached 

for which the curve of Uj(r) touches the axis of abscissae, while for larger Z 

there is a region where L/;(r) < 0. Thus the value of Z at which electrons 

with the given / appear in the atom is determined by the condition that the 

curve of L/,(r) touches the axis of abscissae, i.e. by the equations 

m = -4-+W+\?lr* = o, U,'[r) = -f (r)-(/+i)*/r» = 0. 

Substituting here the expression (70.6) for the potential, we obtain the 

equations 
Z^x(x)lx = (4/3^ (Z+J)*/**, 

Z2/3[xx'(x)-x(x)]lx = -2(4/3*)*/*(/+*)*/**. 
| (73.2) 

Dividing each side of the second equation by the corresponding side of the 

first, we find for x the equation 

X(x)lx(x) = -1/*, 

and we then calculate Z from the first of equations (73.2). A numerical 

calculation gives 

Z = 0-155(2/+1)3. 

This formula determines the value of Z for which electrons with a given l 

first appear in the atom; the error is about 10 per cent. 

Very accurate values are obtained by taking the coefficient as 0 17 instead 
of 0-155: 

Z = 0-17(2/+1)3. (73.3) 

t As in §70. we 
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For / = 1, 2, 3 this formula gives respectively, after rounding to the nearest 

integer, the correct values 5, 21, 58. For / = 4, formula (73.3) gives Z = 124; 

this means that g electrons should first appear only in the 124th element. 

§74. X-ray terms 

The binding energy of the inner electrons in the atom is so large that, if 

such an electron makes a transition into an outer unfilled shell (or is removed 

from the atom), the excited atom (or ion) is mechanically unstable with 

respect to ionization, which is accompanied by the reconstruction of the 

electron envelope and the formation of a stable ion. Flowever, because of the 

comparatively weak interaction between the electrons in the atom, the prob¬ 

ability of such a transition is comparatively small, so that the lifetime r of 

thel excited state is long. Hence the “width” hjr of the level (see §44) is so 

small that it is reasonable to regard the energies of an atom with an excited 

inner electron as discrete energy levels of “quasi-stationary” states of the 

atom. These levels are called X-ray terms.f 

The X-ray terms are primarily classified according to the shell from which 

the electron is removed, or in which, as we say, a hole is formed. Where 

the electron goes has almost no effect on the energy of the atom, and hence 

is unimportant. 

The total angular momentum of the set of electrons occupying any shell 

is zero. When one electron has been removed, the shell acquires some 

angular momentum j. For the («, l) shell, the angular momentum j can 

take the values £. Thus we obtain levels which might be denoted by 

1j1/2, 2j1/2, 2p1/2, 2p3/2,..., where the value of j is added as a suffix to the 

letter giving the position of the hole. It is usual, however, to employ special 

symbols as follows: 

l^i/2 2ji/2 2p1/2 2/>3/2 3r1/2 3p1/2 3/>3/2 3<f3/2 3 di/2 ... 

K Li Ln Lm Mi Mu Mui Mjy My 

The levels with n = 4, 5, 6 are similarly denoted by the letters N, O, P. 

Levels with the same n (denoted by the same capital letter) lie close together 

and at a distance from levels with a different n. The reason for this is that, 

owing to the relative nearness of the inner electrons to the nucleus, they are 

in the almost unscreened field of the nucleus, and hence their states are 

hydrogen-like; the energy is, to a first approximation, — Z2'2n2 (in atomic 

units), i.e. depends only on n. If relativistic effects are taken into account, 

terms with different j are separated (cf. the discussion in §72 of the fine 

structure of the hydrogen levels), such as, for example, L\ and Ln from Lm, 

and Mi and Mu from 3/m and .V/IV. These pairs of levels are said to be 

relativistic doublets. The separation of terms with different / and the same j 
(for instance Lt and Ln, .V/j and Mn) is due to the deviation of the fiefd in 

t The name is due to the fact that 
X-rays by the atom. of these levels 
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which the inner electrons move from the Coulomb field of the nucleus, 

i.e. to the taking into account of the interaction of the electron with other 

electrons. These are said to be screening doublets. The main correction 

term to the “hydrogen-like” energy of the electron results from the potential 

due to the remaining electrons in the region near the nucleus, and is pro¬ 

portional to Z4'3 (see (70.8)). However, since this correction does not 

depend on either n or /, it does not affect the level spacings. The principal 

correction terms in the level differences are therefore due to the interaction 

of one electron with those adjoining it. Since the distances between the inner 

electrons are r ~ 1/Z (the Bohr radius in the field of a charge Z), the energy 

of this interaction is — 1 /r ~ Z. Taking this correction into account, we can 

write the energy of an X-ray term, to the same accuracy, as -(Z — S)2/2n2, 

where 8 = 8(n,l) is a quantity small compared with Z, and may be regarded 

as a measure of the screening of the nuclear charge. 

Terms with two and three holes may exist in the electron shells together 

with the X-ray terms with one hole. Since the spin-orbit interaction is 

strong for the inner electrons, the holes are subject to jj coupling. 

The width of an X-ray term is determined by the total probability of all 

possible processes by rearrangement of the electron envelope of the atom so 

as to fill the hole in question. In the heavy atoms, transitions of the hole 

from a given shell to a higher one (i.e. electron transitions in the opposite 

direction) are the most important, and are accompanied 'by the emission of 

X-ray quanta. The probability of these “radiative” transitions, and therefore 

the corresponding part of the level width, increase very rapidly with the 

atomic number (as Z4) but decrease towards higher levels for a given Z. 

For lighter atoms (and higher levels) an important or even predominant 

part is played by radiationless transitions, in which the energy liberated when 

a hole is filled by an electron from above goes to remove another inner 

electron from the atom (called the Auger effect). As a result of this process 

the atom is in a state with two holes. The probabilities of these processes and 

the corresponding contribution to the level width are independent of the 

atomic number to a first approximation with respect to 1 / Z (see the Problem)f. 

PROBLEM 

Find the limiting law of dependence of the Auger width of X-ray terms on atomic number 
when the latter is sufficiently large. 

SOLUTION. The Auger transition probability is proportional to the square of a matrix 
element of the form 

A/= lotted l'idF2, 

where ifii, fa and , V2 are the initial and final wave functions of the two electrons involved 
in the transition, and V = c2/ri2 is their interaction energy. When Z is sufficiently large, the 
wave functions of the inner electrons may be regarded as hydrogen-like and the screening of 
the field of the nucleus by other electrons may be neglected (the wave function of the ioniza- 

t As an example it may be mentioned that the Auger width of the K level 
and reaches values of the order of 10 eV for higher levels. 

it 1 eV, 
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tion electron is also hydrogen-like in the region within the atom which is of importance in the 
integral M). If we carry out the calculations and all quantities are expressed in Coulomb 
units (with the constant ot = Ze2\ see §36), then the only quantity in the integral M which 
depends on Z is V = MZrn, so that M ~ hZ. The transition probability, and therefore the 
Auger width AE of the level, are proportional to 1;Z2. On returning to ordinary units (the 
Coulomb unit of energy being Zhne*, h2), we find that AE is independent of Z. 

§75. Multipole moments 

In classical theory, the electrical properties of a system of particles are 

described by its multipole moments of various orders, expressed in terms of 

the charges and coordinates of the particles. In the quantum theory, the 

definitions of these quantities are the same in form, but they must now be 

regarded as operators. 

The first multipole moment is the dipole moment, defined as the vector 

. d= Eer, 

where the summation is over all the particles, and the suffix which numbers 

the particles is omitted for brevity. The matrix of this operator, like that of 

any polar vector (see §30), has non-zero elements only for transitions between 

states of different parity. The diagonal elements are therefore always zero. 

In other words, the mean values of the dipole moment of any system of par¬ 

ticles (e.g. an atom) in stationary states are zero.f 

The same is evidently true of all 2*-pole moments with odd l. The com¬ 

ponents of such a moment are polynomials of odd degree l in the coordinates, 

which, like the components of a polar vector, change sign on inversion of 

the coordinates. The same parity selection rule therefore applies. 

The quadrupole moment of a system is defined as the symmetrical tensor 

Qik = I.e(3xixk-barZ), (75.1) 

the sum of whose diagonal terms is zero. The determination of the values of 

these quantities in a particular state of a system (an atom, say) requires an 

averaging of the operator (75.1) over the corresponding wave function. This 

averaging is conveniently carried out in two stages (cf. §72). 

Let Qilc denote the quadrupole moment operator averaged over the electron 

states with a given value of the total angular momentum J (but not of its com¬ 
ponent Mj). 

The operator thus averaged must be expressible in terms of operators of 

quantities describing the state of the atom as a whole. The only such vector 

t To avoid it 
of particles or t 
example, if the 

other than that 

■^understanding it should be emphasized that this refers to a closed system 
to a system of particles in a centrally symmetric external electric field. For 
nuclei are regarded as “fixed”, the above statement is valid for the electrons 
not for those in a molecule. 

-lmed that there is no additional (“accidental”) degeneracy of the energy level 
with respect to directions of the total angular momentum. If this is not so, 
of stationary states can be constructed which do not have any definite parity! 
ondmg diagonal elements of the dipole moment need not vanish. 
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is the “vector” J. Thus the operator Qik must have the form 

§75 

fih+JJi - !j2S<ri. (75.2) 

where the expression in parentheses is constructed so as to be symmetrical 

in the suffixes i and k and to vanish on contraction with respect to them; the 

significance of the coefficient Q will be explained later. The operators jt 

must here be understood as the familiar (§§27 and 54) matrices with respect 

to states having different values of Mj. The operator J'2 can, of course, be 

simply replaced by its eigenvalueJ(J + 1). 

Since the three components of the angular momentum J cannot simul¬ 

taneously have definite values, the same is true of the components of the 

tensor Qik. For the component Qzz, we have 

3g 
7(27-1)' 

Ozz-\n 

In a state with given values of J2 = 7(7+ 1) an<l 7* = Qzz a's0 has a 
definite value: 

Qzz = —^[M/-i/(7+ !)]• (75.3) 

For Mj = J (when the angular momentum is “entirely” in the 2-direction), 

we have Qzz — Q\ this quantity is usually called simply the quadrupole 

moment. 

For J = 0, all the elements of the angular-momentum matrix are zero, 

and the operators (75.2) therefore also vanish. They likewise vanish identi¬ 

cally when 7 = h This is easily seen by direct multiplication of the Pauli 

matrices (55.7), which are the matrices of the components of any angular 

momentum equal to 

This is no accident, but is a particular case of the general rule that the 

tensor of a 2*-pole moment (with even l) is non-zero only for states of the 

system with total angular momentum 

J>¥. (75.4) 

The tensor of a 2*-pole moment is an irreducible tensor of rank l (see Fields, 

§41), and the condition (75.4) follows from the general angular-momentum 

selection rules for the matrix elements of such tensors-the condition for 

the diagonal matrix elements to be non-zero (§107). As already mentioned, 

the parity selection rules then require that l should be even. 
It should also be noted that the electric multipole moments are purely 

“orbital” quantities; their operators do not involve the spin operators. 
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Hence, if the spin-orbit interaction is negligible, so that L and 5 are separately 

conserved, the matrix elements of the multipole moments are subject to 

selection rules with respect to the quantum number L as well as J. 

PROBLEMS 

Problem 1 Find the relation between the operators of the quadrupole moment of an 
atom in states corresponding to various components of the fine structure of a level (i.e. states 
with different values of J but given values of L and S). 

Solution. In states with given values of L and S, the operator of the quadrupole moment, 
a purely orbital quantity, depends only on the operator L, and so is given by the same 
formula (75.2) with J replaced by L and with a different constant Q. The operator (75.2) 
is obtained by a further averaging over the state with a given value of J\ 

- Z^r,-^(L+ « 

It is required to find the relation between the coefficients Qj and Ql- To do so, we multiply 
equation (1) on the left by Jt and on the right by Jk, sum over i and k, and take the eigen¬ 
values of the diagonal operators. We have 

where, by (31.4), 

The product jt Lk £< jk 

W-w. 
2J-L =/(/+1) + L(L +1) - S(S+1). 

be transformed by means of the formulae 

{£(£*} = ieikiLu {/<£(} = ieumLm, 

as in §29, Problem; the result is 

JtULtJk = (J.L)2-J.L. 

Similarly Jthjkjk = (P)2, 

;JJJ* = P(P-1). 

Thus we obtain from (1) the relation 

3J,L(2J.L—l)-27(7+l)Z.(Z.+ l) 

(7+l)(27+3)L(2Z.-l) 
(2) 

In particular, for 5 = i this formula gives 

Qj=Ql for7=Z.+i, 

Qj = Ql 
(Z-l)(2Z.+3) 

L(2L+1) 
for 7 = L-i. }- 

Problem 2. Express the quadrupole moment of an electron (charge —|e|) with orbital 
angular momentum l in terms of the mean square of its distance from the centre. 

Solution. We have to average the expression 

Q„ = -|e|r*(3 COs!fl —1) = —|e|r2(3nP —1) 

over a state with given angular momentum Z and component m = Z. The mean value of the 
angle factor is found immediately from the formula derived in §29, Problem (where U must be 
replaced by Z); the result is 

Qi = (4) 
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The sign of this quantity is opposite to that of the electron charge, as it should be: a 
particle moving with an angular momentum in the 2-direction is mainly near the plane 
2 = 0, and hence cos2# < §. 

For an electron with a given value of j = l ± £, formulae (3) give 

Qi = l^(2/-l)/(2, + 2). (5) 

Problem 3. Determine the quadrupole moment of an atom (in the ground state) in which 
all v electrons in excess of closed shells are in equivalent states with orbital angular momen¬ 
tum Z. 

Solution. Since the total quadrupole moment of completed shells is zero, the quad¬ 
rupole moment operator of the atom is given by the sum 

g,-w, Zfo+M-W+ift,]. 

taken.over the v outer electrons (here we have used formula (4)). 
Let us first suppose that v ^ 21+1, i.e. at most half the places in the shell are occupied. 

Then, by Hund’s rule (§67), the spins of all the i> electrons are parallel (so that 5 = in). 
This means that the spin wave function of the atom is symmetrical, and the coordinate 
wave function therefore antisymmetrical, with respect to these electrons. Thus the electrons 
must all have different values of m, so that the greatest possible value of Ml (and the value 
of L, which is the same) is 

L = {Ml) n.ax= i m = \v{2l-v+\). 

The required Ql is the eigenvalue Qiz for Ml = L. We therefore have 

whence, on calc'diting the 

(2Z-l)(2Z+3)m_^ 
K-§Z(Z+1)], 

2/(2/—2v+l) 

(2/-l)(2/+3) 
(6) 

The final change from Ql to Qj is effected by means of formula (2). 
The case of an atom whose outer shell is more than half filled is reduced to the previous 

one by considering holes instead of electrons: the result is therefore given by the same 
formula (6) with the opposite sign (the “hole” charge being + |f|), ■' being now taken not as 
the number of electrons but as the number of unoccupied places in the shell. 

§76. An atom in an electric field 

If an atom is placed in an external electric field, its energy levels are altered; 

this phenomenon is known as the Stark effect. 
In an atom placed in a uniform external electric field, we have a system 

of electrons in an axially symmetric field (the field of the nucleus together 

with the external field). The total angular momentum of the atom is there¬ 

fore, strictly speaking, no longer conserved; only the projection Mj of 

the total angular momentum J on the direction of the field is conserved. 

The states with different values of Mj have different energies, i.e. the electric 

field removes the degeneracy with respect to directions of the angular 
momentum. The removal is, however, incomplete: the states differing only 
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in the sign of Mj are degenerate as before. For an atom in a homogeneous 

external electric field is symmetrical with respect to reflection in any plane 

passing through the axis of symmetry (i.e. the axis passing through the nucleus 

in the direction of the field; we shall take this as the sr-axis). Hence the states 

obtained from one another by such a reflection must have the same energy. 

On reflection in a plane passing through some axis, however, the angular 

momentum about this axis changes sign (the direction of a positive revolution 

about the axis becomes that of a negative one). 

We shall suppose that the electric field is so weak that the additional energy 

due to it is small compared with the distances between neighbouring energy 

levels of the atom, including the fine-structure intervals. Then, in order to 

calculate the displacement of the levels in the electric field, we can use the 

perturbation theory developed in §§38 and 39. Here the perturbation 

operator is the energy of the system of electrons in the homogeneous field S, 

and this is 

V= -d.£= -Sdz, (76.1) 

where d is the dipole moment of the system. In the zeroth approximation, 

the energy levels are degenerate (with respect to directions of the total angular 

momentum); in the present case, however, this degeneracy is unimportant, 

and in applying perturbation theory we can proceed as if we were dealing 

with non-degenerate levels. This follows from the fact that, in the matrix 

of the quantity dz (as in that of the ^-component of any vector), only the 

elements for transitions without change of Mj are not zero (see §29), and hence 

states with different values of Mj behave independently when perturbation 

theory is applied. 

The displacement of the energy levels is determined, in the first approxi¬ 

mation, by the diagonal matrix elements of the perturbation. But all the 

diagonal matrix elements of the dipole moment vanish (§75). Thus the 

splitting of the levels in an electric field is a second-order effect with respect 

to the field.f 

Being quadratic in the field, the displacement AEn of the level En must be 

of the form 

AEn = - W'W*, (76.2) 

where ai*<n> is a symmetrical tensor of rank two; taking the z-axis in the 

direction of the field, we obtain 

A En = -|aZ2<nW2. (76.3) 

The tensor is also the polarizability of the atom in the external field: 

taking the parameters A in the general formula (11.16) to be the components 

of the vector <Sit and putting H = H0 — Sfii, we find that the mean value 

t The hydrogen atom forr 
the next section). The atoms 
hydrogen-like; see §68), beha 

> an exception; here the Stark effect is line: 
if other elements, when in highly excited stt 
e like hydrogen in sufficiently strong fields. 

in the field (see 
rs (and therefore 
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of the dipole moment of the atom, induced bv the field, is 

§76 

dfW = oA EnldSi. 

Substitution of (76.2) gives 

<&(") = oiikWSk. (76.4) 

The polarizability must be calculated by the usual rules of perturbation 

theory. According to the second-approximation formula (38.10), we have 

«<*<",= (76.5) 

The polarizability of the atom depends on its (unperturbed) state, and in 

particular on the quantum number Mj. The latter dependence can be 

written in a general form. The values of aikm for various values of Mj 

may be regarded as the eigenvalues of the operator 

“ ikM = «nh(k+Pn(Jijk+jkji-1hikp). (76.6) 

This is^the most general symmetrical tensor of rank 2 depending on the 

vector J (cf. §75). From (76.3) and (76.6) we have 

AEn = -K2{“n+2/3 n[Mj*-U(J+1)]}. (76.7) 

On summation over all values of Mj, the second term in the braces 

vanishes, so that the first term is the displacement of the “centre of gravity” 

of the split level. Moreover, according to (76.7) a level with J = h remains 

unsplit, in accordance with Kramers’ theorem (§60). 

If the atom is in a non-uniform external field (which varies only slightly 

over the dimensions of the atom), there can also exist a splitting effect linear 

in the field, due to the quadrupole moment of the atom. The operator of the 

quadrupole interaction between the system and the field has the form which 

corresponds to the classical expression (Fields, §42) for the quadrupole 

energy: 

(76.8) 

where <j> is the potential of the electric field (the derivatives being understood 

to be taken at the position of the atom). 

PROBLEMS 

Problem 1. Determine the Stark splitting of the different components of a multiplet 
level as a function of J 

Solution. The problem is conveniently solved by changing the order in which the per¬ 
turbations are-applied; we first consider the Stark splitting of the level in the absence of fine 
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structure, and then bring in the spin-orbit interaction. Since the spin of the atom does not 
interact with the external electric field, the Stark splitting of a level with orbital angular 
momentum L is given by a formula of the same form (76.2), with a tensor atk which is ex¬ 
pressed in terms of the operator L in the same way as aik in (76.6) is expressed in terms of j: 

a< jt = +/.*:/.( — 

the suffixes n being everywhere omitted. When the spin-orbit interaction is included, the 
states of the atom must be described by the total angular momentum J. The averaging of 
the operator iik over states with a given value of the angular momentum J (but not of its 
component Mj) is formally identical with the averaging carried out in §75, Problem 1. We 
thus return to formulae (76.6), (76.7), with constants a, (8 which are given in terms of the 
constants a, b by 

63J.L[2J.L— 1]—2JU+l)l(l + l) 

/(/+1X2/-1X2/+3) 

This determines the splitting as a function of J (but not of L and 5, of course; these are 
characteristics of the unsplit term on which the constants a and b also depend). 

Problem 2. Determine the splitting of a doublet level (spin 5 = i) in an arbitrary 
(not weak) electric field. 

Solution. If the splitting is not small in comparison with the interval between the 
components of the doublet, the perturbation from the electric field and the spin-orbit inter¬ 
action must be taken into account simultaneously, i.e. the perturbation operator is the sum 

V = ylS.L-l£2{a+2 b[L *2- \L{L +1)]} 

(cf. (72.4) and Problem 1). Omitting the constant terms which do not affect the splitting, 
we can write this operator in the form 

V= IA[S+L-+S-L++'2SzLz \-b£*Lz* 

(see (29.11)). For each given value of M = Mj the eigenvalues of this operator are determined 
by the roots of the secular equation formed from its matrix elements with respect to the 
states | A7/.iV/.sv = |M + J, ± j> From formulae (27.12) we find 

<M-h, \\V\M-i, i>= \A(M-\)-bS\M-\f, 

<A/+ ;, - 1| V\M + 1, -J> = + 

<A/-i, J|K|.W + i -J> = IAVI(L + M+IXL-M+I)l 

Thus (see §39, Problem 1) the level displacement is 

= -M2.VF+ v/[l^2(£'+ \)2 + b£Hbgz + A)M*], (1) 

where all terms which are the same for all components of the split doublet are omitted. 
This formula (with both signs of the root) applies to all levels with \M\ L —}. For 
|il7| = L — i there is only one state \MlMs~>, and the displacement of the level is given 
simply by the corresponding diagonal matrix element, i.e., with the same choice of the 
additive constant as in (1), 

A£ = (J.l + irXi + J)-6r-(i + i)2 (2) 

This is the same as the result obtained from formula (1) with only one sign of the root. 

Problem 3. Determine the quadrupole splitting of levels in an axially symmetric electric 
field.f 

t A similar problem for any field is in §103, Problem 6. 
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Solution. In 
&6ldz* = -2a, t 
operator (76.8) is 

The Atom §76 

field symmetrical about the 2-axis we have d2$,ex2 = d^tfi/dy2 = a, 
remaining second derivatives being zero The quadrupole energy 

Replacing the operators by their eigenvalues, we obtain for the displacement of the levels 

Problem 4. Calculate the polarizability of the hydrogen atom in the ground state. 

Solution. Owing to the spherical symmetry of the r state, the polarizability tensor is a 
scalar (Kjjt = aSik), for which we have, according to (76.5), 

a = -2e*][ ; 
, E0-Et 

the dipole moment of the electron is dz — ez, and E0 is the energy of the ground state. We 
define an auxiliary operator b by 

z 
2 h d t 

where m is the electron mass. Then Zok = (im/h2)(Ec—Ek)b<,>c, and 

2ime2Sr , 2ime2, 
« = no (1) 

To calculate this quantity, we need only know the result of applying b to the wave function 
MO- 

According to (9.2), 

= ^{Hb-bfi)+o. 

Denoting the function by b(r)ip0 and noticing that </i0 satisfies the equation Hip0 = E„ipa, 
where H = — liIA/2m + C7(r), we obtain for 6(r) the differential equation 

iipo&b + Vb.Vipo = izip o. 

By substituting b = f(r) cos 8 (where 8 is the polar angle in spherical polar coordinates and 
z — r cos 8), this becomes 

*/" + 7-77+ j/' (2) 

Its solution must satisfy the condition that fipo is finite as r ->■ 0 and as r -* cc. 
For the ground state of the hydrogen atom, ipo = (1 IVtiob2) exp( — rjas), where gb = TP/me2 

is the Bohr radius. The solution of equation (2) which satisfies the condition stated is 
/ = — iraB(aB + \r). From formula (1) we now havef 

o = j(rf cos2 6)00 = 00 = ^B3- 

Problem 5. Calculate the polarizability of an electron in a bound s state in a potential 
well with force range a such that a* 1, with k = v'(2rn|£'0|)//i and Ec the electron binding 
energy. 

Solution From the condition 1, m calculating the matrix element (26)00 we can 
neglect the region within the well, and use in all space the wave function 

H = jit'-T- 

t This result will be derived bv a different method in §77. 
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which relates to the region outside the well. (The normalization of this function also 
condition an 1; see §133.) Equation (2) in Problem 4 becomes 

\r-*r -L = ir, 

289 

:s the 

and its solution satisfying the boundary conditions is / = —ir2/2/t. A calculation using 
formula (1) gives 

o = me2j 4/i2/c4. 

§77. A hydrogen atom in an electric field 

The levels of the. hydrogen atom, unlike those of other atoms, undergo 

a splitting proportional to the field (the linear Stark effect) in a uniform 

electric field. This is due to the occurrence of an accidental degeneracy in 

the hydrogen terms, whereby states with different l (for a given principal 

quantum number n) have the same energy. The matrix elements of the dipole 

moment for transitions between these states are not zero, and hence the secular 

equation gives a non-zero displacement of the levels, even in the first approxi- 

mation.-f- 

For purposes of calculation it is convenient to choose the unperturbed 

wave functions so that the perturbation matrix is diagonal with respect to 

each group of mutually degenerate states. It is found that this is achieved 

by quantizing the hydrogen atom in parabolic coordinates. The wave func¬ 

tions of the stationary states of the hydrogen atom in parabolic co¬ 

ordinates are given by formulae (37.15) and (37.16). 

The perturbation operator (the energy of an electron in the field S) is 

Sz= \ <o(£—ri)\ the field is directed along the positive a-axis, and the force 

on the electron along the negative 2-axis.}; We are interested in the matrix 

elements for transitions n-jign -> nfnfm', for which the energy (i.e. the prin¬ 

cipal quantum number n) is unaltered. It is easy to see that, of these, only 

the diagonal matrix elements 

J =Kj/J (*W)| 

= H jj A »*0>i)/n, m2(P2)(Pi2-Pz2) dftdp2 (77.1) 

are non-zero (we have made the substitution f = npv tj = np2). The matrix 

concerned is evidently diagonal with respect to the number m, while its 

diagonality with respect to the numbers nv n2 follows from the orthogonality 

of the functionsfnim for different n\ and the same m (see below). The integra¬ 

tions over pj and p2 in (77.1) are separable; the integrals obtained are calcu- 

t In the following calculations we do not take account of the fine structure of the hydrogen 
levels. Hence the field must be, though not strong (for perturbation theory to be applicable), 
yet such that the Stark splitting is large in comparison with the fine structure. For the opposite 
case see RQT, §52, Problem. 

J In this section we use atomic units. 
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lated in §f of the Mathematical Appendices (integral (f.6)). After a simple 

calculation, we find for the corrections to the energy levels in the first approxi- 

mationj- 

Ea) = %Sn{^-n2), {112) 

or, in ordinary units, 

£U) = |»(Bi-»i2)M«fA2 me~. 

The two extreme components of the split level correspond to — n — 

nz = 0 and n1 = 0, n2 — n — 1. The distance between these two extreme 

levels is, by (77.2), 

2£n{n-\), 

i.e. the total splitting of the level by the Stark effect is approximately pro¬ 

portional to nt. It is natural that the splitting should increase with the prin¬ 

cipal quantum number: the further the electrons are from the nucleus, the 

greater the dipole moment of the atom. 

The presence of the linear effect means that, in the unperturbed state, the 

atom has a dipole moment whose mean value is 

d, = -f n{nx-nz). (77.3) 

This is in accordance with the fact that, in a state determined by parabolic 

quantum numbers, the distribution of the charges in the atom is not sym¬ 

metrical about the plane z = 0 (see §37). Thus, for n± > n^, the electron is 

predominantly on the side of positive z, and hence the atom has a dipole 

moment opposite to the external field (the charge on the electron being 

negative). 

In the previous section we have shown that a uniform electric field cannot 

entirely remove degeneracy: there always remains a twofold degeneracy of 

states differing in the sign of the projection of the angular momentum on the 

direction of the field (in this case, states whose projected angular momenta 

are + m). However, we see from formula (77.2) that even this removal of 

the degeneracy does not occur in the linear Stark effect in hydrogen: the 

displacement of the levels (for given n and n\ - n2) is independent of m and 

A further removal of the degeneracy occurs in the second approximation; 

the calculation of this effect is the more interesting in that the linear Stark 

effect is altogether absent in states with n\ = w2. 

To calculate the quadratic effect, it is not convenient to use ordinary 

perturbation theory, since it would be necessary to deal with infinite sums 

of complicated form. Instead we use the following slightly modified method. 

Schrodinger’s equation for the hydrogen atom in a uniform electric field 

is of the form 

HA+E+l/r-^ =0. 

■f- This result was derived bv K. Schwarzschild and P. Epstein (1916), using the old 
quantum theory, and by \V. Paul, and E. Schrbdinger (1926) using quantum mechanics. 
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Like the equation with £ = 0, it allows separation of the variables in 

parabolic coordinates. The same substitution (37.7) as was used in §37 

gives the two equations 

^(v)+(1E,-i7+w)/!" _w*' I (?7 4> 

Pi+P* = 1. ' 

which differ from (37.8) by the presence of the terms in £. We shall regard 

the energy E in these equations as a parameter which has a definite value, 

and the quantities /3lf j92 as eigenvalues of corresponding operators; it is easy 

to see that these operators are self-conjugate. These quantities are deter¬ 

mined, by solving the equations, as functions of E and £, and then the condi¬ 

tion /?i + /?2 = 1 gives the energy as a function of the external field. 

For an approximate solution of equations (77.4), we regard the terms con¬ 

taining the field £ as a small perturbation. In the zeroth approximation 

( £ = 0), the equations have the familiar solutions 

A = V</n m(H 

/. = 
(77.5) 

where the functions fn m are the same as in (37.16), and instead of the energy 

we have introduced the parameter 

• = V(~2 E). (77.6) 

The corresponding values of j92 (from the equations (37.12), in which n 

must be replaced by 1/e) are 

AW=(M-iH+i)«. &«» =(H2+£|m|+£)e. (77.7) 

The functions^ with different nx for a given e are orthogonal, as are the eigen¬ 

functions of any self-conjugate operator; we have already used this fact above 

in discussing the linear effect. In (77.5) these functions are normalized by 

the conditions 

J/i*df = l, jtfdv = L 

The corrections to and /?2 in the first approximation are determined by 
the diagonal matrix elements of the perturbation: 

Pim = K / f2A2df, = -\£ J ,*/.**,. 
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Calculation gives 

The Atom §77 

ft(1> = lf(W+6nM + ’n*+6n1+3\tn\+2)lf. 

The expression for /S2(1) is obtained by replacing n1 by n2 and changing the 

sign. 

In the second approximation we have, by the general formulae of perturba¬ 

tion theory, 

<?2 l(£2k’v|2 
am = — > -lv; l-. 

i6n/^ni 

The integrals appearing in the matrix elements (f2),,^. are calculated in § f 

of the Mathematical Appendices. The only non-zero elements are 

(nv.-i = = -2(2n1+\m\W[nl{n1+\m\W> 

tfV,-. =(Hn-2.ni = V'[”iK-l)K+|m|)(«1+|m|-l)]/e2. 

The differences occurring in the denominators are 

ft(0)K)-/V0)K') = <n-ni'). 

As a result of the calculations we have 

= — &*{\m\-\-2nx+ l)[4m2+ 17(2|m|n1+2n12-|- |m|+2^)+18]/16«5; 

the expression for /92(2) is obtained by replacing by w2. Combining the 

expressions obtained and substituting in the relation Pi + P2— 1, we have 

the equation 

£n-<f2n[17ni!+51(n1-n2)2-9m2+19J/16£8+|<?n(n1-n2)/£i! = 1. 

Solving by successive approximations, we have in the second approximation 

for the energy E == — \ e2 the expression 

1 <?2 
E =-+f <?n{nx-n2)-n4[17n2-3K-n2)2-9m2+19]. (77.8) 

2nz 16 

The second term is the already familiar linear Stark effect, and the third is 

the required quadratic effect (G. Wentzel, I. Waller and P. Epstein 1926). 

We notice that this quantity is always negative, i.e. the terms are always 

displaced downwards by the quadratic effect. The mean value of the dipole 

moment is obtained by differentiating (77.8) with respect to the field; in the 

states with ni = nz it is 

dz =£n4(17n2-9m2+19)<f. (77.9) 
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Thus the polarizability of the hydrogen atom in the normal state (n = 1, 

m = 0) is 9 2 (see also §76, Problem 4). 

The absolute value of the energy of the hydrogen terms falls rapidly as the 

principal quantum number n increases, while the Stark splitting is increased. 

Hence it is of interest to examine the Stark effect for highly excited levels in 

fields so strong that the splitting they cause is comparable with the energy 

of the level itself, and perturbation theory is inapplicable.f This can be done 

by using the fact that states with large values of n are quasi-classical. 

By the substitution 

fi = XiI Vi, h = XilVv 

the equations (77.4) are brought into the form 

V 

tf)xi = 

'^X2 = 

(77.10) 

(77.11) 

Each of these equations, however, is the same in form as the one-dimensional 

Schrodinger’s equation, the part of the total energy of the particle being 

taken by \E, and that of the potential energy by the functions 

v*n) = 
2tj 8t^ 

respectively. 

Figures 25 and 26 respectively show the approximate form of these 

functions (for m > 1). By Bohr and Sommerfeld’s quantization rule (48.2) 

we write 

(77.12) 

j VVUE-Ui.mdZ =K+iK ) 

! (77-i3) 
] V{2[iE-U2{r1)]}dv =(n2+l)ir, 1 

t The applicability of perturbation theory to high levels requires the perturbation to be 
small only in comparison with the energy of the level itself (the binding energy of the electron), 
and not with the intervals between the levels. For in the quasi-classical case (which corresponds 
to highly excited states) the perturbation can be regarded as small if the force due to it is 
small in comparison with those acting on the particle in the unperturbed system; and this 
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where ni, n2 are integers.f These equations determine implicitly the depen¬ 

dence of the parameters ft and ft on E. Together with the equation ft+ft = 1, 

they therefore give the energies of the levels when displaced by the electric 

field. The integrals in equations (77.13) can be reduced to elliptic integrals; 

these equations can be solved only numerically. 

Fig. 25 

The Stark effect in strong fields is complicated by another phenomenon, 
the ionization of the atom by the electric field (C. Lanczos 1931). The 

potential energy Sz of an electron in the external field takes arbitrarily large 

negative values as z -*■ - 00. Added to the potential energy of the electron 

within the atom, it has the effect that the region of possible motion for the 

electron (whose total energy E is negative) includes, besides the region 

inside the atom, the region of large distances from the nucleus in the direction 

of the anode. These two regions are separated by a potential barrier, whose 

width diminishes as the field increases. However, in quantum mechanics 

there is always a certain non-zero probability that a particle will penetrate a 

potential barrier. In the case we are considering, the emergence of the elec¬ 

tron from the region within the atom, through the barrier, is simply the 

ionization of the atom. In weak fields the probability of this ionization is 
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vanishingly small. It increases exponentially with the field, however, and 

becomes considerable in fairly strong fields.f 

PROBLEMS 

Problem 1. Determine the probability (per unit time) of the ionization of a hydrogen atom 
(in the ground state) in an electric field such that S 1 (in ordinary units, <o <§ m>|e|5/^1). 

Solution.t In parabolic coordinates there is a potential barrier “along the rj coordinate” 
(Fig. 26); the "extraction” of the electron from the atom in the direction z -*■ — oo 
corresponds to its passage into the region of large ij. To determine the ionization probability, 
it is necessary to investigate the form of the wave function for large tj (and small f; we shall 
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In the coefficient of the exponential we put for 7; > 1 

ipol « i.p ~ WC'?7;-1); 

in the exponent we must keep also the next term of the expansion of p( 7-): 

w*= exp[~ I d,?+ / 

where ijj 1 jS. Effecting the integration and neglecting compared with 
possible, we obtain 

1x1s 
4 ^ e-t 

■nS 
(4) 

The total probability current through a plane perpendicular to the 2-axis (i.e. the required 
ionization probability 10) is 

» = J W^P dp, 

where p is the cylindrical radius in this plane. For large tj (and small |) we can put 

dp = dy/Cft?) w W(.Vl£)d£- 

Substituting also for the velocity of the electron 

* x/R-i + K7?)] = x/^-i), 

we have 

“•*JlxlW(fij-i)cif, 

that is, finally, 

vi = (4/<^)e-E/3^, 

or, in ordinary units. 

(5) 

w = (4m3|e|9l&h7) exp (-2w‘|e|‘/3^*). 

Problem 2. Find the probability that an electron will be removed by an electric field from 
a potential well with short-range forces, in which the electron is in a bound r state. The 
electric field is assumed weak, in the sense that |e|(? <$ where k = {2m\E\)jh, 
E is the binding energy of the electron in the well and m is the electron mass (Yu. N. Demkov 
and G. F. Drukarev 1964). 

Solution. As in Problem 1, for a weak electric field, large distances from the centre 
(xr > 1) are important. At these distances the wave function of the bound state of the electron 
in the well (without the field tf) has the asymptotic form 

* 
A\Zx^_rr 

where A is a dimensionless constant depending on the specific form of the well.f In parabolic 
coordinates we have r = Hf+ r/). and in the region 77 £ the wave function has the form 

^'expI-Wf+tl)]- (6) 

■f For example, if the radius a of the well is so small that ok 1, then A 1 /\Z(2w), 
see §133. 
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In the rest of this solution the units of mass, length and time will be m, l/<c and ml tin2 
respectively. 

The function (6) is a product of functions of f and rj. In the presence of an electric field, 
the dependence of <J> on f may be taken to be the same as in (6) (cf. Problem 1). To determine 
its dependence on tj, we use Schrodinger’s equation in parabolic coordinates. Unlike the 
case of the Coulomb field, the rapid decrease of the field of the well has the result that this 
field may be neglected at the large distances important in the problem. The separation of 
variables in Schrodinger's equation then gives again the equations (77.11), in which we must 
put E = — i, m — 0, and the separation parameters now satisfy the condition 

ft.+ £2 = 0. 

The parameter ft must be taken as + (so that the dependence 4> ~ satisfies the first 
equation (77.11)—approximately for small ft?); then ft = — £, and the equation for <fi as a 
function of q is 

Solving this in the same way as (2), we have in place of (3) 

Ixl2 _ li!We-«exp(-2 f \p\dv-r,o), 
VO P J 

k i?4**’] 

Next, instead of (4) we find 

|y|2 = ———— exp ( — £ — —Y 
V(&v~ 0 V W' 

and finally, instead of (5), 

or in ordinary units, 

exp (—2/3^), 

3mlfkf/ 

Problem 3. Find with exponential accuracy the probability that an electron will be removed 
from a potential well by a uniform variable electric field <f = <fa cos tot; it is assumed that 
the field frequency and amplitude satisfy the conditions 

Aw « f|^0 « 

where « = V(2m\E\)lti, and |£| is the binding energy of the electron in the well (L. V. Keldysh 
1964).+ 

Solution. With the conditions stated, the removal probability vi is exponentially small. 
To calculate just the exponent (not the coefficient of the exponential), it is sufficient to 
regard the motion as one-dimensional in the direction of the field (the u-axis). 

It will be convenient to describe the electric field by a vector (not scalar) potential. 

+ This may i 
intense light-wi 
the neutral rem 
the electromagr 

efer for example, to the ionization of a singly charged negative ion by an 
ve; here the potential well is created bv the interaction of the electron with 
under of the atom. The condition huj ^ |£j then ensures that the field of 
etic wave may be treated classically. 
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Az = A = —(c<fcw) sin wt. Then the Hamiltonian of the electron in the region outside the 
well is 

H 

see (111.3). It does not contain z. With the dimensionless variables and parameters 

r = —t „ = 2 kz LI = = F = \e\m6o 
2m ' kx- | E:‘ h-K3 

we can write Schrodinger’s equation in the form 

The boundary condition is that the solution 4'(-q, t) with ij-»0 should be the same as the 
electron wave function in the well (with energy E — —]£|), unperturbed by the wave: 

T -* e‘« as t, - 0. (7) 

Since the problem is quasi-classical, we seek the solution (with exponential accuracy) in 
the form 4" = exp(i.S), where S(ij, r) is the classical action. Since the Hamiltonian is in¬ 
dependent of the coordinate -q, the generalized momentum p,(= p is conserved along the 
classical path, so that 

S I HU>. T')dT'- • rjp + A, .P 
F 
Li ' 

a7 («) 

where A and t0 are constants. From the significance of the action as a function of the 
coordinates (see Mechanics, §43), vve must take p as the value which brings the path to the 
specified point rj at time t, i.e. regard p as a function of ij and t determined by the equation of 
motion 8S/8p = constant: 

V 
f mp, r) 
J Bp 

(9) 

the constant is chosen so that -q — 0 for r = t„. Formulae (8) and (9) give the action as a 
function of the two constants t0 and A. In order to obtain a solution satisfying the condition 
(1) we must (as in finding the general integral of the Hamilton-Jacobi equation; see the 
footnote in Mechanics, §47) regard A as a function of t0, and r0 as a function of coordinate and 
time defined by 

BS/dro = 0. (10) 

It is evident that A(t0) = t„; then, for t; = 0 and t = t0, we have S = t„, i.e. S = t in 
accordance with the condition (7). Equation (10) then becomes 

H(p,r o)+l=0. (11) 

Equations (9) and (11) together determine the functions t0(tj, t) and p(v, r), and hence (after 
substitution in (8)) the wave function 4“(t;, t). 

The required probability te is proportional to the current density along the z-axis. In 
the classically accessible region, this is Uil4"|B. The coordinate value at which this region 
begins is given bv the point where im S ceases to increase. At that point (8 im S/ot?)t = 0, 
and since 8S/8r, = p, im p = 0; from (9) and (11) it then follows that re p = 0 also. From 
this condition we find the value of t0, and substituting p = 0 in (11) gives 
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whence 

the fact that the “t 
Finally 

Utd = isinli_1y, y = SL , . 
7 7 IF |e|,fD ’ 

t0 is imaginary corresponds to the classical impossibility of the process. 

■US- 
and r may be taken to have any real value; the imaginary part of the integral is unaffected. 
Calculation of the integral gives 

ie~exp|-Mt/(y)|, f(y) = ^1 + -L^sinh-‘y - (12) 

The limiting forms of the function/(y) are 

f(y) ~ h for V < 1. 
« log 2y - A for y P 1. 

The limiting value of w as y -» 0 corresponds to the probability of removal of the particle 
from the potential well by a constant field. 

Formula (12) is applicable if the exponent is large. For this we must in any case have 
fiw <S |£|. 



CHAPTER XI 

THE DIATOMIC MOLECULE 

§78. Electron terms in the diatomic molecule 

In the theory of molecules an important part is played by the fact that the 

masses of atomic nuclei are very large compared with those of the electrons. 

Because of this difference in mass, the rates of motion of the nuclei in the 

molecule are small in comparison with the velocities of the electrons. This 

makes it possible to regard the motion of the electrons as being about fixed 

nuclei placed at given distances from one another. On determining the 

energy levels Un for such a system, we find what are called the electron terms 

for the molecule. Unlike those for atoms, where the energy' levels were 

certain numbers, the electron terms here are not numbers but functions of 

parameters, the distances between the nuclei in the molecule. The energy 

Un includes also the electrostatic energy of the mutual interaction of the nu¬ 

clei, so that Un is essentially the total energy of the molecule for a given 

arrangement of the fixed nuclei. 

We shall begin the study of molecules by taking the simplest type, the 

diatomic molecules, which permit the most complete theoretical investigation. 

The electron terms of the diatomic molecule are tunctions of only one 

parameter, the distance r between the nuclei. 

One of the chief principles in the classification of the atomic terms was 

the classification according to the values of the total orbital angular momen¬ 

tum L. In molecules, however, there is no law of conservation of the total 

orbital angular momentum of the electrons, since the electric field of several 

nuclei is not centrally symmetric. 

In diatomic molecules, however, the field has axial symmetry about an 

axis passing through the two nuclei. Hence the projection of the orbital 

angular momentum on this axis is here conserved, and we can classify the 

electron terms of the molecules according to the values of this projection. 

The absolute value of the projected orbital angular momentum along the 

axis of the molecule is customarily denoted by the letter A; it takes the values 

0, 1, 2. The terms with different values of A are denoted by the capital 

Greek letters corresponding to the Latin letters for the atomic terms with 

various L. Thus, for A = 0, 1, 2 we speak of E, II and A terms respectively; 

higher values of A usually need not be considered. 

Next, each electron state of the molecule is characterized by the total spin 

S of all the electrons in the molecule. If A is not zero, there is degeneracy 

of degree 2S +1 with respect to the directions of the total spin.f The number 

t We here neglect the fine structure due to relativistic interactions (see §§83 and 84 below). 

300 
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25+1 is, as in atoms, called the multiplicity of the term, and is written as an 

index before the letter for the term; thus 3n denotes a term with A = 1, 

5=1. 

Besides rotations through any angle about the axis, the symmetry of the 

molecule allows also a reflection in any plane passing through the axis. If 

we effect such a reflection, the energy of the molecule is unchanged. The 

state obtained from the reflection is, however, not completely identical with 

the initial state. For, on reflection in a plane passing through the axis of the 

molecule, the sign of the angular momentum (which is an axial vector) about 

this axis is changed. Thus we conclude that all electron terms with non-zero 

values of A are doubly degenerate: to each value of the energy, there corres¬ 

pond two states which differ in the direction of the projection of the orbital 

angular momentum on the axis of the molecule. In the case where A = 0 the 

state of the molecule is not changed at all on reflection, so that the £ terms are 

not degenerate. The wave function of a £ term can only be multiplied by a 

constant as a result of the reflection. Since a double reflection in the same 

plane is an identity transformation, this constant is + 1. Thus we must dis¬ 

tinguish £ terms whose wave functions are unaltered on reflection and those 

whose wave functions change sign. The former are denoted by £~, and the 

latter by £'. 

If the molecule consists of two similar atoms, a new symmetry appears, 

and with it an additional characteristic of the electron terms. A diatomic 

molecule with identical nuclei has a centre of symmetry at the point bisecting 

the line joining the nuclei.f (We shall take this point as the oiigin.) Hence 

the Hamiltonian is invariant with respect to a simultaneous change of sign 

of the coordinates of all the electrons in the molecule (the coordinates of the 

nuclei remaining unchanged). Since the operator of this transformation! 

also commutes with the orbital angular momentum operator, we have the 

possibility of classifying terms with a given value of A according to their 

parity': the wave functions of even (g) states are unchanged when the co¬ 

ordinates of the electrons change sign, while those of odd (u) states change sign. 

The suffixes u, g indicating the parity are customarily written with the letter 

for the term: IIK, IT?, and so on. 

It is an empirical fact that the normal electron state in the great majority 

of chemically stable diatomic molecules is completely symmetrical: the 

electron wave function is invariant with respect to all symmetry transforma¬ 

tions in the molecule. The total spin 5 is zero too, in the great majority of 

cases, in the normal state. In other words, the ground term of the molecule 

is *£-, and it is 1 £ —if the molecule consists of two similar atoms. Exceptions 

to these rules are formed by the molecules O2 (whose normal term is 3£-ff) 
and NO (normal term 211). 

t It has also a plane of symmetry perpendicularly bisecting the axis of the molecule. This 
element of symmetry need not be considered separately, however, since the existence of 
axU1 f plane f°U°WS automatlcall>' ftom the existence of a centre of symmetry and of an 

t Mot to be confused with that of inversion of the coordinates 
molecule (cf §86). 

of all the particles in the 
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PROBLEM 

Effect the separation of variables in Schrodinger's equation for the electron terms of the 
ion H2~, using elliptic coordinates. 

Solution. Schrodinger's equation for an electron in the field of two protons at rest is 
(using atomic units) 

A^+2^£h-4-^ = 0 

The elliptic coordinates f, tj are defined by 

f = (r. +t2)IR. V = (r2-r,)/^ 1 « f € oo. - 1 € , € 1, 

and the third coordinate <t> is the angle of rotation about an axis passing through the two 
nuclei at a distance R apart. (See Mechanics, §48.) The Laplacian operator in these co¬ 
ordinates is 

4 re Be c "I 1 & 
A =- —(f2 — I)—I—(1 — »32)— +-. 

Putting 

* = ximvV''*, 

we obtain for X and Y the equations 

dr dX~\ / A2 \ 

dr dy-| / A* \ 

where A is the separation parameter. 
Each electron term E(R) is described by three quantum numbers: A, and two "elliptical 

quantum numbers” n(, nn which determine the number of zeros of the functions X(() and 
Y(vl 

§79. The intersection of electron terms 

The electron terms in a diatomic molecule, as functions of the distance r 

between the nuclei, can be represented graphically by plotting the energy as 

a function of r. It is of considerable interest to examine the intersection 

of the curves representing the different terms. 

Let £/i(r), £/*(r) be two different electron terms. If they intersect at some 

point, then the functions Ux and L\ will have neighbouring values near this 

point. To decide whether such an intersection can occur, it is convenient to 

put the problem as follows. Let us consider a point r0 where the functions 

L\{r), Ut{r) have very close but not equal values (which we denote by Elt Et), 

and examine whether or not we can make L\ and Ut equal by displacing the 

point a short distance Sr. The energies Ex and E2 are eigenvalues of the 

Hamiltonian J?0 of the system of electrons in the field of the nuclei, which 

are at a distance r0 from each other. If we add to the distance r0 an increment 

Sr, the Hamiltonian becomes 80+P, where V = Sr . dll J dr is a small cor¬ 

rection; the values of the functions Us at the point r0 + Sr can be regarded 
as eigenvalues of the new Hamiltonian. This point of view' enables us to 
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determine the values of the terms L\(r), U2{r) at the point r0 + 8r by means of 

perturbation theory, P being regarded as a perturbation to the operator 

n 0. 
The ordinary method of perturbation theory is here inapplicable, however, 

since the eigenvalues Ev E2 of the energy in the unperturbed problem are very 

close to each other, and their difference is in general not large compared with 

the magnitude of the perturbation; the condition (38.9) is not fulfilled. Since, 

in the limit as the difference E2—E1 tends to zero, we have the case of degener¬ 

ate eigenvalues, it is natural to attempt to apply to the case of close eigenvalues 

a method similar to that developed in §39. 

Let fa, fa be the eigenfunctions of the unperturbed operator f}0 which 

correspond to the energies Ex, E2. As an initial zero-order approximation we 

take, instead of fa and f2 themselves, linear combinations of them of the form 

f = Clfa+c2fa. (79.1) 

Substituting this expression in the perturbed equation 

(fiD+P)f= Efa (79.2) 

we obtain 

ci(Ei+fr—E)i(j1-\-c2(E2-\-P^—E)ip2 = 0. 

Multiplying this equation on the left by fa* and fa* in turn, and integrating, 

we have two algebraic equations: 

cl(E1 + Vll-E)+ciV12 = 0, 

ClV2l+c2{E2 + V22-E) = 0, 

Since the operator V is Hermitian, the matrix elements Vn and V22 are 

real, while V12 = V21*. The compatibility condition for these equations is 

I v12 = 0, 
I v21 e2+v2,-e 

whence 

E = *(£i+£2+ Vn+ V22)±^/{l{El-Ei+ Vn-T22)S+[T12H. (79.4) 

This formula gives the required eigenvalues of the energy in the first approxi¬ 
mation. 

If the energy values of the two terms become equal at the point r0 + 8r 

(i.e. the terms intersect), this means that the two values of E given by formula 

(79.4) are the same. For this to happen, the expression under the radical in 

(79.4) must vanish. Since it is the sum of two squares, we obtain, as the 
condition for there to be points of intersection of the terms, the equations 

Ex-E2+ Vu- V2t = 0, F12 = 0. (79 5) 
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However, we have at our disposal only one arbitrary parameter giving the 

perturbation V, namely the magnitude hr of the displacement. Hence the 

two equations (79.5) cannot in general be simultaneously satisfied (we sup¬ 

pose that the functions ipt are chosen to be real, so that F12 also is real). 

It may happen, however, that the matrix element V12 vanishes identically; 

there then remains only one equation (79.5), which can be satisfied by a suit¬ 

able choice of hr. This happens in all cases where the two terms considered 

are of different symmetry. By symmetry we here understand all possible forms 

of symmetry: with respect to rotations about an axis, reflections in planes, 

inversion, and also with respect to interchanges of electrons. In the diatomic 

molecule this means that we may be dealing with terms of different A, differ¬ 

ent parity or multiplicity, or (for 2 terms) 2+ and 2“ terms. 

The validity of this statement depends on the fact that the perturbation 

operator (like the Hamiltonian itself) commutes with all the symmetry 

operators for the molecule: the operator of the angular momentum about 

the axis, the reflection and inversion operators, and the operators of inter¬ 

changes of electrons. It has been shown in §§29 and 30 that, for a scalar 

quantity whose operator commutes with the angular momentum and in¬ 

version operators, only the matrix elements for transitions between states 

of the same angular momentum and parity are non-zero. This proof remains 

valid, in essentially the same form, for the general case of an arbitrary 

symmetry operator. We shall not pause to repeat it here, especially since 

in §97 we shall give another general proof, based on group theory. 

Thus we reach the result that, in a diatomic molecule, only terms of differ¬ 

ent symmetry can intersect, while the intersection of terms of like symmetry is 

impossible (E. Wigner and J. von Neumann 1929). If, as a result of some 

approximate calculation, we obtain two intersecting terms of the same 

symmetry, they are found to move apart on calculating the next approxi¬ 

mation, as shown by the continuous lines in Fig. 27. 

We emphasize that this result not only is true for the diatomic molecule, 

but is a general theorem of quantum mechanics; it holds for any case where 

the Hamiltonian contains some parameter and its eigenvalues are consequently 

functions of that parameter. 

In the terminology of group theory (see §96), the general condition for the 

Fig. 27 
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possible intersection of terms is that the terms should belong to different 

irreducible representations of the symmetry group of the Hamiltonian of 

the system.f 

In a polyatomic molecule, the electron terms are functions of not one but 

several parameters, the distances between the various nuclei. Let 5 be the 

number of independent distances between the nuclei; in a molecule of N{> 2) 

atoms, this number is $ = 3N—6 for an arbitrary arrangement of the nuclei. 

Each term Un(ru ... , rs) is, from the geometrical point of view, a surface in 

a space of s + 1 dimensions, and we can speak of the intersections of these 

surfaces in manifolds of varying numbers of dimensions, from 0 (intersection 

in a point) to r—1. The derivation given above is wholly valid, except that 

the perturbation V is here determined not by one but by r parameters, the 

displacements 8^, ... , 8rs. Even with two parameters, the two equations 

(79.5) can in general be satisfied. Thus we conclude that, in polyatomic 

molecules, any two terms may intersect. If the terms are of like symmetry, 

the intersection is given by the two conditions (79.5), from which it follows 

that the number of dimensions of the manifold in which the intersection 

occurs is s —2. If the terms are of different symmetry, on the other hand, 

there remains only one condition, and the intersection takes place in a mani¬ 

fold of r—1 dimensions. 

Thus for s = 2 the terms are represented by surfaces in a three-dimensional 

system of coordinates. The intersection of these surfaces occurs in lines 

(r — 1 = 1) when the symmetry of the terms is different, and in points 

(s—2 = 0) when it is the same. It is easy to ascertain the form of the surfaces 

near the point of intersection in the latter case. The value of the energy near 

the points of intersection of the terms is given by formula (79.4). In this 

expression the matrix elements I'll. ^22, Va are linear functions of the dis¬ 

placements 8rlf 8r2, and hence are linear functions of the distances rb rt 

themselves. Such an equation determines an elliptic cone, as we know from 

analytical geometry. Thus, near the points of intersection, the terms are 

represented by the surface of an arbitrarily situated double elliptic cone 

(Fig. 28, p. 304). 

§80. The relation between molecular and atomic terms 

As we increase the distance between the nuclei in a diatomic molecule, we 

have in the limit two isolated atoms (or ions). The question thus arises of 

the correspondence between the electron terms of the molecule and the states 

of the atoms obtained by moving them apart (E. Wigner and E. Witmer 1928). 
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This relation is not one-to-one; if we bring together two atoms in given states, 

we may obtain a molecule in various electron states. 

Let us first suppose that the molecule consists of two different atoms. Let 

the isolated atoms be in states with orbital angular momenta L^, L2 and spins 

Su S2, and let ^ L2. The projections of the angular momenta on the 

line joining the nuclei take the values M1= —Lu —L^ + l, ..., and 

M2 = — L2, — Z,2 + l.L2. The absolute value of the sum M1+Mi deter¬ 

mines the angular momentum A obtained on bringing the atoms together. 

On combining all possible values of M1 and M2, we find the following values 

for the numbers of times that we obtain the various values of A = \M1+M2\: 

A = Z-j+Z., twice 

Lj+Z-j— 1 four times 

Lx—L2 2(2L2+1) times 

L2—L2— 1 2(2L2+1) times 

1 2(2L2+1) times 

0 2L2+1 times. 

Remembering that all terms with A ^ 0 are doubly degenerate, while 

those with A = 0 are not degenerate, we find that there will be 

1 term with A = Lj+Lj, \ 

2 terms with A = Lj+L2— 1, 

2Lt+l terms with A = Lt—Lt 

2L2+1 terms with A = Lx—Lt— 1, 

} (80.1) 

2Z,S+1 terms with A = 0; 
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in all, (ZLg+lXZ^ + l) terms with values of A from 0 to L^+L^. 

The spins Slt S2 of the two atoms combine to form the total spin of the 

molecule in accordance with the general rule for the addition of angular 

momenta, giving the following possible values of 5: 

S-Sj+S., SH-5,-1, (80.2) 

On combining each of these values with each value of A in (80.1), we obtain 

the complete list of all possible terms in the molecule formed. 

For E terms there is also the question of sign. This is easily resolved by 

noticing that the wave functions of the molecule can be written, as r ->• oo, 

in the form of products (or sums of products) of the wave functions of the 

two atoms. An angular momentum A = 0 can be obtained either by adding 

two non-zero angular momenta of the atoms such that = —Afs, or from 

M1 = M2 = 0. We denote the wave functions of the first and second atoms 

by ipFor M = \M-y\ = \M%\ # 0, we form the symmetrized 

and antisymmetrized products 

P+ = 

A reflection in a vertical plane (i.e. one passing through the axis of the mole¬ 

cule) changes the sign of the projection of the angular momentum on the 

axis, so that </jO)iV/i <P{2)m are changed into ipw _a/, </d2) ..M respectively, and 

vice versa. The function ip + is thereby unchanged, while ip~ changes sign; the 

former therefore corresponds to a E+ term and the latter to a E_ term. Thus, 

for each value of M, we obtain one E+ and one E~ term. Since M can take 

L2 different values (M = 1, ..., L2), we have in all L2 E+ terms and L2 E- 

terms. 

If, on the other hand, M1 — M2 = 0, the wave function of the molecule 

is of the form ip = pll)0 tpw0. In order to ascertain the behaviour of the func¬ 

tion ipa)o on reflection in a vertical plane, we take a coordinate system with 

its origin at the centre of the first atom, and the z-axis along the axis of the 

molecule, and we notice that a reflection in the vertical xz-plane is equivalent 

to an inversion with respect to the origin, followed by a rotation through 180° 

about they-axis. On inversion, the function ipll)o is multiplied by Pi, where 

Pi = ± 1 is the parity of the given state of the first atom. Next, the result 

of applying to the wave function the operation of an infinitely small rotation 

(and therefore that of any finite rotation) is entirely determined by the total 

orbital angular momentum of the atom. Hence it is sufficient to consider 

the particular case of an atom having one electron, with orbital angular 

momentum l (and a z-component of the angular momentum m = 0); on 

putting L in place of l in the result, we obtain the required solution for any 
atom. The angular part of the wave function of an electron with m = 0 is apart 
from a constant coefficient, P,(cos 6) (see (28.8)). A rotation through 180= 
about the y-axis is the transformation x —x, y -> y, z -> —z Dr, in 
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spherical polar coordinates, r -+ r, 6 tt — 6, <p -> tt — <fi. Then cos 6 -> 

— cos 6, and the function Pi(cos 6) is multiplied by (— l)h 

Thus we conclude that, as a result of reflection in a vertical plane, the func¬ 

tion ipwo is multiplied by (— 1 Similarly, </<(2)o is multiplied by 

(— \)LtPz, so that the wave function ift = </'{1>o(A(2,o is multiplied by 

(— l)Li+LtPiP2- The term is E+or E~ according as this factor is 4-1 or — 1. 

Summarizing the results obtained, we find that, of the total number 

2Z-2 +1 of S terms (with every possible multiplicity), Lz + l terms are 

E+ and L? are E~, if (- \)LPL,P\P2 = +l,and vice versaii {-\)L^L,P\P2 

= -1. 
Let us now turn to a molecule consisting of similar atoms. The rules for 

the addition of the spins and orbital angular momenta of the atoms to form 

the total 5 and A for the molecule remain the same here as for a molecule 

composed of different atoms. The difference is that the terms may be even 

or odd. Here we must distinguish two cases, according as the combined 

atoms are in the same or different states. 

If the atoms are in different states,f the total number of possible terms is 

doubled in comparison with the number when the atoms are different. For a 

reflection with respect to the origin (this being the point bisecting the axis of 

the molecule) results in an interchange of the states of the two atoms. Sym¬ 

metrizing or antisymmetrizing the wave function of the molecule with respect 

to an interchange of the states of the atoms, we obtain two terms (with the 

same A and S), of which one is even and the other odd. Thus we have al¬ 

together the same number of even and odd terms. 

If, on the other hand, both atoms are in the same state, the total number of 

states is the same as for a molecule with different ctoms. An investigation 

which we shall not give here on account of its length J leads to the following 

results for the parity of these states. Let Ng, Nu be the numbers of even and 

odd terms with given values of A and S'. Then 

if A is odd, Ng = Nu; 

if A is even and S' is even (S = 0, 2, 4, ...), Ne = Nu+1; 

if A is even and S is odd (S = 1, 3, 5,...), Nu = Ng+1. 

Finally, we must distinguish, among the E terms, between E+ and Xr. Here, 

if S is even, Ng+ = Nu~ +1 = L +1; 

if S' is odd, Nu+ = IVf- + l = L+1, 
where Lx = L2= L. All the E+ terms are of parity ( — l)6', and all E- 

terms are of parity (—l)s+1. 

Besides the problem that we have examined of the relation between the 

molecular terms and those of the atoms obtained as r -»■ co, we may also 

propose the question of the relation between the molecular terms and those 

of the “composite atom” obtained as r -> 0, i.e. when both nuclei are brought 

to a single point (for example, between the terms of the H2 molecule and those 

of the He atom). The following rules can be deduced without difficulty. 
From a term of the “composite” atom having spin S, orbital angular momen- 
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turn L and parity P, we can obtain, on moving the constituent atoms apart, 

molecular terms with spin S and angular momentum about the axis A - - 

0, 1,..., L, with one term for each of these values of A. The parity of the 

molecular term is the same as the parity P of the atomic term (g for P = + 1 

and u for P = —1). The molecular term with A = 0 is a term if 

(— 1)PP = + 1, and a term if (— 1)PP = —1. 

PROBLEMS 

Problem 1. Determine the possible terms for the molecules Ha, N2, O,, Cla which can 
be obtained by combining atoms in the normal state. 

Solution. According to the rules given above, we find the following possible terms: 
Hj molecule (atoms in the *5 state): 

Na molecule (atoms in the *5 state): 

12+, 3Z+li, sZ+„ »&■„; 

Cl2 molecule (atoms in the 'P state): 

2'x+, >n„ »n„, >a0, 23s+„, 3z-„ 3n„, 3n„, 3a„; 

O, molecule (atoms in the 3P state): 

2iz+„, ‘n„ 3n„ ‘A,, 23z+„, 3z-„, 3n„, 3n„ 3a„, 
252>„, »s-„, sn„, 3nu, 3a„. 

The figures in front of the symbols indicate the number of terms of the type concerned, if 
this number exceeds unity. 

Problem 2. The same as Problem 1, but for the molecules HC1, CO. 

Solution. When unlike atoms are combined, the parity of their states is important 
also. From formula (31.6) we find that the normal states of the H. O and C atoms are even, 
while that of the Cl atom is odd (see Table 3 for the electron configurations of these atoms). 
From the rules given above, we have 

HC1 molecule (atoms in the 2Sg and 2PU states): 

i.32+, wn; 

CO molecule (both atoms in the 3Pg state): 

21.3.SZ+, 1.3.32- 21-3'5n, i.3.3A. 

§81-. Valency 

The property of atoms of combining with one another to form molecules 

is described by means of the concept of valency. To each atom we ascribe 

a definite valency, and when atoms combine their valencies must be mutually 

satisfied, i.e. to each valency bond of an atom there must correspond a 

valency bond of another atom. For example, in the methane molecule 

CH4, the four valency' bonds of the quadrivalent carbon atom are satisfied 

by the four univalent hydrogen atoms. In going on to give a physical inter¬ 
pretation of valency, we shall begin with the simplest example, the com¬ 
bination of two hydrogen atoms to form the molecule H2. 
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Let us consider two hydrogen atoms in the ground state (2S). When they 

approach, the resulting system may be in the molecular state 1E+, or 3S+„. 

The singlet term corresponds to an antisymmetrical spin wave function, and 

the triplet term to a symmetrical function. The coordinate wave function, 

on the other hand, is symmetrical for the 1L term and antisymmetrical for the 

3E term. It is evident that the ground term of the H2 molecule can only be 

the term. For an antisymmetrical wave function <)>{Tu r2) (where rx and r2 

are the radius vectors of the two electrons) always has nodes (since it vanishes 

for rx = r2), and hence cannot belong to the lowest state of the system. 

A numerical calculation shows that the electron term 1E in fact has a deep 

minimum corresponding to the formation of a stable H2 molecule. In the 

3E state, the energy U(r) decreases monotonically as the distance between 

the nuclei increases, corresponding to the mutual repulsion of the two hydro¬ 

gen atomsf (Fig. 29). 

Thus, in the ground state, the total spin of the hydrogen molecule is zero, 

5 = 0. It is found that the molecules of practically all chemically stable 

compounds of elements of the principal groups have this property. Among 

inorganic molecules, exceptions are formed by the diatomic molecules 02 

(ground state 3E) and NO (ground state 2IT) and the triatomic molecules 

N02, C102 (total spin 5 = $). Elements of the intermediate groups have 

special properties which we shall discuss below, after studying the valency 

properties of the elements of the principal groups. 
The property of atoms of combining with one another is thus related to 

their spin (W. Heitler and H. London 1927). The combination occurs in 

t Here we ignore the 

“Lt'erm'ako' This mini 
curve, and would not be 

der Waals attraction forces between^ the 

-n, however, is very shallow in comparisc 
ceptible on the scale of Fig. 29. 

ms (see §89). The 
U(r) curve for the 

/ith that on the 
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such a way that the spins of the atoms compensate one another. As a quanti¬ 

tative characteristic of the mutual combining powers of atoms, it is convenient 

to use an integer, twice the spin of the atom. This is equal to the chemical 

valency of the atom. Here it must be borne in mind that the same atom may 

have different valencies according to the state it is in. 

Let us examine, from this point of view, the elements of the principal 

groups in the periodic system. The elements of the first group (the first 

column in Table 3, the group of alkali metals) have a spin 5 = | in the normal 

state, and accordingly their valencies are unity. An excited state with a higher 

spin can be attained only by exciting an electron from a completed shell. 

Accordingly, these states are so high that the excited atom cannot form a stable 

molecule.f 

The atoms of elements in the second group (the second column in Table 3, 

the group of alkaline-earth metals) have a spin 5 = 0 in the normal state. 

Hence these atoms cannot enter into chemical compounds in the normal state. 

However, comparatively close to the ground state there is an excited state 

having a configuration sp instead of s2 in the incomplete shell, and a total 

spin 5=1. The valency of an atom in this state is 2, and this is the principal 

valency of the elements in the second group. 

The elements of the third group have an electron configuration s2p in the 

normal state, with a spin 5 = $. However, by exciting an electron from the 

completed 5-shell, an excited state is obtained having a configuration sp2 and a 

spin 5 = 3/2, and this state lies close to the normal one. Accordingly, the 

elements of this group are both univalent and tervalent. The first two ele¬ 

ments in the group (boron, aluminium) behave only as tervalent elements. 

The tendency to exhibit a valency 1 increases with the atomic number, and 

thallium behaves equally as a univalent and as a tervalent element (for example, 

in the compounds T1C1 and T1C13). This is due to the fact that, in the first 

few elements, the binding energy in the tervalent compounds is greater than 

for the univalent compounds, and this difference exceeds the excitation energy 

of the atom. 

In the elements of the fourth group, the ground state has the configuration 

s2p2 with a spin of 1, and the adjacent excited state has a configuration sp3 

with a spin 2. The valencies 2 and 4 correspond to these states. As in the 

third group, the first two elements (carbon, silicon) exhibit mainly the higher 

valency (though the compound CO, for example, forms an exception), and 

the tendency to exhibit the lower valency increases with the atomic number. 

In the atoms of the elements of the fifth group, the ground state has the 

configuration s2p3 with a spin 5 = 3/2, so that the corresponding valency 

is three. An excited state of higher spin can be obtained only by the transi¬ 

tion of one of the electrons into the shell with the next higher value of the 

principal quantum number. The nearest such state has the configuration 

spV and a spin 5 = 5/2 (by s' we conventionally denote here an $ state of an 

electron with a principal quantum number one greater than m the state j). 

t See the end of this section for the elements copper, silver and gold. 
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Although the excitation energy of this state is comparatively high, the 

excited atom can still form a stable compound. Accordingly, the elements of 

the fifth group behave as both tervalent and quinquevalent elements (thus, 

nitrogen is tervalent in NH3 and quinquevalent in HN03). 

In the sixth group of elements, the spin is 1 in the ground state (configura¬ 

tion s^p1), so that the atom is bivalent. The excitation of one of thep electrons 

leads to a state of spin 2, while the excitation of an s electron in addition 

gives a state sp3s'p' of spin 3. In both excited states the atom can enter into 

stable molecules, and accordingly exhibits valencies of 4 and 6. The first 

element of the sixth group (oxygen) shows only the valency 2, while the sub¬ 

sequent elements show higher valencies also (thus, sulphur in H2S, S02, S03 

is respectively bivalent, quadrivalent and sexivalent). 

In the seventh group (the halogen group), the atoms are univalent in the 

ground state (configuration s^p5, spin 5 = \). They can, however, enter into 

stable compounds when they are in excited states having configurations 

i2pV, s2p3s'p', sp3s'p'z with spins 3/2, 5/2, 7/2 and valencies 3, 5, 7 respec¬ 

tively. The first element in the group (fluorine) is always univalent, but the 

subsequent elements also exhibit the higher valencies (thus, chlorine in HC1, 

HC102, HC10S, HC104 is respectively univalent, tervalent, quinquevalent 

and septivalent). 

Finally, the atoms of the elements in the group of inert gases have com¬ 

pletely filled shells in their ground states (so that the spin 5 = 0), and their 

excitation energies are high. Accordingly, the valency is zero, and these 

elements are chemically inactive.f 

The following general remark should be made concerning all these discus¬ 

sions. The assertion that an atom enters into a molecule with a valency per¬ 

taining to an excited state does not mean that, on moving the atoms apart to 

large distances, we necessarily obtain an excited atom. It means only that the 

distribution of the electron density in the molecule is such that, near the 

nucleus of the atom in question, it is close to that in the isolated and excited 

atom; but the limit to which the electron distribution tends as the distance 

between the nuclei is increased may correspond to non-excited atoms. 

When atoms combine to form a molecule, the completed electron shells in 

the atoms are not much changed. The distribution of the electron density 

in the incomplete shells, on the other hand, may be considerably altered. In 

the most clearly defined cases of what is called heteropolar binding, all the 

valency electrons pass over from their own atoms to other atoms, so that we 

f Some of them nevertheless form stable compounds with fluorine and oxygen. These 
valencies may be due to a transfer of electrons from the outermost complete shell to the 
incomplete / or d states, whose energies are comparatively near. 

There is also an attraction which occurs in the interaction of an inert gas atom wit an 
excited atom of the same element. This is due to the doubling in the number of possible 
states obtained on bringing together two atoms, if these atoms are of the same element but 
in different states (see §80). The transition of the excitation from one atom to the other here 
replaces the exchange interaction which brmgs about t e 
He, is an example of such a molecule. The same type 
composed of two similar atoms (for instance, H2+). 
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may say that the molecule consists of ions with charges equal (in units of e) 

to the valency. The elements of the first group are electropositive: in hetero- 

polar compounds they lose electrons, forming positive ions. As we pass to 

the subsequent groups the electropositive character of the elements becomes 

gradually less marked and changes into electronegative character, which is 

present to the greatest extent in the elements of the seventh group. Regard¬ 

ing heteropolarity the same remark should be made as was made above con¬ 

cerning excited atoms in the molecule. If a molecule is heteropolar, this does 

not mean that, on moving the atoms apart, we necessarily obtain two ions. 

Thus, from the molecule CsF we should in fact obtain the ions Cs+ and F_, 

but the molecule NaF gives in the limit the neutral atoms Na and F (since 

the affinity of fluorine for an electron is greater than the ionization potential 

of caesium but less than that of sodium). 

In the opposite limiting case of what is called homopolar binding, the atoms 

in the molecule remain neutral on the average. Homopolar molecules, un¬ 

like heteropolar ones, have no appreciable dipole moment. The difference 

between the heteropolar and homopolar types is purely quantitative, and any 

intermediate case may occur. 

Let us now turn to the elements of the intermediate groups. Those of 

the palladium and platinum groups are very similar to the elements of the 

principal groups as regards their valency properties. The only difference is 

that, owing to the comparatively deep position of the d electrons inside the 

atom, they interact only slightly with the other atoms in the molecule. As a 

result, “unsaturated" compounds, whose molecules have non-zero spin 

(though in practice not exceeding |), are often found among the compounds 

of these elements. Each of the elements can exhibit various valencies, and 

these may differ by unity, and not only by two as with the elements of the 

principal groups (where the change in valency is due to the excitation of some 

electron whose spin is compensated, so that the spins of two electrons are 

simultaneously released). 

The elements of the rare-earth group are characterized by the presence of an 

incomplete / shell. The / electrons lie much deeper than the d electrons, 

and therefore take no part in the valency. Thus the valency of the rare- 

earth elements is determined only by the s and p electrons in the incomplete 

shells.f However, it must be borne in mind that, when the atom is excited, 

/ electrons may pass into s and p states, thereby increasing the valency by 

one. Hence the rare-earth elements too exhibit valencies differing by unity 

(in practice they are all tervalent and quadrivalent). 

The elements of the actinium group occupy a unique position. Actinium 

and thorium have no / electrons, and their valencies involve d electrons. 

In their chemical properties they are therefore analogous to elements of the 

palladium and platinum groups, not to the rare earths. The uranium atom in 

the normal state contains / electrons, but in its compounds it too has no / 
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electrons. Finally, the atoms of the elements neptunium, plutonium, 

americium and curium contain/electrons in compounds also, but the electrons 

which participate in their valencies are again s and d electrons. In this sense 

they are homologues of uranium. The maximum possible number of “un¬ 

paired” s and d electrons is one and five respectively, and so the maximum 

valency of elements in the actinium group is six, whereas the maximum 

valency of the rare-earth elements (with $ and p electrons participating in 

the valency) is 1 + 3 =4. 

The elements of the iron group occupy, as regards their valency properties, 

a position intermediate between the rare-earth elements and those of the palla¬ 

dium and platinum groups. In their atoms, the d electrons lie comparatively 

deep, and in many compounds take no part in the valency bonds. In these 

compounds, therefore, the elements of the iron group behave like rare-earth 

elements. Such compounds include those of ionic type (for instance FeCl2, 

FeCl3), in which the metal atom enters as a simple cation. Like the rare- 

earth elements, the elements of the iron group can show very various valencies 

in these compounds. 

Another type of compound of the iron-group elements is formed by what 

are called complex compounds. These are characterized by the fact that the 

atom of the intermediate element enters into the molecule not as a simple 

ion, but as part of a complex ion (for instance the ion MnO,- in KMn04, or 

the ion Fe(CN)64- in K4Fe(CN)6). In these complex ions, the atoms are 

closer together than in simple ionic compounds, and in them the d electrons 

take part in the valency bond. Accordingly, the elements of the iron group 

behave in complex compounds like those of the palladium and platinum groups. 

Finally, it must be mentioned that the elements copper, silver and gold, 

which in §73 we placed among the principal groups, behave as intermediate 

elements in some of their compounds. These elements can exhibit valencies 

of more than one, on account of a transition of an electron from a d shell to a 

p shell of nearly the same energy (for example, from 3d to 4p in copper). In 

such compounds the atoms have an incomplete d shell, and hence behave as 

intermediate elements: copper like the elements of the iron group, and silver 

and gold like those of the palladium and platinum groups. 

PROBLEM 
Determine the electron terms of the molecular ion H2+ obtained when a hydrogen atom in 

the normal state combines with an H+ ion, for distances R between the nuclei large compared 
with the Bohr radius (L. Landau 1961; C. Herring 1961).f 

Solution. This problem is analogous in form to §50, Problem 3: instead of two 
one-dimensional potential wells we have here two three-dimensional wells (round the two 
nuclei) with axial symmetry about the line joining the nuclei. The level J Ec = — i (the ground 
level of the hydrogen atom) is split into two levels U„(R) and UU(R) (the terms 2£B+ and 

t For the corresponding problem of the H, molecule, see L. P. Gor’kovand L. P. Pitaevskii, 
Soviet Physics Doklady 8, 788, 1964; C. Herring and M. Flicker, Physical Review 134, A362, 
1964 (the second of these papers corrects an error of calculation in the first). 
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2£u+), corresponding to the electron wave functions 

315 

Ar. = -WwltM-wll, 
V2 

which are symmetrical and antisymmetrical about the plane * = 0 which bisects the line 
joining the nuclei (which are at (±iR, 0, 0)). Here t&c(x, y, z) is the wave function of the 
electron in one of the potential wells. Exactly as in §50, Problem 3, we find 

Vg.u(R)-Ea = + || jjp- dy dz, (1) 

where the integration is over the plane x — O.t 
The function tpo (corresponding to motion around nucleus 1, say, at x = ^R) is sought 

in the form 

where a is a slowly varying function (for a hydrogen atom, a = 1). The function i/>o must 
satisfy Schrodinger’s equation 

+ = (3) 

where n, rz are the distances of the electron from nuclei 1 and 2. In this equation the total 
energy of the electron is Eo — \/R, since Eo itself includes the energy 1 /R of the Coulomb 
repulsion of the nuclei. 

Since the function tpo decreases rapidly away from the x-axis, only the region where y 
and z are small compared with R is important in the integral (1). For y, z R, substitution 
of (2) in (3) gives 

da a a 

7x+ \R + x~~R ==°' 

here we have neglected the second derivatives of the slowly varying function a and put 
r, !=» iR + x. The solution of this equation which becomes unity as x R (i.e. in the 
neighbourhood of nucleus 1) is 

Formula (1) now gives 

U<i, -'=/■ 

The amount of the splitting isj 

U„-U = -4Re-R~\ W 

At sufficiently large distances this expression decreases exponentially and becomes less 
than the effect in the second approximation with respect to the dipole interaction of the H 
atom and the H* ion. Since the polarizability of the hydrogen atom in the normal state is 
9/2 (see (77.9)), and the field of the H4 ion is & = 1/i?2, the corresponding interaction energy 

+ Note that the effect sought is therefore determined by the range of distances at which the 
electron interacts in the same way with both nuclei 

t The corresponding result for the Ha molecule, according to the 

U,-Uu= - l-64«5/ae-S« 
papers quoted above, is 
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is — 9/4.R4, and when this is taken into account we have 

l's,u(R) -Eo = +-Re-*-. 

The second term becomes comparable with the first when R = 10-8. It may also be noted 
that the term Uu has a minimum of -5 -8 x 10"5 atomic unit ( -1 -6 x 1 O'3 eV) when R = 12-6.f 

§82. Vibrational and rotational structures of singlet terms in the 

diatomic molecule 

As has been pointed out at the beginning of this chapter, the great differ¬ 

ence in the masses of the nuclei and the electrons makes it possible to divide 

the problem of determining the energy levels of a molecule into two parts. 

We first determine the energy levels of the system of electrons, for nuclei at 

rest, as functions of the distance between the nuclei (the electron terms). 

We can then consider the motion of the nuclei for a given electron state; this 

amounts to regarding the nuclei as particles interacting with one another in 

accordance with the law Un(r), where Un is the corresponding electron term. 

The motion of the molecule is composed of its translational displacement as a 

whole, together with the motion of the nuclei about their centre of mass. The 

translational motion is, of course, without interest, and we can regard the 

centre of mass as fixed. 

For convenience of discussion, let us first consider the electron terms in 

which the total spin S' of the molecule is zero (the singlet terms). The 

problem of the relative motion of two particles (the nuclei) which interact 

according to the law U(r) reduces to that of the motion of a single particle 

of mass M (the reduced mass of the two particles) in a centrally symmetric 

field U(r). By U(r) we mean the energy of the electron term considered. 

The problem of motion in a centrally symmetric field U{r), however, 

reduces in turn to that of a one-dimensional motion in a field where the 

effective energy is equal to the sum of U(r) and the centrifugal energy. 

We denote by K the total angular momentum of the molecule, composed 

of the orbital angular momentum L of the electrons and the angular momen¬ 

tum of the rotation of the nuclei. Then the operator of the centrifugal energy 

of the nuclei is 

B(r)(R-L)* 

where we have introduced the notation 

S(r) = ft/2Mr> (82.1) 

which is customary in the theory of diatomic molecules. Averaging this 

quantity over the electron state (for a given r), we obtain the centrifugal 

f This m 
that of the 

im, which is due to van der Waals forces, is very shallow compared with 
Up(R) which corresponds to the normal state of the stable ion Ha + : the 

s -060 atomic unit ( — 16-3 eV), at R = 2 0. 
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energy as a function of r, which must appear in the effective potential energy 

UK{r). Thus 

UK{r) = U(r)+B(r)( K-L)‘, (82.2) 

where the line denotes the average mentioned. 

Let us carry out the averaging for a state in which the molecule has a 

definite value of the square of the total angular momentum K2 = K(K+ 1) 

(where K is integral) and a definite value of the component of the electron 

angular momentum along the axis of the molecule (the .sr-axis) Lz = A. 

Expanding the parenthesis in (82.2), we have 

UK(r) = U(r) + B(r)K(K + 1) - 2B(r) L. K + B(r)U. (82.3) 

The last term depends only on the electron state and does not contain the 

quantum number K\ it may be simply included in the energy U(r). We shall 

show that the same is true of the term preceding it. 

If the component of the angular momentum along an axis has a definite 

value, the mean value of the angular momentum vector is also along that axis; 

see the end of §27. If n denotes a unit vector along the .sr-axis, we therefore 

haveL = An. In classical mechanics, the angular momentum of rotation of a 

system of two particles, such as nuclei, is r x p, where r = rn is the radius 

vector between the two particles and p the momentum of their relative 

motion. This quantity is perpendicular to n. In quantum mechanics, 

the same will be true of the operator of the angular momentum of rotation 

of the nuclei: (K —L).n = 0, or K.n = L.n. Since the operators are equal, 

so of course are their eigenvalues, and, since n.L = Lz = A, we have 

K . n = A. (82.4) 

Thus, in the term before the last in (82.3), L.K = n.KA = A2, and is 

independent of K. Redefining the function U(r), we can finally write the 

effective potential energy as 

UK(r) = U(r) + B(r)K(K+l). (82.5) 

From the equation Kz = A it follows that, for a given value of A, the 

qliantum number K can take only values 

K 2 A. (82.6) 

On solving the one-dimensional Schrodinger’s equation with the potential 

energy (82.5), we obtain a series of energy levels. We arbitrarily number these 

levels (for each given K) in order of increasing energy, using a number 
» = 0, 1, 2, ... ; v = 0 corresponds to the lowest level. Thus the motion 
of the nuclei causes a splitting of each electron term into a series of levels 
characterized by the values of the two quantum numbers K and t-. 
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The number of these levels (for a given electron term) may be either finite 

or infinite. If the electron state is such that, as r oo, the molecule becomes 

two isolated neutral atoms, then as r -> oo the potential energy U(r) (and 

therefore UK(r)) tends to a constant limiting value U( cc) (the sum of the 

energies of the two isolated atoms) more rapidly than 1 h2 tends to zero (see 

§89). The number of levels in such a field is finite (see §18), though in actual 

molecules it is very large. The levels are so distributed that, for any given 

value of K, there is a definite number of levels (with different values of v), 

while the number of levels with the same K diminishes as K increases, until 

a value of K is reached for which there are no levels at all. 

If, on the other hand, as r -*• cc the molecule disintegrates into two ions, 

at large distances U(r)—U(co) becomes the energy of the attraction of the 

ions according to Coulomb’s law (~ 1/r). In such a field there is an infinite 

number of levels, which become closer and closer as we approach the limiting 

value U(cc). We may remark that, for the majority of molecules, the previous 

case is found in the normal state; only a comparatively small number of mole¬ 

cules become pairs of ions when their nuclei are moved apart. 

The dependence of the energy levels on the quantum numbers cannot be 

completely calculated in a general form. Such a calculation is possible only 

for low excited levels which lie not too far above the ground level, j- Small 

values of the quantum numbers K and v correspond to these levels. It is 

with such levels that we are in fact usually concerned in the study of molecular 

spectra, and hence they are of particular interest. 

The motion of the nuclei in slightly excited states can be regarded as small 

vibrations about the equilibrium position. Accordingly we can expand U(r) 

in a series of powers of £ = r—re, where rt is the value of r for which U(r) 

has a minimum. Since U'(rr) = 0, we have as far as terms of the second 

order 

U(r) = U.+\Mu*?, 

where Ue = U(re), and we is the frequency of the vibrations. 

In the second term in (82.5)—the centrifugal energy—it is sufficient to 

put r = re, since it already contains the small quantity K(K+1). Thus we 

have 

UK(r) = U.+BJC(K+\)+iM^, (82.7) 

where Be — h2j2Mr2 = h2j2I is what is called the rotational constant 

(I = Mre2 is the moment of inertia of the molecule). 

The first two terms in (82.7) are constants, while the third corresponds 

to a one-dimensional harmonic oscillator. Hence we can at once write down 

the required energy levels: 

E = Ue+B,K(K+ l)+A«.(e+i). (82.8) 
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Thus, in the approximation considered, the energy levels are composed of 

three independent parts: 

E = Eel+Er+Ev. (82.9) 

The first term, Eei = Ue, is the electron energy (including the energy of the 

Coulomb interaction of the nuclei for r = re) \ the second term is 

Er=BeK(K+1) (82.10) 

the rotational energy from the rotation of the molecule,f and the third term 

Ev = ho>e(v+i) (82.11) 

is the energy of the vibrations of the nuclei within the molecule. The number 

v denumerates, by definition, the levels with a given K in order of increasing 

energy; it is called the vibrational quantum number. 

For a given form of the potential energy curve U(r), the frequency is 

inversely proportional to \/M. Hence the intervals AEv between the 

vibrational levels are proportional to 1 jy'M. The intervals AEr between 

the rotational levels contain in the denominator the moment of inertia 7, and 

are therefore proportional to 1/M. The intervals AEeI between the electron 

levels, however, are independent of M, like the levels themselves. Since m(M 

(m being the electron mass) is a small parameter in the theory of diatomic 

molecules, we see that 

AZsel > AEV > AZsr. (82.12) 

This shows the rather unusual distribution of the energy levels of the mole¬ 

cule. The vibrational motion of the nuclei splits the electron terms into 

levels lying comparatively close together. These levels, in turn, exhibit a fine 

splitting due to the rotational motion of the molecule. J 

In subsequent approximations, the separation of the energy into indepen¬ 

dent vibrational and rotational parts is impossible; rotational-vibrational 

terms appear, which contain both K and v. On calculating the successive 

t The wave function describing the rotation of a diatomic molecule (without spin) is 
essentially the same as that of a symmetrical top (§103). Unlike the top, the molecule has a 
rotation described by only two angles (2 = <j>, fi = 8), which define the direction of its 
axis. The rotational wave function differs from (103.8) by the absence of the factor e,lcyl v/(2w) 
and m the notation for the quantum numbers. Since, by (82.4), the number A is equal to the 
component of the total angular momentum K along the axis of the molecule (the C-axis in 
§103), we must replace ./, M and k by if, M and A (here M = Ki). Thus 

J As an example, 
molecules: 

EM, B) - Oaa,<«(</>, 8, 0). 

give the values of Ue, fiwe and B„ (in electron-volts) for a few 

Ho 
~Ue 4-7 
tiw, 0-54 
103 X Be 7-6 

o2 
5-2 
0-20 
0-18 

0-29 
0-25 
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approximations, we should obtain the levels 2? as an expansion in powers of the 

quantum numbers K and v. 

We shall calculate here the next approximation after (82.8). To do this, 

we must continue the expansion of U(r) in powers of £ up to terms of the 

fourth order (cf. the problem of an anharmonic oscillator in §38). Similarly, 

the expansion of the centrifugal energy is extended as far as the terms in £2. 

We then obtain 

UK(r) = Ut+lM^?+(h>l2Mr>)K(K+l)- 

-a?+b£i-(h2IMr*)K(K+l)£+(3h*l2MrS)K(K+ l)f. (82.13) 

Let us now calculate the correction to the eigenvalues (82.8), regarding the 

last four terms in (82.13) as the perturbation operator. Here it is sufficient, 

for the terms in £2 and £4, to take the first approximation of perturbation 

theory, but for those in £ and £3 we must calculate the second approximation, 

since the diagonal matrix elements of f and f3 vanish identically. All the 

matrix elements needed for the calculation are derived in §23 and in §38, 

Problem 3. As a result, we obtain an expression which is usually written in 

the form 

E = Etl+fUo,(v+i)-xthwt(v+W+BvK(K+l)-DtK2(K+iy, (82.14) 

where 

Bv = = B0—txtv. (82.15) 

The constants xe, Be, a„, De are related to the constants appearing in (82.13) 

by 

Bt = A£/27, D. = 4Bt3lhW, 

, —jl 
hu>e VMco^V MB, } 2ftu.Wu./ L2 Mue2 J 

(82.16) 

The terms independent of v and K are included in Eel. 

PROBLEM 

Determine the accuracy of the approximation which gives the separation of the electron 
and nuclear motions in a diatomic molecule. 

Solution. The total Hamiltonian of the molecule may be written H = fr + flel, where 
Tr = p2/2M is the operator of the kinetic energy of the relative motion of the nuclei 
(p = —ihSjSr; r is the radius vector joining the nuclei; M is the reduced mass). The 
Hamiltonian He/ includes the operators of the kinetic energy of the electrons, the potential 
energy’ of their Coulomb interaction with one another and with the nuclei, and the energy 
of the Coulomb interaction of the nuclei.f The solution of Schrodinger’s equation 

fit = + (1) 
is sought in the form 

4- = £ Xm(r)«?. r), (2) 

f The Hamiltonian $ relates to a frame of reference in which the centre of mass of the 
whole molecule is at rest (P„ + P« = 0, where P„ is the total momentum of the two nuclei, and 
Pe that of the electrons). We do not, however, include in it the term corresponding tc 
kinetic energy- of the motion of the centre of 
term is certainly small, in the ratio m/M, com 
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where the functions <j>m(q, r) are orthonormalized solutions of the equation 

r) = Um(r)Mq, r), (3) 

q denoting the set of electron coordinates; TJm(r) are the eigenvalues of the Hamiltonian Uti, 
which depend on r as a parameter. Substituting (2) in (1), multiplying by <j>n*(q, r) and 
integrating over q, we obtain 

[ »)Xm(r), (4) 

and Pnm = J </>«*P</>m &q\ (P2)nrn are the matrix elements with respect to the electron wave 
functions; the diagonal element p„n is zero, by symmetry. 

The electron functions tj>n vary appreciably only over atomic distances, and their differentia¬ 
tion with respect to r therefore does not introduce the large parameter M\m (where m is the 
electron mass). The quantity V"nn is consequently small in comparison with U„(r), in the 
ratio m/M, and may be omitted. If the terms on the right of (4) are regarded as a small 
perturbation, then in the zero-order approximation the functions y„(R) are given by the 
solutions of the equation 

which describes the motion of the nuclei in the field Un(r) (the v being the quantum numbers 
for this motion). The condition for perturbation theory to be applicable is 

!<nr'| f '„m + V"n„i\mvy\ « |Env--Emv\. 

The right-hand side of this inequality is the difference of the energies of different electron 
terms; these quantities are of order zero with respect to the smallness parameter m/M. The 
left-hand side contains the matrix elements with respect to the nuclear wave functions. The 
term in V"nm contains the factor m/M and is certainly small. In the matrix element of V'nm, 
the operator p, acting on the function xmv, multiplies it by a quantity of the order of the 
momentum of the nuclei. If the nuclei execute small oscillations, their momentum 
~ \/(M/icoc); since the frequency cue is itself inversely proportional to \'M, the matrix 
element (nv'\ V'nm\mv is of the order (m/M)3'4. 

§83. Multiplet terms. Case a 

Let us now turn to the question of the classification of molecular levels with 

non-zero spin S. In the zero-order approximation, when relativistic effects 

are entirely neglected, the energy of the molecule, like that of any system of 

particles, is independent of the direction of the spin (the spin is “free”), and 

this results in a (2S+ l)-fold degeneracy of the levels. When relativistic 

effects are taken into account, however, the degenerate levels are split, and 

the energy consequently becomes a function of the projection of the spin on 

the axis of the molecule. We shall refer to relativistic interactions in mole¬ 

cules as the spin-axis interaction. The chief part in this is played (as in the 

case of atoms) by the interaction of the spins with the orbital motion of the 
electrons.f 

and orbital 

(see°§84).Ve 

pm orbit and spin-spin interactions there is also an interaction of the spin 
n of the electrons with the rotation of the molecule. This part of the inter¬ 
im, however, and it is of possible interest only for terms with spin S = i 
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The nature and classification of molecular levels depend markedly on the 

relative parts played by the interaction of the spin with the orbital motion, 

on the one hand, and the rotation of the molecule, on the other. The part 

played by the latter is characterized by the distances between adjacent rota¬ 

tional levels. Accordingly, we have to consider two limiting cases. In one, 

the energy of the spin-axis interaction is large compared with the energy 

differences between the rotational levels, while in the other it is small. The 

first case is usually called case (or coupling tvpe) a, and the second is called 

case b (F. Hund 1933). 

Case a is the one most often found. An exception is formed by the 2 

terms, where case b chiefly occurs, since the effect of the spin-axis interaction 

is very small for these terms-)- (see below). For other terms, case b is some¬ 

times found in the lightest molecules, since the spin-axis interaction is here 

comparatively weak, while the distances between the rotational levels are 

large (the moment of inertia being small). 

Of course, cases intermediate between a and b are also possible. It must 

also be borne in mind that the same electron state may pass continuously 

from case a to case b as the rotational quantum number changes. This is due 

to the fact that the distances between adjacent rotational levels increase with 

the rotational quantum number, and hence, when this is large, the distances 

may become large compared with the energy of the spin-axis coupling (case 

b), even if case a is found for the lower rotational levels. 

In case a, the classification of the levels is in principle little different from 

that of the terms with zero spin. We first consider, the electron terms for 

nuclei at rest, i.e. we neglect rotation entirely; besides the projection A of the 

orbital angular momentum of the electrons, we must now take into account the 

projection of the total spin on the axis of the molecule. This projection is 

denoted byj 2; it takes the values 5, 5 — 1, ..., —5. We arbitrarily regard 

2 as positive when the projection of the spin is in the same direction as 

that of the orbital angular momentum about the axis (we recall that A denotes 

the absolute value of the latter). The quantities A and 2 combine to give 

the total angular momentum of the electrons about the axis of the molecule: 

Q=A+2; (83.1) 

this takes the values A+5, A+5 — 1, ..., A — 5. Thus the electron term 

with orbital angular momentum A Is split into 25 + 1 terms with different 

values of Q; this splitting, as with atomic terms, is called the fine structure 

or multiplet splitting of the electron levels. The value of Q is usually indicated 

as a suffix to the symbol for the term: thus, for A = 1, 5 = \ we obtain the 

terms 2U1/2, 2ns/s. 
When the motion of the nuclei is taken into account, vibrational and rota¬ 

tional structures appear in each of these terms. The various rotational levels 

are characterized by the values of the quantum number J, which gives the 

* t A special case is the normal electron term of the molecule O. (the term 3Z). For this we 
have a type of coupling intermediate between a and b (see §84. Problem 3). 

J Not to be confused with the symbol for terms with A = 0. 
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total angular momentum of the molecule, including the orbital and spin 

angular momenta of the electrons and the angular momentum of the rotation 

of the nuclei.f This number takes all integral values from |Q| upwards: 

J > |fi|, (83.2) 

which is an obvious generalization of (82.6). 

Let us now derive quantitative formulae to determine the molecular levels 

in case a. First of all, we consider the fine structure of an electron term. 

In discussing the fine structure of atomic terms in §72, we used formula 

(72.4), according to which the mean value of the spin-orbit interaction is 

proportional to the projection of the total spin of the atom on the orbital 

angular momentum vector. Similarly, the spin-axis interaction in a diatomic 

molecule (averaged over electron states for a given distance r between the 

nuclei) is proportional to the projection E of the total spin of the molecule on 

its axis, so that we can write the split electron term in the form 

t/(r)-M(r)Z, 

where U(r) is the energy of the original (unsplit) term, and A(r) is some func¬ 

tion of r; this function depends on the original term (and in particular on A), 

but not on E. Since one usually uses the quantum number H and not E, 

it is more convenient to put A Cl in place of AS; these expressions differ by 

AA, which can be included in U(r). Thus we have for an electron term the 

expression 
t/(r)+,4(r)Q. (83.3) 

We may notice that the components of the split term are equidistant from 

one another: the distance between adjacent components (with values of Cl 

differing by unity) is A(r), independent of Cl. 

It is easy to see from general considerations that the value of A for E terms 

is zero. To show this, we perform the operation of changing the sign of the 

time. The energy must then remain unchanged, but the state of the mole¬ 

cule changes in that the direction of the orbital and spin angular momenta 

about the axis is reversed. In the energy -i4(r)E, the sign of E is changed, and 

if the energy remains unchanged A(r) must change sign. If A ^ 0, we can 

draw no conclusions regarding the value of A(r), since this depends on the 

orbital angular momentum, which itself changes sign. If A = 0, however, 

we'can say that A(r) is certainly unchanged, and consequently it must vanish 

identically. Thus, for the E terms, the spin-orbit interaction causes no split¬ 

ting in the first approximation; splitting (proportional to E2) would occur 

only on taking account of this interaction in the second approximation or the 

spin-spin interaction in the first approximation, and would be relatively 

small. This is the reason for the fact, already mentioned, that case b usually 
occurs for E terms. 
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When the multiplet splitting has been determined, we can take account of 

the rotation of the molecule as a perturbation, just as in the derivation given 

at the beginning of §82. The angular momentum of the rotation of the nuclei 

is obtained from the total angular momentum by subtracting the orbital 

angular momentum and spin of the electrons. Hence the operator of the 

centrifugal energy now has the form 

£(r)(J-L-S)2. 

Averaging this quantity with respect to the electron state and adding to 

(83.3), we obtain the required effective potential energy Uj{r): 

Uj(r) = n(r)+^(r)-Q+£(r)(J-L-S)2 

= H(r)+^(r)H+A(r)[P-2J.(L+S)+I/+2LTs+S^]. 

The eigenvalue of J2 is /(/ + 1). Next, by the same argument as in §82, we 

have 

L = nA, S = n2, (83.4) 

and also (J —L—S) . n = 0, whence we have for the eigenvalues 

J.n = (L+S).n = A+2 = £L (83.5) 

Substituting these values, we find 

Uj{r) = t/(r)+^[(r)H+A(r)[J(J+l)-2HM-L^+2irS+S^]. 

The averaging with respect to the electron state is effected by means of the 

wave functions of the zero-orderf approximation. In this approximation, 

however, the magnitude of the spin is conserved, and hence S2 = S(S +1). 

The wave function is the product of the spin and coordinate functions; hence 

the averaging of the angular momenta L and S takes place independently, and 

we obtain 

Finally, the mean value of the squared orbital angular momentum L2 is 

independent of the spin, and is some function of r characterizing the given 

(unsplit) electron term. All the terms which are functions of r but indepen¬ 

dent of J and 2 can be included in U(r), while the term proportional to 2 

(or, what is the same thing, to Q) can be included in the expression ^4(r)Q. 

Thus we have for the effective potential energy the formula 

Uj{r) = C/(r)+^(r)0+A(r)[/(/+l)-2Q2]. 

t That is,, the zero-order approximation with respect to both the 
the molecule and the spin-axis interaction. 

(83.6) 

effect of the 
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The energy levels of the molecule can be obtained from this by the same 

method as in §82 when using the formula (82.5). Expanding U(r) and A(r) 

in series of powers of £, and retaining the terms up to and including the 

second order in the expansion of U(r), but only the terms of zero order in the 

second and third terms, we obtain the energy levels in the form 

E = Ue+Aen+hoe(v+l)+Be[J(J+l)-2n*l (83.7) 

where Ae = A(re) and Be are constants characterizing the given (unsplit) 

electron term. On continuing the expansion to higher terms, we obtain a 

series of terms in higher powers of the quantum numbers, but we shall not 

pause to write these out here. 

§84. Multiplet terms. Case b 

Let us now turn to case b. Here the effect of the rotation of the molecule 

predominates over the multiplet splitting. Hence we must first consider the 

effect of rotation, neglecting the spin-axis interaction, and then the latter 

must be taken into account as a perturbation. 

In a molecule with “free” spin, not only the total angular momentum J 

but also the sum K of the orbital angular momentum of the electrons and the 

angular momentum of the nuclei are conserved; the latter is related to J by 

J=K+S. (84.1) 

The quantum number K distinguishes different states of a rotating molecule 

with free spin that are obtained from a given electron term. The effective 

potential energy UK(r) in a state with a given value of K is evidently deter¬ 

mined by the same formula (82.5) as for terms with S = 0: 

UK(r) = U(r)+B(r)K(K+1), (84.2) 

where K takes the values A, A + l, ... . 

When the spin-axis interaction is included, there is a splitting of each 

term into 2S+1 terms in general (or 2K+\ if K < S), which differ in the 

value of the total angular momentum! J- According to the general rule for 

the addition of angular momenta, the number J takes (for a given K) values 

from K+S to \K—S\: 

\K-S\ <J <K+S. (84.3) 

To calculate the energy of the splitting (in the first approximation of per¬ 

turbation theory), we must determine the mean value of the operator of the 

spin-axis interaction energy for the state in the zero-order approximation 

(with respect to this interaction). In the case considered, this means averag¬ 

ing with respect to both the electron state and the rotation of the molecule 

(for a given r). The result of the first averaging is an operator of the form 

h In case b, the projection n . S of the spin on the axis of the molecule does not have 
inite values, so that there is no quantum number X (or Q) 
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A(r)n . S, which is proportional to the projection n . S of the spin operator 

on the axis of the molecule. Next we average this operator with respect 

to the rotation of the molecule, taking the direction of the spin vector 

to be arbitrary; then n . S = n . S. The mean value n is a vector which, 

from considerations of symmetry, must have the same direction as the 

“vector” K, the only vector which characterizes the rotation of the molecule. 

Thus we can write 

n = constant x R. 

The coefficient of proportionality is easily determined by multiplying both 

sides of this equation by R; noting that the eigenvalues of n . K and K2 are 

respectively A (see (82.4)) and K(K+ 1), we find 

iT.! = AR.S/X(X+1). 

Finally, the eigenvalue of the product K . S, according to the general formula 

(31.3), is 

K.S =IU(J+1)~K{K+1)- 5(5+1)]. (84.4) 

As a result, we arrive at the following expression for the required mean 

value of the energy of the spin-axis interaction: 

A(r)A[J(J+l)-S(S+l)-K(K+l)]l2K{K+l) 

= A{r)A[(J-SXJ+S+l)]l2K(K+l)-lA{r)A. 

This expiession must be added to the energy (84.2). The term \A[f)A, being 

independent of K and J, can be included in U(r), so that we have finally for 

the effective potential energy the expression 

Uk(t) = U{r)+B{r)K(K+l)+A{r)A(J-S)U+S+l)l2K(K+l). (84.5) 

An expansion in powers of f = r—re gives, in the usual manner, an expres¬ 

sion for the energy levels of the molecule in case b: 

E = Ue+HoJe(v+ l)+BeK(K+1 )+AeA(J-S)(J+ 5+1 )/2K(K+1). (84.6) 

As has been pointed out in the previous section, the spin-orbit interaction 

for E terms does not give a multiplet splitting in the first approximation, and 

to determine the fine structure we must take into account the spin-spin 

interaction, whose operator is quadratic with respect to the spins of the elec¬ 

trons. We are at present interested not in this operator itself, but in the result 

of averaging it with respect to the electron state of the molecule, as wras done 

for the operator of the spin-orbit interaction. It is evident from considera¬ 

tions of symmetry that the required averaged operator must be proportional 

to the squared projection of the total spin of the molecule on the axis, i.e. 

it can be written in the form 

a(r) (§. n)2. (84.7) 
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where a(r) is again some function of the distance r, characterizing the given 

electron state. Symmetry allows also a term proportional to S2, but this is 

immaterial since the absolute value of the spin is just a constant. We shall 

not pause here to derive the lengthy general formula for the splitting due to 

the operator (84.7); in Problem 1 of this section we give the derivation of the 

formula for triplet £ terms. 

The doublet £ terms form a special case. According to Kramers’ theorem 

(§60), the double degeneracy in a system of particles with total spin S = £ 

certainly persists, even when the internal relativistic interactions in the system 

are fully allowed for. Hence the 2£ terms remain unsplit, even when we 

take account of both the spin-orbit and the spin-spin interaction, and in any 

approximation. 

The splitting is obtained here only by taking into account the relativistic 

interaction of the spin with the rotation of the molecule; this effect is very 

small. The averaged operator of this interaction must evidently be of the 

form yft. S, and its eigenvalues are determined by the formula (84.4), in 

which we must put S = £, / = K± As a result, w'e obtain for the 2£ 

terms the formula 

E = Ue+hut{v+\)+BeK{K+\)±MK+\)\ (84.8) 

a constant — ly is included in Ue. 

PROBLEMS 
Problem 1. Determine the multiplet splitting of a 3X term in case b (H. A. Kramers 19291. 

Solution. The required splitting is determined by the operator (84.7), which must be 
averaged with respect to the rotation of the molecule. We write it in the form o-entnic§t§ic, 
where ae = a(ro). Since the vector S is conserved, only the products mnt need be averaged. 
According to the formula derived in §29, Problem, we have 

_ AV4+/?*/?< 

”m (2K-l)(2K+3) ’ 

here we have not written out the terms proportional to Stic whose contribution to the energy 
is independent of J and therefore does not cause any splitting of the type under consideration. 
Thus the splitting is given by the operator 

—S,Slc(hiKk + A;/vl) 

Since § commutes with R, 

SiStK,Kk = SiKAKk = (S . K)=. 

where the eigenvalue S . K is given by (84.4). We also have 

kKiKk + tSiSketuKi 
= (S . Kr—HStSk-SkStieuaK, 
= (S . K)2 + 
= (S . K)2 + S . K. 
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The values/ = K, K± 1 correspond to the three components Ek of t' e triplet 3- (S = 1). 
For the intervals between these components we find 

£#t+i - Ek = -3 A~+l 

*'2K+3' 
Ek-, - E, 

K 

‘2K-\ 

Problem 2. Determine the energy of a doublet term (with A^O) for cases intermediate 
between a and b (E. Hill and J. H. van VIeck 1928). 

Solution. Since the rotational energy and the energy of the spin-axis interaction are 
supposed of the same order of magnitude, they must be considered together in perturbation 
theory, so that the perturbation operator is of the form) 

As wave functions in the zero-order approximation it is convenient to use those of states in 
which the angular momenta K and J have definite values (i.e. those of case b). Since S = £ 
for a doublet term, the quantum number K, for a given /, can take the values K = /±£. 
To construct the secular equation, we must calculate the matrix elements CnSKJ\ V\nSK'J~> 
(n denoting the assembly of quantum numbers defining the electron term), where K,K‘ take 
the above values. The matrix of the operator K2 is diagonal; the diagonal elements are 
AT(iC+l). The matrix elements of n. S are calculated from the general formula (109.5), in 
which we must put j\ = S,j2 = K\ the reduced matrix elements of n are given by (87.4). 
Calculation gives the secular equation 

] B'(J+DU+'i)—Ac\‘(2J + \)—E"> A'VlU+l?-A!]/(2;+l) i 

1 A'VlU+i)s~-VWJ+l) B'U+i)(J-l)+AcAI(2J + l)-E'"\~ 

Solving this equation and adding £<’> to the unperturbed energy, we have 

E = Vt+h^{z+E)+BJU+^±\'{Ec-U+lf-AtB,A+lAc-l, 

a constant is included in Ue. The inequality A, BeJ corresponds to case a, and the 
opposite one to case b. 

Problem 3. Determine the intervals between the components of a triplet level s£ in a 
case intermediate between a and b. 

Solution. As in Problem 2, the rotational energy and the energy of the spin-spin inter¬ 
action are considered together in the perturbation theory. The perturbation operator is of 
the form 

V = B.ft’+aX n.S)*. 

As wave functions in the zero-order approximation we use those of case b. The matrix elements 
</?|n. S|A"> (we omit all suffixes with respect to which the matrix is diagonal) are again 
calculated from (109.5) and (87.4), this time with A = 0, S = 1. The non-zero elements are 
of the form 

</n. S|/-1> = V[(J+1)/(2/+1)], <;|n. Si;+1> = VUW+ •)]■ 

For a given /, the number K can take the values K = J, J i-1. F°r the matrix elements 
(K\V\K'y we find 

</in/> = Beju+i)+a„ </-iifi;-i> = Be(;-D;+»e(;+i)/(2;+i), 

</+i|Fi;+i> = B„(;+ix;+2)+aj/(2;+i), 

</-l|F|/+l> = </+l|F|;-l> = «ev/[/C/+l)/(2/+l)]. 

t The averaging with respect to vibrations must be done before that with respect to 
rotation. Hence, restricting ourselves to the first terms of the expansions in (, we have 
replaced the functions B(r) and ^(r),by the values Be and Ae, and the unperturbed energy 
levels a re E™ = Ue + titoe(v + t). 
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We see that there are no transitions between states with K = J and those with K = _/±l. 
Hence one of the levels is simply E = <.J\V\jy. The other two (E2, E3) are obtained by 
solving the quadratic secular equation formed from the matrix elements for transitions 
between states J ± 1. Since we are here interested only in the relative position of the com¬ 
ponents of the triplet, we subtract the constant xe from all three energies El, E2, E3. As a 
result we obtain 

E1 = B, 7(7+1), 

£2,3 = Be(J*+J+\)-i*e ± VlBeK2J+\y-*,B' + i*,'l 

In case b (a. small), by considering three levels with the same K and different J (J — K, 
K± 1), we again obtain the formulae of Problem 1. 

§85. Multiplet terms. Cases c and d 

Besides cases of a and b coupling and those intermediate between them, 

there are also other types of coupling. These originate as follows. The 

occurrence of the quantum number A is due ultimately to the electric interac¬ 

tion of the two atoms in the molecule, which results in the axial symmetry 

of the problem of determining the electron terms (this interaction in the 

molecule is called the coupling between the orbital angular momentum and 

the axis). The distances between terms with different values of A give a 

measure of the magnitude of this interaction. Previously we have tacitly 

supposed this interaction so strong that these distances are large both com¬ 

pared with the intervals in the multiplet splitting and compared with those 

in the rotational structure of the terms. There are, however, opposite cases 

where the interaction of the orbital angular momentum with the axis is com¬ 

parable with or even small compared with the other effects; in such cases, of 

course, we cannot in any approximation speak of a conservation of the pro¬ 

jection of the orbital angular momentum on the axis, so that the number A 

is no longer meaningful. 

If the coupling of the orbital angular momentum with the axis is small 

in comparison with the spin-orbit coupling, we say that we have case c. It 

is found in molecules which contain an atom of a rare-earth element. These 

atoms are characterized by the presence of / electrons with uncompensated 

angular momenta; their interaction with the axis of the molecule is weakened 

by the deep position of the / electrons in the atom. Cases intermediate be¬ 

tween the a and c types of coupling are found in molecules consisting of 

heavy atoms. 

If the coupling of the orbital angular momentum with the axis is small 

compared with the intervals in the rotational structure, we say that we have 

case d. This case is found for high rotational levels (with large 7) in some elec¬ 

tron terms of the lightest molecules (H2, He2). These terms are characterized 

by the presence in the molecule of a highly excited electron, whose interaction 

with the remaining electrons (or, as we'say, with the “core” of the mole¬ 

cule) is so weak that its orbital angular momentum is not quantized along the 
axis of the molecule (whereas the “core” has a definite angular momen¬ 
tum Acore about the axis). 
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As the distance r between the nuclei increases, the interaction between the 

atoms is diminished, and finally becomes small compared with the spin-orbit 

interaction within the atoms. Hence, if we consider the electron terms for 

fairly large r, we shall have case c. This must be borne in mind when 

ascertaining the relation between the electron terms of the molecule and the 

states of the atoms obtained as r -*■ co. In §80 we have already discussed this 

relation, neglecting the spin-orbit interaction. When the fine structure of 

the terms is included, there arises also the question of the relation between 

the values J, and /2 of the total angular momenta of the isolated atoms and 

the values of the quantum number Q for the molecule. We shall give the 

results here, without reiterating arguments which are entirely similar to those 

of §80. 

If the molecule consists of different atoms, the possible values off |Q, 

obtained on combining atoms with angular momenta Jv J2 (Jx 5= /2) are 

given by the same table (80.1), in which we must put /j, J2 in place of Lj, L2, 

and |Q| in place of A. The only difference is that, for half-integral Ji+Jo, 

the smallest value of |Q| is not zero as shown in the table, but. i. For integral 

J1+J2, on the other hand, there are 2y2+l terms with Q = 0, for which (as 

for Z terms when the fine structure is neglected) we have to decide the 

question of sign. If and J2 are each half-integral, the number 2y2+l is 

even, and there are equal numbers of terms, which we shall denote by 0+ 

and 0~. If Jl and J2 are both integral, however, then72+l terms are 0+ and 

J2 are 0“ (if (- 1)+ = 1) or vice versa (if (— \)J' = — 1). 

If the molecule consists of similar atoms in different states, the resulting 

molecular states are the same as in the case of different atoms, the only 

difference being that the total number of terms is doubled, with each term 

appearing once as an even and once as an odd term. 

Finally, if the molecule consists of similar atoms in the same state (with 

angular momenta J1= Js = J), the total number of states is the same as in 

the case of different atoms, while their distribution in parity is such that, 

if J is integral and H is even, N g — A^ + l; 

if J is integral and Q is odd, Ng — Nu\ 

if J is half-integral and H is even, Nu = Ng\ 

if J is half-integral and H is odd, Nu = Ng +1. 

All the 0+ terms are even and all the 0“ terms odd. 

As the nuclei approach, a coupling of type c usually passes into one of 

type a%. Here the following interesting circumstance may arise. As already 

mentioned, the term with A = 0 belongs to case b, and as regards the classi¬ 

fication of case a this means that multiplet levels with different values of H 

(and the same A = 0) have the same energy; but such levels can occur on 

the approach of atoms which are in different fine-structure states. 
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Thus it may happen that the same molecular term corresponds to different 

pairs of atomic fine-structure states. A similar situation may occur for terms 

with Q = 0 which, on the approach of the nuclei, become a molecular term 

with A # 0 (and therefore £ = —A). Such levels are doubly degenerate, 

since in case a the same energy corresponds to the terms O'1" and 0- 

(which may arise from different pairs of atomic states).f 

§86. Symmetry of molecular terms 

In §78 we have already examined some symmetry properties of the terms 

of a diatomic molecule. These properties characterized the behaviour of the 

wave functions in transformations which leave the coordinates of the nuclei 

unaltered. Thus the symmetry of the molecule with respect to reflection in 

a plane passing through its axis brings about the difference between £+ and 

£~ terms; the symmetry with respect to a change in sign of the coordinates^ 

of all the electrons (for molecules composed of like atoms) gives rise to the 

classification of terms into even and odd. These symmetry properties char¬ 

acterize the electron terms, and are the same for all rotational levels belonging 

to the same electron term. 

The states of the molecule, like those of any system of particles (see §30), 

are characterized by their behaviour with respect to inversion, i.e. a simul¬ 

taneous change in sign of the coordinates of all the electrons and the nuclei. 

For this reason, all the terms for the molecule can be divided into positive 

(whose wave functions are unaltered when the sign of the coordinates of the 

electrons and nuclei is reversed) and negative (whose wave functions change 

sign on inversion). | 

For A ^ 0, each term is doubly degenerate, on account of the two possible 

directions of the angular momentum about the axis of the molecule. As a 

result of inversion, the angular momentum itself does not change sign, but 

the direction of the axis of the molecule is reversed (since the atoms change 

places), and hence the direction of the angular momentum A relative to the 

molecule is reversed. Hence two wave functions belonging to the same 

energy level are transformed into each other, and from them we can always 

form a linear combination that is invariant with respect to inversion and one 

that changes sign under this transformation. Thus we obtain for each term 

two states, of which one is positive and the other negative. In practice, 

every term with A # 0 is split, however (see §88), and so these two states 

correspond to different values of the energy. 

The £ terms require special consideration to determine their sign. First 

+ We here neglect what is called A-doubling (see §88) 
t The origin is supposed to be taken on the axis of the molecule, and half-way between the 

We retain the customary terminology. It is unfortunate, however, since in the case of 
an atom the behaviour of the terms with respect to the operation of inversion is referred to as 
parity and not sign. 

The sign of which we are here speaking must not be confused with the + and — which are 
added as indices to Z terms. 
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of all, it is clear that the spin bears no relation to the sign of the term: the 

inversion operation changes only the coordinates of the particles, leaving 

the spin part of the wave function unaltered. Hence all the components of 

the multiplet structure of any given term have the same sign. In other words, 

the sign of the term depends only on K, and not on J.\ 

The wave function of the molecule is the product of the electron and 

nuclear wave functions. It has been shown in §82 that, in a £ state, the motion 

of the nuclei is equivalent to that of a single particle, of orbital angular 

momentum K, in a centrally symmetric field U(r). Hence we can say that, 

when the sign of the coordinates is changed, the nuclear wave function is 

multiplied by ( — 1)A (see (30.7)). 

The electron wave function characterizes the electron term, and to ascertain 

its behaviour under inversion we must consider it in a system of coordinates 

rigidly connected to the nuclei and rotating with them. Let x, y, z be a sys¬ 

tem of coordinates fixed in space, and £, rj, £ a rotating system of coordinates 

in which the molecule is fixed. The direction of the axes of £, rj, £ is defined 

so that the £raxis coincides with the axis of the molecule from (say) nucleus 

1 to nucleus 2, and the relative position of the positive directions of the axes 

of £, rj, £ is the same as in the system x, y, z (i.e. if the system x, y, z is left- 

handed, the svstem £, r„ £ is so too). As a result of the inversion operation, 

the direction of the axes of x, y, z is reversed, and the system changes from 

left-handed to right-handed. The system £, rj, £ must also become right- 

handed, but the £-axis, being rigidly connected to the nuclei, retains its 

former direction. Hence the direction of either one of the axes of £, tj must 

be reversed. Thus the operation of inversion in the fixed, system of co¬ 

ordinates is equivalent in the moving system to a reflection in a plane passing 

through the axis of the molecule. Under such a reflection, however, the 

electron wave function of a £ + term is unaltered, while that of a £_ term 

changes sign. 

Thus the sign of the rotational components of a £ + term is determined by 

the factor ( —1)K; all the levels with even K are positive, while those with 

odd K are negative. For a £~ term, the sign of the rotational levels is deter¬ 

mined by the factor (— 1)K+; all levels with even K are negative, while those 

with odd K are positive. 

If the molecule consists of similar atoms, J its Hamiltonian is also invariant 

with respect to an interchange of the coordinates of the two nuclei. A term 

is said to be symmetric with respect to the nuclei if its wave function is un¬ 

altered when they are interchanged and antisymmetric if its wave function 

changes sign. The symmetry with respect to the nuclei is closely related to 

the parity and sign of the term. An interchange of the coordinates of the 

nuclei is equivalent to a change in sign of the coordinates of all the particles 

(electrons and nuclei), followed by a change in sign of the coordinates of the 

electrons only. Hence it follows that, if the term is even and positive (or 

^ f We recall that c 
numbers K and J. 

t The two atoms 

b usually holds for Z 

ist be not only of the : 

ecessary to use the quantum 

so of the same element. isotope. 
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odd and negative), it is symmetric with respect to the nuclei. If, on the other 

hand, it is even and negative (or odd and positive), then it is antisymmetric 

with respect to the nuclei. 

At the end of §62 we have established a general theorem that the coordinate 

wave function of a system of two identical particles is symmetrical when the 

total spin of the system is even, and antisymmetrical when it is odd. If we 

apply this result to the two nuclei of a molecule composed of similar atoms, 

we find that the symmetry of a term is related to the parity of the total spin 

I obtained by adding the spins i of the two nuclei. The term is symmetric 

when / is even, and antisymmetric when I is odd.f In particular, if the nuclei 

have no spin (i = 0), I is zero also; hence the molecule has no antisymmetric 

terms. We see that the nuclear spin has an important indirect influence on 

the molecular terms, although its direct influence (the hyperfine structure of 

the terms) is quite unimportant. 

When the spin of the levels is taken into account, an additional degeneracy 

of the levels results. Again in §62, we have calculated the number of states 

with even and odd values of I that are obtained on adding two spins i. Thus, 

when i is half-integral, the number of states with even I is z(2z +1), and with 

odd I is (i + l)(2z'+l). From what was said above, we conclude that the 

ratio of the degrees ga of the degeneracy J of symmetric and antisymmetric 

terms for terms with half-integral i is 

gJga=W+1)- (86.1) 

For integral i, we similarly find that this ratio is 

gjga={i+ m (86.2) 

We have seen that the sign of the rotational components of a £+ term is 

determined by the number (— 1)E. Hence, for example, the rotational com¬ 

ponents of a term for even K are positive, and therefore symmetric, while 

for odd K they are negative and consequently antisymmetric. Bearing in 

mind the results obtained above, we conclude that the nuclear statistical 

weights of the rotational components of a level with successive values 

of K take alternate values, in the ratios (86.1) or (86.2). A similar situa¬ 

tion is found for £+u, and S-u levels. In particular, for i = 0 the 

statistical weights of levels with even K for £+u and terms, and of levels 

with odd K for and £_u terms, are zero. In other words, in the electron 

states S+u, there are no rotational states with even K, and in £+ff, 

states there are none with odd K. 

Because of the extremely weak interaction of the nuclear spins with the 

electrons, the probability of a change in I is very small, even in collisions of 
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molecules. Hence molecules differing in the parity of 7, and accordingly 

having only symmetric or only antisymmetric terms, behave almost -as differ¬ 

ent forms of matter. Such, for instance, are orthohydrogen and parahydro- 

gen; in the molecule of the former, the spins i — £ of the two nuclei are 

parallel (7 = 1), while in that of the latter they are antiparallel (7 = 0). 

§87. Matrix elements for the diatomic molecule 

In this section we shall give some general formulae for the matrix elements 

of physical quantities in a diatomic molecule. Let us first consider the matrix 

elements for transitions between states with zero spin. 

Let A be some vector physical quantity for a molecule with fixed nuclei, 

such as its electric or magnetic dipole moment. Let us first consider this 

quantity in coordinates £, rj, £ that rotate with the molecule, the £-axis being 

along the axis of the molecule. The angular momentum of the molecule 

relative to this system (i.e. the electron angular momentum L) is not con¬ 

served completely, but its ^-component is conserved. The selection rules 

for the quantum number = A therefore remain valid (and they are the 

same as for M in §29). Thus the non-zero matrix elements of the vector are 

<tz'A|zIc|7zA>, (^n'A\Ai + iAJn, A—1), 

(n',A-l\A(-iAn\nA), 

where n numbers the electron terms for the given A. 

If both the terms are E terms, we must also bear in mind the selection 

rule arising from the symmetry with respect to reflection in a plane passing 

through the axis of the molecule. In such a reflection, the ^-component of an 

ordinary (polar) vector is unchanged, while that of an axial vector changes 

sign. Hence we conclude that, for a polar vector, Ac has non-zero matrix 

elements only for the transitions E + E + and E- -» E~, and for an axial 

vector only for E+ ->£~. We need not discuss the components A{, An, 

since for these no transitions without change of A are possible. 

If the molecule consists of similar atoms, there is also a selection rule 

regarding parity. The components of a polar vector change sign under 

inversion. Hence its matrix elements are non-zero only for transitions 

between states of different parity (the reverse is true for an axial vector). In 

particular, all the diagonal matrix elements of the components of a polar 

vector vanish identically. 

The question of the relation between the matrix elements (87.1) and those 

of the same vector in a fixed coordinate system x, y, z is solved by the general 

formulae derived in §110 below for any axially symmetric physical system. 

After separating the dependence (the same for any vector) on the quantum 

number MK (the ^-component of the total angular momentum K of the 
molecule), we are left with the reduced matrix elements (riK'A'\\A\\nKAy. 
Their relation to the matrix elements (87.1) is given by (110.7) with k = k' =1 

} (87.1) 
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(corresponding to a vector) and the appropriate change in the quantum- 

number notation; from (82.4), A is equal to the ^-component of the total 

angular momentum K. Using the relation (107.1) between the components 

of a spherical tensor of rank one and the Cartesian components of a vector, 

and the values of the 3y-symbols from Table 9 (§106), we obtain the following 

expressions for the matrix elements diagonal with respect to A: 

<n'KAM.^A> = Av/||±L<„'AIAI„A>. 

<«', K- 1, Ail^llw^A) = iy^2~A2 <«'A|A|tzA>, 

and for those not diagonal with respect to A, 

(87.2) 

(n'KA\\A\\nK, A-l> 

= [(2JC+‘K4^(^r-A + 1)]1,S A-.>, 

(n'KA\\Altn, K-l, A-l> 

- ,p* + AX«: + A-l)J'. ^lAc + iAi„, A- 0, (87.3) 

<n’, K- 1, A\\A\\nK, A-l> 

.ip7Ag-A^)JU„.AMi + ,AkA-1). 

The remaining non-zero elements are found from these by means of the 

Hermitian property of the reduced matrix elements: 

(nKA\\A\nK'A'') = <n'K'A'\\A\\nKA}*, 

and of the matrix elements in the coordinates £, rj, £, 

<n A| A( — iAn\n'A'} = £n’A'\A( + iAv\nAy*, 

<nA\Ar\n’A'> = <n'A'\A(\nA>*. 

The following are the particular formulae for the matrix elements of the 
vector A = n, a unit vector along the axis of the molecule. In this case, 
we have simply At = A, = 0, Ai - 1, and in the coordinates f, v, £ only 
the diagonal elements non-zero, <nA|^;|«A> = 1. The reduced matrix 
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elements are diagonal in all suffixes except K, and if only this suffix is written 

we have 

<K|',IK> - Ai^ <K~ '***> “ (87-4> 

(H. Honl and F. London 1925). For A = 0, these formulae give 

<*>!!*:> = 0, <K-l\\n\\K> = iv'K, 

which agree, as we should expect, with the matrix elements for a unit vector 

in motion in a centrally symmetric field; see (29.14). 

Let us now see how the formulae we have obtained should be modified 

for transitions between states with non-zero spin. Here it is important to 

know whether the states belong to case a or to case b. 

If both states belong to case a, the formulae are changed essentially only 

as regards notation. The quantum numbers K and Mu do not exist, and 

instead we have the total angular momentum J and its projection Mj on the 

;z-axis. There are also the additional numbers 5 and Q = A+E, so that 

the reduced matrix elements are 

<w'J'S'Q'A'||zI||wJiS'QA>. 

Let A be any orbital vector (i.e. one which does not depend on the spin). 

Its operator commutes with the spin operator S, so that its matrix is diagonal 

with respect to the quantum numbers S and = E; the quantum number 

Q. = A + E therefore changes together with A (i.e. Q’— Q = A'— A). 

Formulae (87.2)-(87.4) are changed only in that the matrix elements have 

further suffixes, and in the other factors K and A are to be replaced by J and 

Q. For example, the first formula (87.2) becomes 

O'/QAMIIh/QA) = Q <n'QA|^{|«QA> 
\JU + l) 

(the diagonal suffix S being omitted). 
Now, let A = S. Since the spin operator commutes with the orbital 

angular momentum, and also with the Hamiltonian, its matrix is diagonal 

with respect to n and A, but not with respect to 5? ond E (or Q). The matrix 

elements of the components A(, Av, Ac for transitions S, E -*■ S', E are 
given by formulae (27.13), with *S and E in place of L and M. The change 
to the coordinates x, y, z is then made by means of formulae (87.2) and (87.3), 
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with J and Q in place of K and A. Thus we have, for instance, 

337 

- [<2/+i)(^/)-°+‘)r * 
x <Q|S4 + zS,|Q-1> 

= r(2/+l)(7+n)(7-Q+l)(S+£)(S-£ + l)-|i/2 

L w+i) J 
(the diagonal suffixes n, S and A being omitted). 

Next, let both states belong to case b, and let A be an orbital vector. The 

calculation of the matrix elements is performed in two stages. First we 

consider the rotating molecule without taking into account the addition of 

S and K; the matrix elements are diagonal with respect to the number S, 

and are determined by the same formulae (87.2), (87.3). In the second stage, 

the angular momentum K is added to 5 to give the total angular momentum 

J, and the new matrix elements are obtained by the general formulae (109.3), 

with K, S, J in place of ji,j2, J. For example, the elements diagonal with 

respect to J, K and A are first 

<n'JKA\\AlnJKA) 

= (— lys-t-J+s- -i(2/+ l)j^ Jk *j J <n-KA\\A\\nKA> 

and then, with the 6y-symbol from Table 10 (§108) and the reduced matrix 

element from (87.2), finally 

WJKA\\A\\nJKA> 

L/(/+l)J 2K{K+1) ' 

The calculation of the matrix elements for transitions between states of 

which one belongs to case a and the other to case b is carried out similarly. 

We shall not pause to discuss it here. 

PROBLEMS 

Problem 1. Determine the Stark splitting of the terms for a diatomic molecule having 
constant dipole moment, in the case where the term belongs to case a. 
Solution. The energy of a dipole d in an electric field S is —d . 

tions of symmetry, it is evident that the dipole moment of a diatomic 
along its axis; d = da, where d is a constant. Taking the direction of t 
we obtain the perturbation operator in the form —dnzg’. 

S- From con: 
: molecule is d 
the field as the 
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Problem 2. The same as Problem 1, but for the case wher 
(and A =£ 0). 

Solution. By the same method we have 

Problem 3. The same as Problem 2, but for a 1 £ term. 

Solution. For A = 0 the linear effect is absent, and we must go to the second approxi¬ 
mation of perturbation theory. In the summation in the general formula (38.10), it is sufficient 
to retain only those terms which correspond to transitions between rotational components of 
the electron term concerned; for other terms the energy differences in the denominators are 
large. Thus we find 

A£ = d.,r\\iKMK\nz\K-\,MK^ \(KMK\nz\K+ 1, 

' \ Ek-Ek-i Ek-Ek-tI y 

where Ek = BK(K + \). A simple calculation gives 

1E K(K+i)-3mk2 
B 2K(K+\\2K-\)t2K + 2) 

§88. A-doubling 

The double degeneracy of the terms with A # 0 (§78) is in fact only 

approximate. It occurs only so long as we neglect the effect of the rotation 

of the molecule on the electron state (and also the higher approximations with 

respect to the spin-orbit interaction), as we have done throughout the above 

theory. When the interaction between the electron state and the rotation is 

taken into account, a term with A # 0 is split into two levels close together. 

This phenomenon is called A-doubling (E. Hill and J. H. van Vleck, and 

R. de L. Kronig, 1928). 

To consider this effect quantitatively, we again begin with the singlet 

terms (5 = 0). We have calculated (in §82) the energy of the rotational 

levels in the first approximation of perturbation theory, determining the 

diagonal matrix elements (i.e. the mean value) of the operator 

B(r)(R-L)». 

To calculate the subsequent approximations, we must consider the elements 

of this operator that are not diagonal with respect to A. The operators K* 

and L® are diagonal with respect to A, so that we need consider only the oper¬ 

ator 2BK. L. 
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The calculation of the matrix elements of R . L is conveniently effected 

by means of the general formula (29.12), in which we must put A = K, 
B = L; the parts of L and M are taken by K and MK, while in place of n we 

must put n, A, where n denotes the assembly of quantum numbers (other 

than A) which determine the electron term. Since the matrix of the vector 

K, which is conserved, is diagonal with respect to n, A, while that of the 

vector L contains non-diagonal elements only for transitions in which A 

changes by unity (cf. what was said in §87 concerning an arbitrary vector A), 
we find, using formulae (87.3), 

(n’AKMK\K . L|n, A - 1, KMk) 

= \{nA\Li + iL^\n, A- 1> \f[{K+ A)(K+ 1 -A)]. (88.1) 

There are no non-zero matrix elements corresponding to any greater change 

in A. 

The perturbing effect of the matrix elements with A -* A — 1 can cause 

the appearance of an energy difference between states with ±A only in the 

2Ath approximation of perturbation theory. Accordingly, the effect is pro¬ 

portional to B2A, i.e. to (mjM)2A, where M is the mass of the nuclei and m 
that of the electron. For A > 1, this quantity is so small that it is of no 

interest. Thus the A-doubling effect is of importance only for II terms 

(A = 1), which are considered below. 

For A = 1 we must go to the second approximation. The ~orrections to 

the eigenvalues of the energy can be determined from the general formula 

(38.10). In the denominators of the terms in the sum occurring in this equa¬ 

tion we have energy differences, of the form EnAK—En.A_lK. In these 

differences, the terms containing K cancel, since, for a given distance r be¬ 

tween the nuclei, the rotational energy is the same quantity, E(r).K(.K+l), 

for all the terms. Hence the dependence on K of the required splitting AE 

is entirely determined by the squared matrix elements in the numerators. 

Among these are the squared elements for transitions in which A changes 

from 1 to 0 and from 0 to —1; these both give, by (88.1), the same depen¬ 

dence on K, and we find that the splitting of the 1I1 term is of the form 

AE = constant x K(K+1), (88.2) 

where the constant is of the order of magnitude of E2/ e, e being the order of 

magnitude of the differences between neighbouring electron terms. 

Let us pass now to terms with non-zero spin (2II and 3II terms; higher 

values of 5 are not found in practice). If the term belongs to case b, the 

multiplet splitting has no effect on the A-doubling of the rotational levels, 
which is determined as before by formula (88.2). 

In case a, however, the effect of the spin is important. Here each electron 
term is characterized by the number Q as well as A. If we simply replace 
A by -A, then Q =A + S is changed, so that we obtain an entirely different 
term. The states with A, Q and —A, — Q are mutually degenerate. This 
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degeneracy can here be removed not only by the effect, considered above, of 

the interaction between the orbital angular momentum and the rotation of 

the molecule, but also by the effect of the spin-orbit interaction. The con¬ 

servation of the projection Q of the total angular momentum on the axis of 

the molecule is (if the nuclei are fixed) an exact conservation law, and so 

cannot be destroyed by the spin-orbit interaction; the latter can, however, 

change A and £ (i.e. there are matrix elements for the corresponding transi¬ 

tions) in such a way that Q remains unchanged. This effect, alone or in 

combination with the orbit-rotation interaction (which alters A but not £), 

may cause A-doubling. 

Let us first consider the 2FI terms. For the 2Ill/2 term (A= 1, E =— £, 

£2 = ^), the splitting is obtained on taking into account simultaneously the 

spin-orbit and orbit-rotation interactions, each in the first approximation. 

For the former gives the transition A = 1, E = —i-^A = 0, £ = A, and 

then the latter converts the state A = 0, E — \ into A = — 1, E = £, which 

differs from the initial state by the signs of A and Q being reversed. The mat¬ 

rix elements of the spin-orbit interaction are independent of the rotational 

quantum number J, while the dependence of those for the orbit-rotation 

interaction is determined by formula (88.1). in which (under the radical) 

we must replace K and A by J and Q. Thus we have for the A-doubling 

of a 2ni/2 term the expression 

A£j/2 = constant x (7+^), (88.3) 

where the constant is of the order of ABj e. For a 2ns/2 term, on the other 

hand, the splitting can be found only in higher approximations, so that in 

practice AEs/2 = 0. 

Finally, let us consider 3I1 terms. For a 3I10 term (A = 1, £ = —1), the 

splitting is obtained on taking into account the spin-orbit interaction in the 

second approximation (because of the transitions A = 1, £ = —1 A = 0, 

E = 0->A=—1, £=1). Accordingly, the A-doubling in this case is 

entirely independent of /: 

AE0 = constant ~ Aaje. (88.4) 

For a 3I11 term, E = 0, and so the spin has no effect on the splitting; hence 

we again have a formula like (88.2), but with K replaced by J: 

AEj = constant xJ(J+1). (88.5) 

For a 3Ila term, higher approximations are needed, so that we can suppose 

AEt = 0. 
One of the levels of the doublet resulting from A-doubling is always posi¬ 

tive. and the other negative; we have already discussed this in §86. An 

investigation of the wave functions of the molecule enables us to establish 

the regularities of the alternation of positive and negative levels. Here we 
shall give only the results of the investigation.! It is found that if, for some 

s may be found t Thu in E. Wif id E. Wit r, Zeitschrift fur Physik 51, 859, 1928. 
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value of J, the positive level is below the negative one, then in the doublet 

for J+1 the order is opposite, the positive level being above the negative 

one, and so on; the order varies alternately as the total angular momentum 

takes successive values. We are speaking here of case a terms; for case b, the 

same holds for successive values of the angular momentum K. 

PROBLEM 

Determine the A-splitting for a 1A term. 

Solution. Here the effect appears in the fourth approximation of perturbation theory. 
Its dependence on K is determined by the products of the four matrix elements (88.1) for 
transitions with change of A : 2 —1, 1 -*■ 0, 0 -*■ —1, —1 -*■ —2. This gives 

A E = constant x (K— \)K(K+ V)(K+2), 

where the constant is of order of 

§89. The interaction of atoms at large distances 

Let us consider two atoms which are at a great distance from each other 

(relative to their size), and determine the energy of their interaction. In 

other words, we shall discuss the determination of the form of the electron 

terms when the distance between the nuclei is large. 

To solve this problem we apply perturbation theory, regarding the two 

isolated atoms as the unperturbed system, and the potential energy of their 

electrical interaction as the perturbation operator. As we know (see Fields, 

§§41,42), the electrical interaction of two systems of charges at a large distance 

r apart can be expanded in powers of 1, r, and successive terms of this expan¬ 

sion correspond to the interaction of the total charges, dipole moments, 

quadrupole moments, etc., of the two systems. For neutral atoms, the total 

charges are zero. The expansion here begins with the dipole-dipole inter¬ 

action (~1 r3); then follow the dipole-quadrupole terms (~l/r4), the 

quadrupole-quadrupole (and dipole-octupole) terms (~l/>5), and so on. 

Let us first suppose that both atoms are in the 5 state. Then it is easily 

seen that there is no interaction between the atoms in the first approximation 

of perturbation theory. The energy of the interaction of the atoms is there 

determined as the diagonal matrix element of the perturbation operator, 

calculated with respect to the unperturbed wave functions of the system 

(expressed in terms of products of the wave functions for the two atoms)4 

In S states, however, the diagonal matrix elements, i.e. the mean values of 

the dipole, quadrupole, etc., moments, are zero; this follows immediately, 

since the distribution of charge density in the atoms is spherically symmetri¬ 

cal. Hence each term of the expansion of the perturbation operator in powers 

of 1 jr is zero in the first approximation of perturbation theory. J 
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In the second approximation it is sufficient to restrict ourselves to the dipole 

interaction in the perturbation operator, since this decreases least rapidly 

as r increases, i.e. to the term 

V = [di. d2-3(di. n)(d2. n)]/r», (89.1) 

where n is a unit vector in the direction joining the two atoms. Since the 

non-diagonal matrix elements of the dipole moment are in general different 

from zero, we obtain in the second approximation of perturbation theory a 

non-vanishing result which, being quadratic in V, is proportional to 1/r6. 

The correction in the second approximation to the lowest eigenvalue is 

always negative (§38). Hence we obtain for the interaction energy of atoms 

in their normal states an expression of the form 

U(r) = — constant/r6, (89.2) 

where the constant is positivej- (F. London 1928). 

Thus two atoms in normal 5 states, at a great distance apart, attract each 

other with a force ( — dUjdr) which is inversely proportional to the seventh 

power of the distance. The attractive forces between atoms at large distances 

are usually called van der Waals forces. These forces cause the appearance 

of minima on the potential energy curves of the electron terms even for 

atoms which do not form a stable molecule. These depressions, however, 

are very shallow (being only tenths or even hundredths of an electron-volt 

in depth) and lie at distances several times greater than the distances between 

atoms in stable molecules. 

If only one of the atoms is in the 5 state, the same result (89.2) is obtained 

for the interaction energy', since, for the first approximation to vanish, it is 

sufficient for the dipole (etc.) moment of only one atom to be zero. The 

constant in the numerator of (89.2) here depends, not only on the states of 

the two atoms, but also on their mutual orientation, i.e. on the value Q of the 

projection of the angular momentum on the axis joining the atoms. 

If both atoms have non-zero orbital and total angular momenta, however, 

the situation is changed. The mean value of the dipole moment is zero in 

every state of the atom (§75). The mean values of the quadrupole moment in 

states with L # 0,/ # 0 or J are not zero, however. Hence the quadrupole- 

quadrupole term in the perturbation operator gives a non-zero result even 

in the first approximation, and the interaction energy of the atoms diminishes 

as the fifth, not the sixth, power of the distance: 

U(r) — constant/r5. (89 3) 

Here the constant may be either positive or negative, i.e. we may have either 

attraction or repulsion. As in the previous case, this constant depends not 

* + As examples, the value of the constant (in atom.c units) for two atoms of hydrogen is 
6.5, of helium 1.5, of argon 68, of krypton 130. 
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only on the states of the atoms, but also on the state of the system formed 

by the two atoms. 

A special case is the interaction of two similar atoms in different states. 

The unperturbed system (the two isolated atoms) has here an additional de¬ 

generacy due to the possibility of interchanging the states of the acorns. 

Accordingly, the correction in the first approximation will be given by the 

secular equation, in which the non-diagonal matrix elements of the perturba¬ 

tion appear as well as the diagonal ones. If the states of the two atoms have 

different parities, and angular momenta L differing by ±1 or 0 but not both 

zero (the same restriction being placed on J), then the non-diagonal matrix 

elements of the dipole moment for transitions between these states are in 

general not zero. Hence an effect in the first approximation is obtained from 

the dipole term in the perturbation operator. Thus the interaction energy 

of the atoms is here proportional to 1/r3: 

U{r) = constant /r3, (89.4) 

where the constant may have either sign. 

Usually, however, what is of interest is the interaction of the atoms averaged 

over all possible orientations of their angular momenta (this formulation 

corresponds, for instance, to the interaction of atoms in a gas). With this 

averaging, the mean values of all multipole moments vanish, and so do all 

effects, linear in these moments in the first approximation of perturbation 

theory, in the interaction of the atoms. Hence the averaged interaction 

forces between atoms at large distances always follow the law (89.2).f 

Let us further consider the kindred question of the interaction between an 

atom and an ion. In the first approximation of perturbation theory, this 

interaction is given by the mean value of the operator (76.8), the energy of the 

quadrupole in the Coulomb field of the ion. Since the potential of this field is 

<f> ~ 1/r, the atom-ion interaction energy is proportional to 1 r3. This 

effect exists, however, only if the atom has a mean quadrupole moment. 

Even then, it vanishes on averaging over all directions of the angular momen¬ 

tum J. 

The next interaction in order of powers of 1/r, which is always non-zero, 

is that in the second order of perturbation theory with respect to the dipole 

operator (76.1). Since the. ion field strength is ~l,r2, the energy of this 

interaction is proportional to Ur1. It can be expressed in terms of the 

polarizability z of the atom (in the A state) by 

U = — ae2/2r4. (89.5) 

If the atom is in its ground state, this energy (like all corrections to the 

t This law, derived on the basis of the non-relativis 
retardation of electromagnetic interactions is unimpor 
between the atoms must be small compared with c/ < 
transitions between the ground state and the excited sta 
interaction of atoms when the retardation is taken intc 

: theory, is valid only so long as the 
at. For this to be so, the distance r 
r., where w0„ are the frequencies of 
3 of the atom. See RQT, §85, for the 
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ground-state energy) is negative, i.e. there is an attraction between the atom 

and the ion.f 

PROBLEM 

Derive a formula giving the van der Waals forces in terms of the matrix elements of dipole 
moments for two like atoms in 5 states. 

Solution The answer is obtained by applying the general formula (38.10) of perturbation 
theory to the operator (89.1). On account of the isotropy of the atoms in the 5 state it is 
evident a priori that, on summation over all intermediate states, the squared matrix elements 
of the three components of each of the vectors di and d2 give equal contributions, while the 
terms which contain products of different components give zero. The result is 

Ulr) = 6 <n|dz|0)2<n'Ki0>2 
1 ’ rt£. En + E„. — 2Eo ’ 

where Eo' and En are the unperturbed values of the energies of the ground state and excited 
states of the atom. Since by hypothesis L — 0 in the ground state, the matrix elements 
(dz)tsn are non-zero only for transitions to P states (L = 1). Using formulae (29.7), we bring 
U(r) to the final form 

UM = 2 v <ni;:d;;00)2<n'l|id|'00>2 

3 £nl + £„.i-2£oo ' 

where in the suffixes nL of the energy levels and the reduced matrix elements the second 
suffix gives the value of L and the first represents the assembly of the remaining quantum 
numbers which determine the energy level. 

§90. Pre-dissociation 

A basic premise of the theory of diatomic molecules as given in this chapter 

is the assumption that the wave function of the molecule falls into the product 

of an electron wave function (depending on the distance between the nuclei 

as a parameter) and a wave function for the motion of the nuclei. This sup¬ 

position amounts to neglecting, in the exact Hamiltonian of the molecule, 

certain small terms corresponding to the interaction of the nuclear and 

electron motions. 

When these terms are taken into account and perturbation theory is applied, 

transitions between different electron states appear. Physically, the transi¬ 

tions between states of which at least one belongs to the continuous spectrum 

are of particular importance. 

Figure 30 shows curves for the potential energy of two electron terms 

(more precisely, the effective potential energy Uj in some given rotational 

states of the molecule). The energy E' (the lower dashed line in Fig. 30) is 

the energy of some vibrational level of a stable molecule in the electron 

state 2. In state 1, this energy lies in the range of the continuous spectrum. 

In other words, in passing from state 2 to state 1 the molecule automatically 

t A similar attraction 
attraction is the reason fc 
electron (with binding e 

• Not all atoms possess this 
as 1 jr* (or 1/r3), the nu 
always finite and, in part 

occurs between an atom and an electron at large distances. This 
or the abilitv of the atom to form a negative ion by attachment of an 
:nergy from a fraction of an electron-volt to several electron-volts), 
s property, however, since, in a field which decreases at large distances 
imber of levels (corresponding to bound states of the electron) is 
ticular cases, may be zero. 
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disintegrates; this phenomenon is called pre-dissociation.^ As a result of 

pre-dissociation, the state of the discrete spectrum corresponding to curve 

2 has in reality a finite lifetime. This means that the discrete energy level 

is broadened, i.e. acquires a certain width (see the end of §44). 

If, on the other hand, the total energy E lies above the dissociation limit 

in both states (the upper dashed line in Fig. 30), the transition from one 

state to the other corresponds to what is called a collision of the second kind. 

Thus the transition i -> 2 signifies the collision of two atoms, as a result of 

which the atoms are left in excited states, and separate with diminished 

kinetic energy (for r -> oo, curve 1 passes below curve 2; the difference 

U2(oo)—Ul(co) is the excitation energy of the atoms). 

Because of the large masses of the nuclei their motion is quasi-classical. 

The problem of determining the probability of the transitions under considera¬ 

tion is therefore of the kind discussed in §52. From the general considera¬ 

tions given there we can say that the transition probability will be mainly 

determined by the point at which the transition could occur classically.J 

Since the total energy of the system of two atoms (the molecule) is conserved 

in the transition, the condition for it to be “classically possible” is that the 

effective potential energies.should be equal: Uj\{r) = Ujo(r). On account 

of the conservation of the total angular momentum of the molecule also, the 

centrifugal energies are the same in the two states, and so this condition 

means that the potential energies are equal: 

Ui{r) = U2(r), (90.1) 

the angular momentum not being involved at all. 

If equation (90.1) has no real roots in the classically accessible region 

(where E > UJU UJ2), the transition probability according to §52 is expo¬ 

rt atom^ 1 n° minimum at a11 if 11 corresponds to purely repulsive forces between 

t Or else by the point r = 0 at which the potential energy becomes infinite. 
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nentially small.f Transitions occur with an appreciable probability only if 

the potential energy curves intersect in the classically accessible region 

(as shown in Fig. 30). Then the exponent in formula (52.1) is zero (and this 

formula is therefore, of course, invalid); accordingly, the transition probability 

is determined by a non-exponential expression which will be derived below. 

The condition (90.1) can then be interpreted as follows. If the potential (and 

total) energies are the same, so are the linear momenta. Hence the condition 

(90.1) may also be written in the form 

ri = H, Pi = Pz, (90.2) 

where p is the momentum of the relative radial motion of the nuclei, and the 

suffixes 1 and 2 refer to the two electron states. Thus we can say that the 

distance between the nuclei and their relative momentum remain unchanged 

at the instant when the transition occurs (this is called Franck and Condon's 

principle). Physically, this is due to the fact that the electron velocities are 

large compared with those of the nuclei, and “during an electron transition” 

the nuclei cannot noticeably change their position or velocity. 

It is not difficult to establish the selection rules for the transitions in ques¬ 

tion. First of all, there are two obvious exact rules. The total angular 

momentum J and the sign of the term (positive or negative; see §86) cannot 

change in a transition. This follows at once from the fact that the conserva¬ 

tion of the total angular momentum and of the behaviour of the wave function 

under inversion of the coordinate system are exact laws for any (closed) 

system of particles. 

Next, the rule which forbids (for molecules composed of similar atoms) 

transitions between states of unlike parity is very nearly accurate. For the 

parity of the state is uniquely determined by the nuclear spin and the sign of 

the term. The conservation of the sign of the term is an exact law, however, 

while the nuclear spin is very nearly conserved by virtue of the weakness of 

its interaction with the electrons. 

The requirement that there should be a point of intersection of the potential 

energy curves means that the terms must be of different symmetry (see §79). 

Let us consider transitions occurring in the first approximation of perturba¬ 

tion theory; the probability of transitions which occur only in higher approxi¬ 

mations is relatively small. First of all, we notice that the terms in the 

Hamiltonian which lead to the transitions in question are just those which 

cause the A-doubling of the levels. Among these terms are, firstly, terms 

lepresenting the spin-orbit interaction. They are the product of two axial 

vectors, of which one is of spin character (i.e. is composed of the operators 

of the electron spins), and the other is of coordinate character; we emphasize, 

t A peculiar situation 
which can arise from tw< 
potential energy curve is, 
case the transition proba’ 
and E. E. Nikitin, Optics 

must occur in the case of a transition involving a molecular term 
D different pairs of atomic states (see the end of §85), i.e. when the 
as it were, split into two branches with increasing distance. In this 

bility is considerably greater; an example is given by A. I. Voronin 
and Spectroscopy 25, 450, 1969. 
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however, that these vectors are not simply the vectors S and L. Hence they 

have non-zero matrix elements for transitions in which S and A change by 

0, +1. The case where AS and AA are both zero (and A ^ 0) must be 

omitted, since the symmetry of the term would then be unchanged in the 

transition. The transition between two 2 terms is possible if one of them is 

a 2+ term and the other a 2“ term; an axial vector has non-zero matrix 

elements only for transitions between 2+ and 2“ (see §87). 

The term in the Hamiltonian which corresponds to the interaction between 

the rotation of the molecule and its orbital angular momentum is proportional 

to j . L. Its matrix elements are non-zero for transitions with AA = ± 1 

without change of spin (only the ^-component of the vector, i.e. Lc, has ele¬ 

ments with AA = 0, but Lc is diagonal with respect to the electron states). 

As well as the terms we bave considered, there is also a perturbation due 

to the fact that the operator of the kinetic energy of the nuclei (i.e. the operator 

of differentiation with respect to the coordinates of the nuclei) acts, not only 

on the wave function of the nuclei, but also on the electron function, which 

depends on r as a parameter. The corresponding terms in the Hamiltonian 

are of the same symmetry as the unperturbed Hamiltonian. Hence they can 

lead only to transitions between electron terms of like symmetry, the prob¬ 

ability of which is negligible in view of the non-intersection of these terms. 

Let us go on to the actual calculation of the transition probability. For 

definiteness, we shall consider a collision of the second kind. According to 

the general formula (43.1), the required probability is given by the expression 

® = j\ Jxnuc.2*^)x„Uc.idr|2, (90.3) 

where xnuc = riPnuc (’Pnuc being the wave function of the radial motion of the 

nuclei) and V(r) is the perturbing energy; we have taken, as the quantity vf in 

(43.1), the energy E and integrated with respect to it. The final wave func- 

tion Xnuc,2 must be normalized by the delta function of energy. The quasi- 

classical function (47.5), thus normalized, is 

(90-4) 

The normalizing factor is determined by the rule given at the end of §21. 

The wave function of the initial state can be written in the form 

w-^c“fii.f'*d'-4 (90-s> 

It is normalized so that the current density is unity in each of the two travelling 
waves into which the stationary wave (90.5) can be resolved; and zj2 are 
the velocities of the relative radial motion of the nuclei. On substituting 



348 The Diatomic Molecule §90 

these functions in (90.3), we obtain the dimensionless transition probability 

tv. It can be regarded as the transition probability for the nuclei to pass 

twice the point r = r0 (the point of intersection of the levels). It must be 

borne in mind that the wave function (90.5) corresponds, in a certain sense, 

to a double passage through this point, since it contains both the incident and 

the reflected travelling waves. 

The matrix element of V(r), calculated with respect to the functions 

(90.4), (90.5), contains in the integrand a product of cosines, which can be 

written in terms of the cosines of the sum and difference of the arguments. 

On integrating near the point r = ro, only the second cosine is important, 

so that 

V(r)drf 

vmI ‘ 

The integral rapidly converges as we move away from the point of intersec¬ 

tion. Hence we can expand the argument of the cosine in powers off = r — r0 

and integrate over f from — oo to + oo (replacing the slowly varying coeffi¬ 

cient of the cosine by its value at r = r0). Bearing in mind that, at the point 

of intersection, p1 = p2, we find 

where S0 is the value of the difference of the integrals at the point r = r0. 

The derivative of the momentum can be expressed in terms of the force 

F = — dUjdr: differentiating the equation pj2/2/x + D\ = p^j2/j, + U2 (where 

/i is the reduced mass of the nuclei), we have v1 dp^dr—v^ dpjdr = F1—Fi. 

Thus 

f f Fi-F, 
I Pi I Pi dr « SB-1—P, 

“i 

where v is the common value of v1 and v2 at the point of intersection. The 

integration is effected by means of the well-known formula 

and as a result we have 

J cos(<x+JSP) df = cos(a+^7), 

SnF2 „/S0 \ 
-- cos21 —■+trr I. 
tolF,-Fil / 

(90.6) 

The quantity SJfi is large and varies rapidly with the energy E. Hence, 
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on averaging over even a small interval of energy, the squared cosine can be 

replaced by its mean value. As a result we obtain the formula 

w = +77 J'VfolF.-FJ (90.7) 

(L. Landau 1932). All the quantities on the right-hand side of the equation 

are taken at the point of intersection of the potential-energy curves. 

In the application to pre-dissociation, we are interested in the probability 

of the disintegration of the molecule in unit time. In this time, the nuclei 

in their vibrations pass 2{u>12tt) times through the point r = r0- Hence the 

required pre-dissociation probability is obtained by multiplying w (the 

probability for a double passage) by a>l2-n, i.e. it is 

2V*t*lkv\Ft-Fi\. (90.8) 

The following remark must be made concerning these calculations. In 

speaking of the intersection of terms, we have had in mind the eigenvalues 

of the “unperturbed” Hamiltonian l30 of the electron motion in the molecule; 

in this, the terms V which lead to the transitions concerned are not taken into 

account. If we include these terms in the Hamiltonian, the intersection of 

the terms becomes impossible, and the curves move apart slightly, as shown 

in Fig. 31. This follows from the results of §79 when regarded from a slightly 

different point of view. 

Let Ujjfr) and UJ2(r) be two eigenvalues of the operator ff0 (in which r 

is regarded as a parameter). In the region near the point r0 where the curves 

Uji(r) an<^ L:J2(r) intersect, to determine the eigenvalues U(r) of the perturbed 

operator fd0+P we must use the method given in §79, as a result of which 
we obtain the formula 

Ub,a(r) = UUJ1+ Lj2+ Vll+Voo) ± y/\\(Uji~ Ujz+l’n - V22)2+Vi22], 
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where all quantities are functions of r \ the function Ub(r) (with the upper 

sign in the formula) corresponds to the upper continuous curve (1 —2) in 

Fig. 31, and Ua{r) to the lower one (2'— 1). The matrix elements V,, and 

V22 may be included in the definition of the functions Uj\ and Uj2 respec¬ 

tively ; V12 will be denoted by V(r) simply. Then the above formula becomes 

Ub,a(r) = HUj1+Uj2) ± W[(Ujl-C/j2)2 + 4F*]. (90.9) 

The interval between the two levels is now 

At/ = V[(Uji-Uj2)2 + 4V2]. (90.10) 

Thus, if there are transitions between the two states (V ^0), the intersection 

of the levels disappears. The minimum distance between the curves occurs 

at r = ro, where Uj , - Uj2'. 

(At/)min = 2|F(r0)|. (90.11) 

Near this point, we can expand the difference Uj\ — Uj2 in powers of the 

small difference £ = r-ro, putting 

uji-uji = 11,-112* m-Fi), 

where F = — (dF/dr)^. Then 

AU = V[(F2-Ftf f2 + 4F2(r0)]. (90.12) 

For the validity of formulae (90.11) and (90.12), which have been derived 

by consideration of only two states, it is necessary that (A£/)min should be 

small in comparison with the distance of the other terms. For the validity 

of (90.7) as the transition probability we must satisfy the condition (90.19) 

below, which in general is a more stringent one. If the latter condition is not 

satisfied, it is still permissible to consider only two terms, but ordinary 

perturbation theory is not available for the calculation of the transition 

probability. In that case, a more general treatment is needed. 

If we consider only the neighbourhood of the point of intersection and 

treat the motion of the nuclei quasi-classically, we can replace the velocity 

operator of the nuclei in the Hamiltonian of the system by a constant v, and 

the coordinate r by a function of time satisfying the classical equation dr/dt = 
v, i.e. f = r — ro = vt. The problem of calculating the transition probability 

then reduces to that of solving the wave equation for the electron wave 

functions with a Hamiltonian explicitly dependent on the time: 

ihd'T'Idt = [i?o(0 + J-fy)]^"- (90.13) 

Let ijja and <pb be the wave functions of the electron states corresponding to 
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the curves a and b. They are solutions of the equations 

351 

(H0+V)<Pa,b = UaAWa.* 

in which t is a parameter. The solution of equation (90.13) is sought in the 

form 

T = a(t)*lia + b(t)fo. (90.14) 

If the equation is solved with the boundary condition a = 1, b = 0 as 

t ^ — oo, then |6(co)|2 gives the probability that the molecule enters the 

state tpb, representing a transition from curve a to curve b, as the nuclei 

pass through the point r = ro- Similarly, |a(co)|2 = 1— |6(co)|2 is the 

probability that the molecule remains on the curve a. A transition from 

curve a to curve b in a twofold passage through the point ro (as the nuclei 

approach and then recede) can occur in two ways: a b -> 6 (with the 

transition 1 -> T as they approach and the molecule remaining on the curve 

T2 as they recede), or a -> a b (with 1 -> 2' as they approach and 2' -> 2 

as they recede). Hence the required probability for such a transition is 

«> = 2|6(a))|2[l-|6(a))|2], (90.15) 

where we have used the fact that the transition probability in a passage 

through the point r = ro is of course independent of the direction of motion. 

The value of b( x>) can be found by the method described in §53, without 

making direct use of (90.13).f To do so, we note that the curves of Ua(t) and 

Ub(t) intersect at the imaginary points 

*»<*=>= 21 = ±iro. (90.16) 
\Fz-Fi\v 

For large negative t, the coefficient a(t) in (90.14) has a form that is “quasi- 

classical with respect to time”: 

a(t) = exp 

Let us now move from the left half of the real axis in the plane of the complex 

variable t to the right half along a contour on which the “quasi-classicality” 

t In $53 the process was assumed to be entirely adiabatic, and accordingly its probability 
was found to be exponentially small. In the present case, however, this condition may be 

d when the nuclei are in the immediate neighbourhood of the point r0, if their velocity 
t sufficiently small. However, it is clear from the analysis in §§52 and 53 that only the 

adtabat.citv for large |r|, and the possibility of considering just two levels in the system, i 
important as regards the applicability of the method itse " 
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condition is always satisfied; since Un < Ub, the path used must be in the 

upper half-plane, passing round the point to*"' (cf. §53). The function a(t) 

then becomes b(t), with 

|6(oc)|2 = exp U„(t) dt + 

where t\ may be taken to be any point on the real axis, for instance t\ = 0. 

According to (90.12) we have 

A U = V[(^2-^i)2^2 + 4F2], (90.17) 

and the required integral, with the substitution t = zV, becomes 

i \/[4V2 — (F2 - jFi)2?:2t2] dr = 
77 F2 

v\F2-F!\ 

Thus we have the following final expression for the transition probability: 

w = 2 exp 2-F2 expf 
277 F2 

hv\F2-F1\ )] (90.18) 

(C. Zener 1932). We see that the transition probability becomes small in two 

limiting cases. For F2 p hv\F2~Fi\ it is exponentially small (the adiabatic 

case), and for 

F2 «Ut'|F2 —Fi| (90.19) 

formula (90.18) becomes (90.7). From (90.17) we see that r \ V\I\F2 — Fi\v 
is the “passage time” for the nuclei through the point of intersection; the 

corresponding frequency a>x ~ 1 It. Hence the attainment of the two limiting 

cases mentioned is determined by the relation between ?iajz and the charac¬ 

teristic energy | F| of the problem. 
Finally, let us consider the phenomenon, akin to pre-dissociation, of what 

are called perturbations in the spectra of diatomic molecules. If two discrete 
» molecular levels E1 and E2 corresponding to two intersecting electron terms 

are close together, the possibility of a transition between the two electron 
states results in a displacement of the levels. According to the general 
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formula (79.4) of perturbation theory, we have for the displaced levels the 

expression 

m+E»)± Vl2,nun (90.20) 

where F12nui. is the matrix element of the perturbation for the transi¬ 

tion between the molecular states 1 and 2; the matrix elements Vn nuc and 

^2,nuc must, of course, be included in E1 and E2. From this formula we see 

that the two levels are moved apart, being displaced in opposite directions 

(the higher level is raised and the other lowered). The amount of the dis¬ 

placement is the greater, the smaller the difference —^1- 

The matrix element ^.nuc is calculated in exactly the same way as for 

determining the probability of a collision of the second kind. The only 

difference is that the wave functions xnuc.i and Xnuc.2 belong to the discrete 

spectrum, and hence must1 be normalized to unity. According to (48.3) we 

have 

/2co i 11 r I 

and similarly for xnuc2. A comparison with formulae (90.3) to (90.5) 

shows that the matrix element Fi2,nuc here considered is related to the 

transition probability w for a twofold passage through the point of inter¬ 

section by 

I ^.nucl2 = (90.21) 

PROBLEMS 

Problem 1. Determine the total cross-section for collisions of the second kind, as a 
function of the kinetic energy E of the colliding atoms, for transitions pertaining to the spin- 
orbit interaction (L. D. Landau 1932). 

Solution. On account of the quasi-classical motion of the nuclei, we can introduce the 
concept of the impact parameter p (the distance at which the nuclei would pass if there were 
no interaction between them) and define the cross-section da as the product of the “target 
area" 2trp dp and the transition probability w(p) per collision (cf. Mechanics, §18). The total 
cross-section a is obtained by integrating with respect to p. 

For spin-orbit interaction, the matrix element V(r) is independent of the angular momen¬ 
tum M of the colliding atoms. We write the velocity v at the point r = r0, where the curves 
intersect, in the form 

« = Vl(2/p)(P-t''-M2/2p^)] = V[(2/p)(P—£/-p*P/0]. 

Here U is the common value of Ut and U, at the point of intersection, p. is the reduced mass 
of the atoms, and the angular momentum M — ppvao, where t'cc is the relative velocity of the 
atoms at infinity. The zero of energy is chosen so that the interaction energy of the atoms in 
the initial state is zero at infinity; then E = £p^;co^ Substituting this expression in (90.7), 

Stt-V2_pdp 
do = 2Trp dp. i 

h\f\- f\l V[2(£- U — pz£/r0a)/p] ' 
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The integration with respect to p must be taken from zero up to the value for which the 
velocity v vanishes. As a result we have 

W(2»WV\2 V{E-U) 
fi|F2—F]| E 

Problem 2. The same as Problem 1, but for transitions pertaining to the interaction be¬ 
tween the rotation of the molecule and its orbital angular momentum (L. D. Landau 1932). 

Solution. The matrix element V is of the form I’(r) = MD/pr*, where D(r) is the matrix 
element of the electron orbital angular momentum. By the same method as in Problem 1 we 

16^/277^ (£-t/)3.'2 

° = 3/iVp|fW'’il E ' 

Problem 3. Determine the transition probability for energies E close to the value Uj 
of the potential energy at the point of intersection. 

Solution. For small values of E—TJj, formula (90.7) is inapplicable, since the velocity 
v of the nuclei cannot be regarded as constant near the point of intersection, and hence it 
cannot be taken outside the integral as it was in deriving (90.7). 

Near the point of intersection we replace the curves of Vju Uj2 by the straight lines 

f-'ji = Uj-Fjrf, UJ2 = Vj-FjtS, ( = r-r0. 

The wave functions Xcoc.1 and xnuc2 in this region are wave functions of one-dimensional 
motion in a homogeneous field (§24). The calculations are conveniently effected by means 
of wave functions in the momentum representation. The wave function normalized by the 
delta function of energy is of the form (see §24, Problem) 

-“p-nr-UE-Ujyp-fM- 

while the wave function normalized to unii current density in the incident and reflected waves 
is obtained by multiplying by \/(2irh): 

- e*p ■! r—[(£- Vj)p-psl6p] - 

On integrating, the perturbing energy (matrix element) V may again be taken outside the 
integral, replacing it by its value at the point of intersection; 

As a result we obtain 

wnere C>(f) is the Airy function (see §b of the Mathematical Appendices). For large E—Uj, 
this formula reduces to (90.7). 

Problem 4. Determine the probability of charge exchange in a distant slow (relative 
velocity u<gl) collision between a hydrogen atom and a hydrogen ion (proton) (O. B. Firsov 
1951).+ 

Solution. We shall regard the system H + H* as a molecular hydrogen ion (see §81, 
* Problem). Charge exchange consists in the transfer of the electron from a state ^ localized 

atomic units are used. + In this problem. 
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at the first nucleus to a state 1A2 near the second nucleus. These are not stationary states, even 
when the nuclei are at rest. The stationary states are 

ts.u = ± 0a). 
V2 

Their energies are US,U{R) as functions of the distance R between the nuclei. When the 
nuclei are in a given slow motion (which we regard as classical), these energies are slowly 
varying functions of the time, and the time dependence of the wave functions is given by the 
factors “quasi-classical with respect to time” 

exp(-i J U„,4t) dr); 

cf. §53. The superposition of the two states that is equal to when t = —03 is 

r = VzL*"exp ("' IUg d')+^exp (_'{ Uu dt)} 
When t -*oo, this function is a linear combination, of the form Ci^i + c202, and the probability 
of charge exchange is vi = |c2|2. A simple calculation gives 

» = sin^, , = i j(Uu-Ug)dt. 

In a collision with large impact parameters p (which are important at a sufficiently low 
velocity v), the motion of the nuclei may be assumed to take place in a straight line, with R = 
V(p2+v2r). The difference Uu-Ug for /?>! is given by formula (4) in §81, Problem. Then 

_ 4 r Rie-R-1 

71 rj vW-P-) 
d R. 

For p>l, the important range of values of R in the integral is that near the lower limit; 
putting R = p(l +x), we obtain 



CHAPTER XII 

THE THEORY OF SYMMETRY 

§91. Symmetry transformations 

The classification of terms in the polyatomic molecule is fundamentally 

related to its symmetry, as in the diatomic molecule. Hence we shall begin 

by examining the types of symmetry which a molecule can have. 

The symmetry of a body is determined by the assembly of all those re¬ 

arrangements after which the body is unaltered; these rearrangements are 

called symmetry transformations. Any possible symmetry transformation can 

be represented as a combination of one or more of the three fundamental 

types of transformation. These three essentially different types are: the 

rotation of the body through a definite angle about some axis, the reflection 

of it in some plane, and the parallel displacement of the body over some 

distance. Of these, the last evidently is applicable only to an infinite medium 

(a crystal lattice). A body of finite dimensions (in particular, a molecule) 

can be symmetrical only with respect to rotations and reflections. 

If the body is unaltered on rotation through an angle 2it/k about some 

axis, then that axis is said to be an axis of symmetry of the nth order. The 

number n can take any integral value: n = 2, 3, ... . The value n = 1 

corresponds to a rotation through an angle of 2-77 or, what is the same thing, 

of 0, i.e. it corresponds to an identical transformation. We shall symbolically 

denote by Cn the operation of rotation through an angle Inju about a given 

axis. Repeating this operation two, three, ... times, we obtain rotations 

through angles 2(2tt/?z), 3(2tt/k), ..., which also leave the body unaltered; 

these rotations may be denoted by Cn2, Cn3, ... . It is obvious that, if p 

divides n, 

CB*> = Cn/T. (91.1) 

In particular, performing the rotation n times, we return to the initial position, 

i.e. we effect an identical transformation. The latter is customarily denoted 

by E, so that we can write 

Cnn = E. (91.2) 

If the body is left unaltered by a reflection in some plane, this plane is said 

to be a plane of symmetry. We shall denote by the symbol o the operation 

of reflection in a plane. It is evident that a double reflection in the same 

* plane is the identical transformation: 

a2 = E. 

356 

(91.3) 
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A simultaneous application of the two transformations (rotation and 

reflection) gives what are called the rotary-reflection axes. A body has a 

rotary-reflection axis of the nth order if it is. left unaltered by a rotation 

through an angle 2tt/m about this axis, followed by a reflection in a plane 

perpendicular to the axis (Fig. 32). It is easy to see that this is a new form 

of symmetry only when n is even. For, if n is odd, an n-fold repetition of the 

rotary-reflection transformation would be equivalent to a simple reflection 

in a plane perpendicular to the axis (since the angle of rotation is 277, while 

an odd number of reflections in the same plane amounts to a simple reflection). 

Repeating this transformation a further n times, we have as a result that the 

rotary-reflection axis reduces to the simultaneous presence of an axis of 

symmetry of the «th order and an independent plane of symmetry perpen¬ 

dicular to this axis. If, however, n is even, an n-fold repetition of the rotary- 

reflection transformation returns the body to its initial position. 

We denote the rotary-reflection transformation by the symbol Sn. 

Denoting by ok a reflection in a plane perpendicular to a given axis, we can 

put, by definition, 

Sn = Cnch = CftC„; (91.4) 

the order in which the operations Cn and oh are performed clearly does not 

affect the result. 

An important particular case is a rotary-reflection axis of the second 

order. It is easy to see that a rotation through an angle tt, followed by a 

reflection in a plane perpendicular to the axis of rotation, is the inversion 

transformation, whereby a point P of the body is carried into another point 

P', lying on the continuation of the line which joins P to the intersection O 

of the axis and the plane, and such that the distances OP and OP' are the same. 

A body symmetrical with respect to this transformation is said to have a 

centre of symmetry. We shall denote the operation of inversion by I, so that 
we have 

/ = S2 = C2crft. (91.5) 

It is also evident that Iah = Cg, IC2 = ah; in other words, an axis of the 
second order, a plane of symmetry perpendicular to it and a centre of sym- 
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metry at their point of intersection are mutually dependent: if any two of 

these elements are present, the third is automatically present also. 

We shall now give various purely geometrical properties of rotations and 

reflections which it is useful to bear in mind in studying the symmetry of 

bodies. 

A product of two rotations about axes intersecting at some point is a 

rotation about some third axis also passing through that point. A product 

of two reflections in intersecting planes is equivalent to a rotation; the axis 

of this rotation is evidently the line of intersection of the planes, while 

the angle of rotation is easily seen, by a simple geometrical construction, to 

be twice the angle between the tw'o planes. If we denote a rotation through 

an angle <j> about an axis by and reflections in two planes passing through 

that axis by the symbolsf ov and o'v, the above statement can be written as 

c„c', = C(24>), (91.6) 

where ^ is the angle between the two planes. It must be noted that the order 

in which the two reflections are performed is not immaterial. The trans¬ 

formation avo'v gives a rotation in the direction from the plane of o’v to 

that of crv; on interchanging the factors we have a rotation in the oppo¬ 

site direction. Multiplying equation (91.6) on the left by ar, we obtain 

a', = a,C(2i); > (91.7) 

in other words, the operation of rotation, followed by reflection in a plane 

passing through the axis, is equivalent to a reflection in another plane 

intersecting the first at half the angle of rotation. In particular, it follows 

from this that an axis of symmetry of the second order and two mutually 

perpendicular planes of symmetry passing through it are mutually dependent; 

if two of them are present, so is the third. 

We shall show that the product of rotations through an angle tt about tw'o 

axes intersecting at an angle <j> (Oa and Ob in Fig. 33) is a rotation through 

an angle 2<f> about an axis perpendicular to the first two (PP' in Fig. 33). 

t The suffix V customarily denotes a reflection in a plane passing through a given axis (a 
‘vertical” plane), and the suffix h a reflection in a plane perpendicular to the axis (a 
■horizontal" plane). 
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For it is obvious that the resulting transformation is also a rotation; after 

the first rotation (about Oa) the point Pis carried into P', and after the second 

(about Ob) it returns to its original position. This means that the line PP' 

remains fixed, and is therefore an axis of rotation. To determine the angle 

of rotation, it is sufficient to note that, in the first rotation, the axis Oa 

remains fixed, while after the second it takes the position Oa', which makes 

an angle 2<f> with Oa. In the same way we can see that, when the order of the 

two transformations is reversed, we obtain a rotation in the opposite direction. 

Although the result of two successive transformations in general depends 

on the order in which they are performed, in some cases the order of opera¬ 

tions is immaterial: the transformations commute. This is so for the following 

transformations: 

(1) Two rotations about the same axis. 

(2) Two reflections in mutually perpendicular planes (equivalent to a 

rotation through n about their line of intersection). 

(3) Two rotations through n about mutually perpendicular axes (equivalent 

to-a rotation through n about the third perpendicular axis). 

(4) A rotation and a reflection in a plane perpendicular to the axis of 

rotation. 

(5) Any rotation or reflection and an inversion with respect to a point 

lying on the axis of rotation or in the plane of reflection; this follows 

from (1) and (4). 

§92. Transformation groups 

The set of all the symmetry transformations for a given body is called its 

symmetry transformation group (or simply its symmetry group). Hitherto we 

have spoken of these transformations as geometrical rearrangements of the 

body. However, in quantum-mechanical applications it is more convenient 

to regard symmetry transformations as transformations of the coordinates 

which leave the Hamiltonian of the system in question invariant. It is obvious 

that, if the system is left unaltered by some rotation or reflection, the cor¬ 

responding transformation of the coordinates does not change its Schrodin- 

ger’s equation. Thus we shall speak of a transformation group with respect to 

which a given Schrodinger’s equation is invariant.! 

t This point of view enables us to include in our considerations not only the rotation and 
reflection groups discussed here, but also other types of transformation which leave Schrodin¬ 
ger’s equation unaltered. These include the interchange of the coordinates of identical 
particles forming part of the system considered (a molecule or atom). The set of all possible 
permutations of identical particles in a given system is called its permutation group (we have 
already met these permutations in §63). The general properties of groups given below apply 
to permutation groups also; we shall not pause to study this type of group in more detail here. 

The following remark should be made concerning the notation which we use in this 
chapter. Symmetry transformations are essentially operators just like those which we con¬ 
sider all through the book. They ought, therefore, to be denoted by letters with circumflexes. 
We do not do this, in view of the generally accepted notation, and because this omission 
cannot lead to misunderstandings in the present chapter. For the same reason we denote the 
identical transformation by the customary symbol E, and not by 1, which would correspond 
to the notation in the other chapters. Lastly, the inversion operator is denoted in this chapter 
by I, instead of P as in §30, although the latter is customary in recent literature on quantum 
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Symmetry groups are conveniently studied with the help of the general 

mathematical techniques of what is called group theory, the fundamentals of 

which we shall explain below. At first we shall consider groups, each of which 

contains a finite number of transformations (known as finite groups). Each of 

the transformations forming a group is said to be an element of the group. 

Symmetry groups have the following important properties. Each group * 

contains the identical transformation E (called the unit element of the group). 

The elements of a group can be multiplied by one another; by the product 

of two (or more) transformations we mean the result of applying them in 

succession. It is obvious that the product of any two elements of a group is 

also an element of that group. For the multiplication of elements we have 

the associative law (AB)C = A(BC), where A, B, C are elements of a group. 

There is evidently no general commutative law; in general, AB ^ BA.. 

For each element A of a group there is in the same group an inverse element 

A~1 (the inverse transformation), such that AA~l = E. In some cases an 

element may be its own inverse; in particular, E-1 = E. It is evident that 

mutually inverse elements A and A~l commute. 

The element inverse to the product AB of two elements is 

(AB)-1 = B-M-1, 

and similarly for the product of a greater number of elements; this is easily 

seen by effecting the multiplication and using the associative law. 

If all the elements of a group commute, the group is said to be Abelian. 

A particular case of Abelian groups is formed by what are called cyclic groups. 

By a cyclic group we mean a group, all of whose elements can be obtained by 

raising one of them to successive powers, i.e. a group consisting of the 

elements 

A, A2, As,...,An =E, 

where n is some integer. 

Let G be some group.f If we can separate from it some set of elements 

H such that the latter is itself a group, then the group H is called a sub-group 

of the group G. A given element of a group may appear in several of its 

sub-groups. 

By taking any element A of a group and raising it to successive powers, 

we finally obtain the unit element (since the total number of elements in the 

group is finite). If n is the smallest number for which An = E, then n is 

called the order of the element A, and the set of elements A, A2, ..., A” = E 

is called the.period of A. The period is denoted by {^3}; it is itself a group, i.e. 

it is a sub-group of the original group, and is cyclic. 
In order to find whether a given set of elements of a group is a sub-group 

of it, it is sufficient to find whether, on multiplying any two of its elements, 

we obtain another element of the set. For in that case we have, together with 

* each element A, all its powers, including A71-1 (where n is the order of A), 

f We shall denote groups by bold italic letters. 
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which is the inverse of A (since An~l A = An = E); and there will obviously 

be a unit element. 

The total number of elements in a group is called its order. It is easy 

to see that the order of a sub-group is a factor of the order of the whole group. 

To show this, let us consider a sub-group H of a group G, and let Gx be 

some element of G which does not belong to H. Multiplying all the elements 

of H (on the right, say) by Glt we obtain a set (or complex, as it is called) 

of elements, denoted by HGj. All the elements of this complex clearly belong 

to the group G. However, none of them belongs to H; for, if for any two 

elements Ha, Hb belonging to H we had HaG1 = Hb, it would follow that 

G1 = i.e. Gx would also belong to the sub-group H, which is 

contrary to hypothesis. Similarly we can show that, if G2 is an element of G 

not belonging to H or to HGV none of the elements of the complex HG2 

will belong to H or to HGV Continuing this process, we finally exhaust 

all the elements contained in the finite group G. Thus all the elements are 

divided among the complexes (called the cosets of H in G) 

H, HGlt HG2, ..., HGm 

each of which contains h elements, h being the order of the sub-group H. 

Hence it follows that the order g of the group G is g = hm, and this proves 

the theorem. The integer m = gjh is called the index of the sub-group H 

in the group G. 

If the order of a group is a prime number, it follows at once from the 

above that the group has no sub-groups (except itself and E). The converse 

theorem is also valid: a group having no sub-groups is of prime order and in 

addition must be cyclic (since otherwise it would contain elements whose 

period would form a sub-group). 

We shall now introduce the important concept of conjugate elements. Two 

elements A and B are said to be conjugate if 

A = CBC~\ 

where C is also an element of the group; multiplying this equation on the 

right by C and on the left by C~l, we have the converse equation B = C~lAC. 

An important property of conjugate elements is that, if A is conjugate to B, 

and B to C, then A is conjugate tp C; for, if B = P~lAP, C = Q~lBQ 

(P and Q being elements of the group), it follows that C = (PQ)~lA(PQ). 

For this reason we can speak of sets of conjugate elements of a group. 

Such sets are called classes of conjugate elements, or simply classes, of the 

group. Each class is completely determined by any one element A of it; 

for, given A, we obtain the whole class by forming the products GAG-1, 

where G is successively every element of the group (of course, this may 

give each element of the class several times). Thus we can divide the whole 

group into classes; each element of the group can clearly appear in only 

one class. The unit element of the group is a class bv itself, since for every 
element of the group GEG-1 = E. If the group is Abelian, each of its 
elements is a class by itself; since all the elements, bv definition, commute 
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each element is conjugate only to itself. We emphasize that a class of a group 

(not being E) is not a sub-group of it; this is evident from the fact that it 

does not contain a unit element. 

All the elements of a given class are of the same order. For, if n is the 

order of the element A (so that An = E), then for a conjugate element 

B = CAC-1 we have (CAC^)" = CAnC~^= E. 

Let H be a sub-group of G, and Gx an element of G not belonging to H. 

It is easy to see that the set of elements GlHGl~1 has all the properties of a 

group,' i.e. it also is a sub-group of the group G. The sub-groups H and 

G1HGl~l are said to be conjugate; each element of one is conjugate to one 

element of the other. By giving Gl various values, we obtain a series of 

conjugate sub-groups, which may partly coincide. It may happen that all 

the sub-groups conjugate to H are H itself. In this case H is called a normal 

divisor or invariant sub-group of the group G. Thus, for example, every 

sub-group of an Abelian group is clearly a normal divisor of it. 

Let us consider a group A with n elements A, A', A".and a group 

B with m elements B, B', B", ..., and suppose that all the elements of A 

(apart from the unit E) are different from those of B but commute with 

them. If we multiply every element of group A by every element of group B, 

we obtain a set of nm elements, which also form a group. For, for any two 

elements of this set we have AB . A'B' = AA'. BB' = A"B", i.e. another 

element of the set. The group of order nm thus obtained is denoted by 

AxB, and is called the direct product of the groups A and B. 

Finally, we shall introduce the concept of the isomorphism of groups. 

Two groups A and B of the same order are said to be isomorphous if we can 

establish a one-to-one correspondence between their elements, such that, if 

the element B corresponds to the element A, and B' to A', then B" = BB’ 

corresponds to A" = AA'. Two such groups, considered in the abstract, 

clearly have identical properties, though the actual meaning of their elements 

may be different. 

§93. Point groups 

Transformations which appear in the symmetry group of a body of finite 

dimensions (in particular, a molecule) must be such that at least one point of 

the body remains fixed when any of these transformations is applied. In 

other words, all axes and planes of symmetry' of a molecule must have at least 

one common point of intersection. For a successive rotation of the body 

about two non-intersecting axes or a reflection in two non-intersecting planes 

results in a translation of the Tody, which obviously cannot then be left 

unaltered. Symmetry groups having the above property are called point groups. 

Before going on to construct the possible types of point group, we shall 

explain a simple geometrical procedure whereby the elements of a group may 

£ be easily divided into classes. Let Oa be some axis, and let the element A 
of the group be a rotation through a definite angle about this axis. Next, let G 
be a transformation (rotation or reflection) in the same group, which on being 



§93 Point groups 363 

applied to the same axis Oa carries it to the position Ob. We shall show that 

the element B = GAG-1 then corresponds to a rotation about the axis Ob 
through the same angle as that of the rotation about Oa to which the element 

A corresponds. For, let us consider the effect of the transformation GAG~l 
on the axis Ob itself. The transformation G_1 inverse to G carries the axis 

Ob to the position Oa, so that the subsequent rotation A leaves it in this 

position; finally, G carries it back to its initial position. Thus the axis Ob 
remains fixed, so that £ is a rotation about this axis. Since A and B belong 

to the same class, their orders are the same; this means that they effect 

rotations through the same angle. 

Thus we reach the result that two rotations through the same angle belong 

to the same class if there is, among the elements of the group, a transformation 

whereby one axis of rotation can be carried into the other. In exactly the same 

way, we can show that two reflections in different planes belong to the same 

class if some transformation in the group carries one plane into the other. 

The axes or planes of symmetry whose directions can be carried into each 

other are said to be equivalent. 
Some additional comments are necessary in the case where both rotations 

are about the same axis. The element inverse to the rotation Cnk (k = 

1, 2, ..., n — 1) about an axis of symmetry of the nth order is the element 

Cn~k = Cnn~k, i.e. a rotation through an angle (n—k)27rjn in the same 

direction or, what is the same thing, a rotation through an angle Iknjn in 

the opposite direction. If, among the transformations in the group, there is 

a rotation through an angle n about a perpendicular axis (this rotation reverses 

the direction of the axis under consideration), then, by the general rule 

proved above, the rotations Cnk and Cn~k belong to the same class. A 

reflection oh in a plane perpendicular to the axis also reverses its direction; 

however, it must be borne in mind that the reflection also changes the direction 

of rotation. Hence the existence of oh does not render Cnk and Cn~k conju¬ 

gate. A reflection crv in a plane passing through the axis, on the other hand, 

does not change the direction of the axis, but changes the direction of rota¬ 

tion, and therefore Cn~k = crvCnkcrv, so that Cnk and Cn~k belong to the same 

class if such a plane of symmetry exists. If rotations about an axis through the 

same angle in opposite directions are conjugate, we shall call it bilateral. 
The determination of the classes of a point group is often facilitated by the 

following rule. Let G be some group not containing the inversion I, and C( 
a group consisting of the two elements I and E. Then the direct product 

G x Ci is a group containing twice as many elements as G; half of them are the 

same as the elements of the group G, while the remainder are obtained by 

multiplying the latter by I. Since I commutes with any other transformation 

of a point group, it is clear that the group GxCi contains twice as many 

classes as G; to each class A of the group G there correspond the two classes 

A and Al in the group GxCi. In particular, the inversion I always forms 
a class by itself. 

Let us now go on to enumerate all possible point groups. We shall con¬ 
struct these by starting from the simplest ones and adding new elements of 
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symmetry. We shall denote point groups by bold italic Latin letters with 

appropriate suffixes. 

I. Cn groups 

The simplest type of symmetry has a single axis of symmetry of the nth 

order. The group Cn is the group of rotations about an axis of the nth order. 

This group is evidently cyclic. Each of its n elements forms a class by itself. 

The group Cj contains only the identical transformation E, and corresponds 

to the absence of any symmetry7. 

II. SZn groups 

The group S^n is the group of rotary reflections about a rotary-reflection 

axis of even order 2n. It contains 2n elements and is evidently cyclic. In 

particular, the group Sz contains only two elements, E and 7; it is also denoted 

by Ct. We may note also that, if the order of a group is a number of the form 

2n = 4p+2, inversion is among its elements; it is clear that (S4p+2)2p+1 

= Czcrh = 7. Such a group can be written as a direct product S4p+2 = C2p+1 

xCp, it is also denoted by Qp+i.i- 

III. Cnh groups 

These groups are obtained by adding to an axis of symmetry of the nth 

order a plane of symmetry perpendicular to it. The group Cnh contains 

2n elements: n rotations of the group Cn and n rotary-reflection trans¬ 

formations Cnkah, k = 1, 2, ..., n (i ncluding the reflection Cnncrh = crh). 

All the elements of the group commute, i.e. it is Abelian; the number of 

classes is the same as the number of elements. If n is even (n = 2p), the group 

contains a centre cf symmetry (since CZpvoh = C2oh = 7). The simplest 

group, Clh. contains only two elements, E and oh) it is also denoted by Cs. 

IV. Cnv groups 

If we add to an axis of symmetry of the nth order a plane of symmetry 

passing through it, this automatically gives another n — l planes intersecting 

along the axis at angles of tt/ti, as follows at once from the geometrical 

theoremf (91.7). The group Cnv thus obtained therefore contains 2n 

elements: n rotations about the axis of the nth order, and n reflections ov in 

vertical planes. Figure 34 shows, as an example, the systems of axes and 

planes of symmetry for the groups C3v and C4„. 

To determine the classes, we notice that, because of the presence of planes 

of symmetry passing through the axis, the latter is bilateral. The actual 

distribution of the elements among the classes depends on whether n is 

even or odd. 

If n is odd (n = 2p + l), successive rotations C2p+1 carry each of the 

planes successively into each of the other 2p planes, so that all the planes of 

t In a finite group, there cannot be two planes of symmetry intersecting at an angle which 
is not a rational fraction of 2*. If there were two such planes, it would follow that there were 

*an infinite number of other planes of symmetry, intersect.ng along the same line and obtained 
by reflecting one plane in the other ad infinitum In other words, if there are two such planes, 
there must be complete axial symmetry. 



§93 Point groups 365 

symmetry are equivalent, and the reflections in them belong to a single class. 

Among rotations about the axis there are 2p operations apart from the identity, 

and these are conjugate in pairs, forming p classes each of two elements 

If, on the other hand, n is even (n = 2p), only every alternate plane can 

be interchanged by successive rotations C2p; two adjacent planes cannot be 

carried into each other. Thus there are two sets of p equivalent planes, and 

accordingly two classes of p elements (reflections) each. Of the rotations 

about the axis, C2p2p — E and each form a class by themselves, 

while the remaining 2p—2 rotations are conjugate in pairs and give another 

p — 1 classes, each of two elements. The group C2p, v thus nas p + 3 classes 

altogether. 

V. Dn groups 

If we add to an axis of symmetry of the nth order an axis of the second 

order perpendicular to it, this involves the appearance of a further n — 1 

such axes, so that there are altogether n horizontal axes of the second order, 

intersecting at angles njn. The resulting group Dn contains 2n elements: 

n rotations about an axis of the nth order, and n rotations through an angle 

it about horizontal axes (we shall denote the latter by U2, reserving the notation 

C2 for a rotation through an angle tt about a vertical axis). Fig. 34 shows, as 

an example, the systems of axes for the groups D3 and D4. 

In an exactly similar manner to case IV, we may verify that the axis of the 

nth order is bilateral, while the horizontal axes of the second order are all 

equivalent if n is odd, or form two non-equivalent sets if n is even. Con¬ 

sequently, the group D2p has the followingp + 3 classes: E, 2 classes each of 

p rotations XJ2, the rotation C2, and p — 1 classes each of two rotations about 

the vertical axis. The group Dip+1, on the other hand, has p+2 classes: 

+1 rotations U2, and p classes each of two rotations about the vertical 
axis. 

An important particular case is the group D„. Its system of axes is 
composed of three mutually perpendicular axes of the second order. This 
group is also denoted by V* 
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VI. Dr h groups 

If we add to the system of axes of a group Dn a horizontal plane of sym¬ 

metry passing through the n axes of the second order, n vertical planes 

automatically appear, each of which passes through the vertical axis and one 

of the horizontal axes. The group Dnh thus obtained contains 4n elements; 

besides the 2n elements of the group Dn, it contains also n reflections ov 

and n rotary-reflection transformations Cnkoh. Figure 35 shows the system 

of axes and planes for the group D3h. 

¥ 

Fig. 35 

The reflection uh commutes with all the other elements of the group; 

hence we can write Dnh as the direct product Dnh = DnxCs, where Cs is 

the group consisting of the two elements E and oh. For even n the inversion 

operation is among the elements of the group, and we can also write 

Dip h = \xCs. 
Hence it follows that the number of classes in the group Dnh is twice the 

number in the group Dn. Half of them are the same as those of the group 

Dn (rotations about axes), while the remainder are obtained by multiplying 

these by oh. The reflections ov in vertical planes all belong to a single class 

(if n is odd) or form two classes (if n is even). The rotary-reflection trans¬ 

formations crhCnk and ohCn~k are conjugate in pairs. 

VII. Dnd groups 

There is another way of adding planes of symmetry to the system of axes 

of the group Dn. This is to draw vertical planes through the axis of the nth 

order, midway between each adjacent pair of horizontal axes of the second 

order. The adding of one such plane again involves the appearance of another 

(n —1) planes. The system of axes and planes of symmetry thus obtained 

determines the group Dnd. Figure 3 5 shows the axes and planes for the groups 

Dzd andD3d. 
The group Dnd contains 4n elements. To the 2n elements or the group 

Dn are added n reflections in the vertical planes (denoted by a d—the ‘ diago¬ 

nal” planes) and n transformations of the form G= U2cr d. In order to 

ascertain the nature of these latter, we notice that the rotation £/2 can, by 
(91.6), be written in the form U2 = ahov, where av is a reflection in the verti- 
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cal plane passing through the corresponding axis of the second order. Then 

G — vhoverd (the transformations ov, oh alone are not, of course, among 

the elements of the group). Since the planes of the reflections ov and crd 

intersect along an axis of the wth order, forming an angle (2k + \)Trj2n, 

where k = 1, ... , (n— 1) (since here the angle between adjacent planes is 

77/2w), it follows that, by (91.6), we have avod = C2nik+l. Thus we find that 

G = ohC-in2*'1 = San2*-1! i-e- these elements are rotary-reflection trans¬ 

formations about the vertical axis, which is consequently not a simple axis 

of symmetry of the wth order, but a rotary-reflection axis of the 2«th order. 

The diagonal planes reflect two adjacent horizontal axes of the second 

order into each other; hence, in the groups under consideration, all axes of 

the second order are equivalent (for both even and odd n). Similarly, all 

diagonal planes are equivalent. The rotary-reflection transformations 

S2n2k+1 and SZn~2k~l are conjugate in pairs.f 

Applying these considerations to the group D2p d, we find that it contains 

the following 2p + 3 classes: E, the rotation C2 about the axis of the nth 

order, (p — 1) classes each of two conjugate rotations about the same axis, 

one class of the 2p rotations U2, one class of 2p reflections a d, and p classes 

each of two rotary-reflection transformations. 

For odd n (= 2p + l), inversion is among the elements of the group; this 

is seen from the fact that, in this case, one of the horizontal axes is perpen¬ 

dicular to a vertical plane. Hence we can write D2p+1 d — D2p+1 X Cit 

so that the group D2p+1 d contains 2p+4 classes, which are obtained at 

once from the p+2 classes of the group D2p+1. 

VIII. The group T (the tetrahedron group) 

The system of axes of this group is the system of axes of symmetry of a 

tetrahedron. It can be obtained by adding to the system of axes of the group 

V four oblique axes of the third order, rotations about which carry the three 

axes of the second order into one another. This system of ax-es is conveniently 

represented by showing the three axes of the second order as passing through 

the centres of opposite faces of a cube, and those of the third order as the 

spatial diagonals of the cube. Figure 36 shows the position of these axes in a 

cube and in a tetrahedron (one axis of each type is shown). 

Cj 

Fig. 36 
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The three axes of the second order are mutually equivalent. The axes of 

the third order are also equivalent, since they are carried into one another by 

the rotations C2, but they are not bilateral axes. Hence it follows that the 

twelve elements in the group T are divided into four classes: E, the three 

rotations C2, the four rotations C3 and the four rotations C32. 

IX. The group T d 

This group contains all the symmetry transformations of the tetrahedron. 

Its system of axes and planes can be obtained by adding to the axes of the 

group T planes of symmetry, each of which passes through one axis of the 

Fig. 37 

second order and two of the third order. The axes of the second order thereby 

become rotary-reflection axes of the fourth order (as in the case of the group 

D2tf). This system is conveniently represented by showing the three rotary- 

reflection axes as passing through the centres of opposite faces of a cube, the 

four axes of the third order as its spatial diagonals, and the six planes of 

symmetry as passing through each pair of opposite edges (Fig. 37 shows one 

of each kind of axis and one plane). 
Since the planes of symmetry are vertical with respect to the axes of the 

third order, the latter are bilateral axes. All the axes and planes of a given 

kind are equivalent. Hence the 24 elements of this group are divided into 

* the following five classes: E, eight rotations C3 and C32, six reflections in 
planes, six rotary—reflection transformations S4 and S43, and three rotations 

C2 = S42. 
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X. The group Th 

This group is obtained from T by adding a centre of symmetry: Th 

= TxCf. As a result, three mutually perpendicular planes of symmetry 

appear, passing through each pair of axes of the second order, and the axes of 

the third order become rotary-reflection axes of the sixth order (Fig. 38 

shows one of each kind of axis and one plane). 

5 
Fig- 38 

The group contains 24 elements divided among eight classes, which are 

obtained at once from those of the group T. 

XI. The group O (the octahedron group) 

The system of axes of this group is the system of axes of symmetry of a 

cube: three axes of the fourth order pass through the centres of opposite 

0 

Fig. 39 

faces, four axes of the third order through opposite corners, and six axes of the 

second order through the midpoints of opposite edges (Fig. 39). 

It is easy to see that all the axes of a given order are equivalent, and each 

of them is bilateral. Hence the 24 elements are divided among the following 

five classes: E, eight rotations C3 and C32, six rotations C4 and C43, three 
rotations C42 and six rotations C2. 

XII. The group Oh 

This is the group of all symmetry transformations of the cube.f It is 

f The groups T, Ta, Tlt, O, Oa are called cubic groups. 
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obtained by adding to the group O a centre of symmetry: Oh = OxCf. 

The axes of the third order in the group O are thereby converted into rotary- 

reflection axes of the sixth order (the spatial diagonals of the cube); in 

addition, another six planes of symmetry appear, passing through each pair 

of opposite edges, and three planes parallel to the faces of the cube (Fig. 

40). The group contains 48 elements divided among ten classes, which 

oh 

Fig. 40 

can be at once obtained from those of the group O; five classes are the same 

as those of the group O, while the remainder are: I, eight rotary-reflection 

transformations S% and S65, six rotary-reflection transformations C^oh, 

Ci3crh about axes of the fourth order, three reflections crh in planes horizontal 

with respect to the axes of the fourth order, and six reflections ov in planes 

vertical with respect to these axes. 

XIII, XIV. The groups Y, Yh (the icosahedron groups) 

These groups occur only exceptionally in Nature as symmetry groups of 

molecules. Hence we shall here only mention that Yis a group of 60 rotations 

about the axes of symmetry of the icosahedron (a regular solid with twenty 

triangular faces) or of the pentagonal dodecahedron (a regular solid with 

twelve pentagonal faces); there are six axes of the fifth order, ten of the 

third and fifteen of the second. The group Yh is obtained by adding a centre 

of symmetry: Yh = Y xC{, and is the complete group of symmetry trans¬ 

formations of the above-mentioned polyhedra. 

This ex hausts all possible types of point group containing a finite number 

of elements. In addition, we must consider what are called continuous point 

groups, which contain an infinite number of elements. This we shall do in 

§98. 

§94. Representations of groups 
Let us consider any symmetry group, and let ^ be some one-valued func¬ 

tion of the coordinates in the configuration space of the physical system 
concerned.. Under the transformation of the coordinate system which 
corresponds to an element G of the group, this function is changed into 
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some other function. On performing in turn all the g transformations 

in the group (g being the order of the group), we in general obtain g different 

functions from f 1- For certain f\, however, some of these functions 

may be linearly dependent. As a result we obtain some number /(< g) of 

linearly independent functions <p1} — > ft' which are transformed into 

linear combinations of one another under the transformations belonging to 

the group in question. In other words, as a result of the transformation G, 

each of the functions </q (i = 1, 2, 3, ...,/) is changed into a linear combina¬ 

tion of the form 

,4 Gkifk, 

where the Gik are constants depending on the transformation G. The array 

of these constants is called the matrix of the transformation.! 

In this connection it is convenient to regard the elements G of the group 

as operators acting on the functions so that we can write 

Gfi = 'LGki4r*; (94.1) 

the functions fi can always be chosen so as to be orthonormal. Then the 

concept of the matrix of the transformation is the same as that of the matrix 

of the operator, in the form defined in §11: 

Gik = J ft*Gfk dq. (94.2) 

To the product of two elements G and H of the group there corresponds 

the matrix obtained from the matrices of G and H by the ordinary rule 

of matrix multiplication (11.12): 

(GH)ik = X GaHlk. (94.3) 

The set of matrices of all the elements in a group is called a representation 

of the group. The functions flt..., with respect to which these matrices 

are defined are called the basis of the representation. The number/ of these 

functions gives what is called the dimension of the representation. 

Let us consider the integrals Jfi*fk d<?. Since the integration is taken 

over all space, it is evident that the values of the integrals are unchanged by 

any rotation or reflection of the coordinate system. That is, the symmetry 

transformations do not destroy the orthonormality of the base functions, 

and therefore the operators G are unitary (see §12).| Accordingly, the 

matrices which represent the elements of a group in a representation with 
an orthonormalized basis are also unitary. 

t Since the functions ^ are assumed one-valued, a definite matrix corresponds to each 
element of the group. 

t In this argument it is important that the integrals are either equal to zero (for i*k) or 
definitely not zero (for i = k) because the integrand |0i|* is positive. 
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Suppose that we perform on the system of functions </qthe linear 

unitary transformation 

<l>'i =£•!>+ (94.4) 

This gives a new system of functions if’i,tp'f, which are also orthonormal 

(see §12).f If we now take, as the basis of the representation, the functions 

tp'it we obtain a new representation of the same dimension. Such representa¬ 

tions, obtained from one another by a linear transformation of their base 

functions, are said to be equivalent; it is evident that they are not essentially 

different. 

The matrices of equivalent representations can be simply expressed in terms 

of one another. According to (12.7), the matrix of the operator G in the new 

representation is the matrix of the operator 

O' = S~lGS (94.5) 

in the old representation. 

The sum of the diagonal elements (i.e. the trace) of the matrix representing 

an element G of a group is called its character; we shall denote it by x{G). 

It is a very important result that the characters of the matrices of equivalent 

representations are the same (see (12.11)). This circumstance gives par¬ 

ticular importance to the description of group representations by stating 

their characters: it enables us to distinguish at once the fundamentally 

different representations from those which are equivalent. Henceforward 

we shall regard as different representations only those which are not 

equivalent. 

If we take 5 in (94.5) to be that element of the group which relates the 

conjugate elements G and G', we have the result that, in any given represen¬ 

tation of a group, the characters of the matrices representing elements of the 

same class are the same. 

The identical transformation corresponds to the unit element E of the 

group. Hence the matrix representing the latter is diagonal in every represen¬ 

tation, and the diagonal elements are unity. The character ■y[E) is con¬ 

sequently just the dimension of the representation: 

X(E) =/• (94.6) 

Let us consider some representation of dimension /. It may happen that, 

as a result of a suitable linear transformation (94.4), the base functions 

divide into sets of ... functions O1+/2+... = /), in such a way that, 

when any element of the group acts on them, the functions in each set are 

transformed only into combinations of themselves, and do not involve 

functions from other sets. In such a case the representation in question is 

said to be reducible. 
If, on the other hand, the number of base functions that are transformed 

only into combinations of themselves cannot be reduced by any linear trans- 
* formation of them, the representation which they give is said to be irreducible. 

f From (12.12), the unitarity of the transformations implies that the sum of the squared 
moduli of the base functions is invariant. 
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Any reducible representation can, as we say, be decomposed into irreducible 

ones. This means that, by the appropriate linear transformation, the base 

functions divide into several sets, of which each is transformed by some 

irreducible representation when the elements of the group act on it. Here 

it may be found that several different sets transform by the same irreducible 

representation; in such a case this irreducible representation is said to be 

contained so many times in the reducible one. 

Irreducible representations are an important characteristic of a group, and 

play a fundamental part in all quantum-mechanical applications of group 

theory. We shall give the chief properties of irreducible representations, j- 

It may be shown that the number of different irreducible representations 

of a group is equal to the number r of classes in the group. We shall distin¬ 

guish the characters of the various irreducible representations by indices; 

the characters of the matrices of the element G in the representations are 

X(1,(G), X(2,(G),..., x(r,(G). 
The matrix elements of irreducible representations satisfy a number of ortho¬ 

gonality relations. First of all, for two different irreducible representations 

the relations 

2 Ga>tkGWlm* = 0 (94.7) 

hold, where a and /3 (a # /3) refer to the two irreducible representations, and the 

summation is taken over all the elements of the group. For any irreducible 

representation the relations 

X Ga)ikG(a)lr 
a 

(94.8) 

hold, i.e. only the sums of the squared moduli of the matrix elements are not 

zero: 

l\G^ =glfa. 

The relations (94.7), (94.8) can be combined in the form 

(94.9) 

In particular, we can obtain from this an important orthogonality relation 

for the characters of the representations. Summing both sides of equation 

(94.9) over equal values of the suffixes i, k and /, m, we have 

Sx(“'(G)xw(G)* =*8„. (94.10) 

For a = jSwe have 

_ g lxta,(C)l2 = 

f The proof of these pr be found ir ctbook on group theory 
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i.e. the sum of the squared moduli of the characters of an irreducible represen¬ 

tation is equal to the order of the group. We may notice that this relation 

can be used as a criterion of the irreducibility of a representation; for a 

reducible representation, this sum is always greater than g (for instance, it is 

ng if the representation contains n different irreducible parts). 

It also follows from (94.10) that the equality of the characters of two 

irreducible representations is not only a necessary but also a sufficient con¬ 

dition for them to be equivalent. 

Since the characters of elements of the same class are equal, the sum 

(94.10) actually contains only r independent terms, and can be written in 

the form 

£?cx<“KC)xwKQ*=^, (94.11) 

where the summation is over the r classes of the group (arbitrarily denoted 

by C) and gc is the number of elements in class C. 

Since the number of irreducible representations is equal to the number of 

classes, the quantities fac = V(gclg)x^)(C) form a square matrix of r2 

quantities. 

The orthogonality relations for the first suffix, 

S/ac/ec* = 

then automatically give those for the second suffix, 

2 /,c/«c* = See- 

Hence, besides (94.11), we have 

2 x^Ox^C')* = (glgc^cc- (94.12) 

Among the irreducible representations of any group there is always a 

trivial one, given by a single base function invariant under all the transforma¬ 

tions in the group/ This one-dimensional representation is called the unit 

representation-, in it, all characters are unity. If one of the representations 

in the orthogonality relation (94.10) or (94.11) is the unit representation, 

the other is such that 

gxm(G) = £*cx«(C) = 0, (94-13) 

i.e. the sum of the characters of all the elements of the group is zero for 

every irreducible representation. 
The relation (94.10) enables any reducible representation to be very easily 

decomposed into irreducible ones if the characters of both are known. Let 
x(G) be the characters of some reducible representation of dimension /, 
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and let the numbers a(1), a(2), , a(r) indicate how many times the cor¬ 

responding irreducible representations are contained in it, so that 

d% =/, (94.14) 

where fp are the dimensions of the irreducible representations. Then the 

characters X(G) can be written 

X(G) = S^XW(G). (94.15) 

Multiplying this equation by x(a)(G)* and summing over all G, we have by 

(94.10) 

** = ~ S x(G)x<“'(G)*. (94.16) 
g ° 

Let us consider a representation of dimension f — g, given by thef g 

functions Of, f being some general function of the coordinates (so that 

all the g functions Of obtained from it are linearly independent); such a 

representation is said to be regular. It is clear that none of the matrices of 

this representation will contain any diagonal elements, with the exception of 

the matrix corresponding to the unit element; hence x(0) = 0 for G # E, 

while x(E) = g• Decomposing this representation into irreducible ones, we 

have for the numbers a<*\ by (94.16), the values a(*> = (1 lg)gfm - /(a), i.e. 

each irreducible representation is contained in the reducible one under 

consideration as many times as its dimension. Substituting this in (94.14), 

we find the relation 

/12+/22+-. +fr2=g', (94.17) 

the sum of the squared dimensions of the irreducible representations of a 

group is equal to its order.f Hence it follows, in particular, that for Abelian 

groups (where r = g) all the irreducible representations are of dimension one 

CA =/. = ••• =/,= !)■ _ 
We may also remark, without proof, that the dimensions of the irreduci61e 

representations of a group divide its order. 

In practice, the decomposition of a regular representation into irreducible 

parts is made by means of the formula 

fi^ =f-Z^Gilc(x)*Of. (94.18) 

It is easy to verify that the functions ftW(i = 1, 2, ...,/J represented by 

this formula with a given value of k are transformed according to 

Oft(=1) = Z Gu^flnt 

t It may be mentioned that, for point groups, equation (94.17) for gh 
practice be satisfied in only one way by a set of integers/,, ...,/r. 

and g 
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i.e. they are a basis of the ath irreducible representation. By giving various 

values to k we obtain in this way fa different sets of base functions ipi^ for 

one irreducible representation, in accordance with the fact that each 

irreducible representation appears fa times in the regular representation. 

Any function ip may be written as a sum of functions transformed by the 

irreducible representations of the group. This problem is solved by the 

formulae 

t = 2 2 ^(a)’ ^(e> = -2 (94-19) 
a i Sc 

To prove this, we substitute the second formula in the first and calculate 

the sum over t, obtaining 

4> = ~y (94.20) 
9 

Since the dimensions fa coincide with the characters x(a)(-^) °f the unit 

element of the group, we can use the orthogonality relation (94.12) to show 

that the sum in (94.20) is non-zero (and equal to g) only if G is the unit 

element of the group. Hence the right-hand side of (94.20) is identically 

equal to ip. 
Let us consider two different systems of functions ..., <pt (“> and 

fpi^\ ..., 'Pf^, which form two irreducible representations of a“group. 

By forming the products 4>i'a)'Pk{f) we obtain a system of fafp new functions, 

Which can serve as the basis for a new representation of dimension fafp. 
This representation is called the direct product or Kronecker product of the 

other two; it is irreducible only if/„ or is unity. It is easy to see that the 

characters of the direct product are equal to the products of the characters 

of the two component representations. For, if 

G<pw = X G<pk<f> = X GmkWiPJ&, 

then 

GipWipf.^ = X Gfa)Gmk^a)ipJS)-y 

hence we have for the characters, which we denote by (x'^XX^KG)- 

(xto)Xxw)(G) = X GuWGnW = ? G,-,(al X Gkk^, 

(x(a,XxW)(G) = x,a,(G)xw(G). (94-21) 

The two irreducible representations so multiplied may, in particular, be 
the same; in this case we have two different sets of functions <plt ..., <pf 
and 4>v ... , 4>f giving the same representation, while the direct product of 
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the representation with itself is given by the /2 functions yjj>k, and has the 

characters 

(XXX)(G) = [X(G)]2- 

This reducible representation can be at once decomposed into two represen¬ 

tations of smaller dimension (although these are, in general, themselves 

reducible). One of them is given by the £/(/+1) functions the 

other by the \f(j— 1) functions <p{fik—<pk(f>i, i # A; it is evident that the func¬ 

tions in each of these sets are transformed only into combinations of them¬ 

selves. The former is called the symmetric product of the representation with 

itself, and its characters are denoted by the symbol [x2](G);the latter is 

called the antisymmetric product, and its characters are denoted by {x2} (G). 

To determine the characters of the symmetric product, we write 

fy'Pifk+fkfi) GliGmk(ljjd>m+'l)m4,l) 

= i J^(GliGnk+GmiGik)(tjjl<f>m+ilim<f>t). 

Hence we have for the character 

M(G) =iS(G1,GM+GiA1). 

But S Gti — x(G), and 2 GikGki = x(G2); thus we finally obtain the 

formula 

CxTO-KW^lHrfG*)}, (94.22) 

which enables us to determine the characters of the symmetric product of a 

representation with itself from the characters of the representation. In an 

exactly similar manner, we find for the characters of the antisymmetric 
product the formulaf 

(X2K<3) = K[x(G)]2-x(G2)}- (94.23) 

If the functions pi and pi are the same, we can evidently construct from 

them only the symmetric product, formed by the squares ipt2 and the pro¬ 

ducts * t4 k. In applications, symmetric products of higher orders are 

also encountered; their characters may be obtained in a similar manner. 

An important property of direct products is the following. The decom¬ 

position of the direct product of two different irreducible representations into 

irreducible parts contains the unit representation (and only once) only if 

the representations multiplied together are complex conjugates. For real 

representations, the unit representation is present only in the direct product 

of an irreducible representation with itself, and is of course in the symmetric 

part. In order to know whether the unit representation is present in the 

t is useful to note that, for repr< 
equal to the determinants of the lines 
calculation. 

3f dimension 2, the characters {*2}(C) are 
ations C, as can easily be shown by direct 
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representation (94.21), we simply sum its characters with respect to G and 

divide the result by the order g of the group, in accordance with (94.16). The 

conclusion stated then follows at once from the orthogonality relations 

(94.10). 

Finally, we shall make a few remarks regarding the irreducible represen¬ 

tations of a group which is the direct product of two other groups (not 

to be confused with the direct product of two representations of the same 

group). If the functions give an irreducible representation of the group 

A, and the functions f>k^) give one of the group B, the products 

are the basis of an/^/^-dimensional representation of the group AxB, and 

this representation is irreducible. The characters of this representation are 

obtained by multiplying the corresponding characters of the original represen¬ 

tations (cf. the derivation of formula (94.21)); to an element C = AB of 

the group there corresponds the character 

x(C) = xta)(A)x^(B). (94.24) 

Multiplying together in this way all the irreducible representations of the 

groups A and B, we obtain all the irreducible representations of the group 

AxB. 

§95. Irreducible representations of point groups 

Let us pass now to the actual determination of the irreducible represen¬ 

tations of point groups. The great majority of molecules have axes of 

symmetry only of the second, third, fourth or sixth order. Hence we shall 

not consider the icosahedron groups Y, Yh\ we shall examine the groups 

Cn, Cnh, Cnv, Dn, Dnh only for the values n = 1, 2, 3, 4, 6, and the groups 

Sin, Dna only for n = 1,2, 3. 

The characters of the representations of these groups are shown in Table 7. 

Isomorphous groups have the same representations and are given together. 

The numbers in front of the symbols for the elements of a group in the upper 

rows show the numbers of elements in the corresponding classes (see §93). 

The left-hand columns show the conventional names usually given to the 

representations. The one-dimensional representations are denoted by the 

letters A, B, the two-dimensional ones by E, and the three-dimensional 

ones by F\ the notation E for a two-dimensional irreducible representation 

should not be confused with the unit element of a group-t The base functions 

of A representations are symmetric, and those of B representations antisym¬ 

metric, with respect to rotations about a principal axis of the wth order. 

The functions of different symmetry with respect to a reflection cy* are 

distinguished by the number of primes (one or two), while the suffixes 

g and u show the symmetry with respect to inversion. Beside the symbols 

for the representations are placed the letters x, y, z; these show the repre- 

t The reason why two complex conjugate one-dimens 
one two-dimensional one is explained in §96. 

sional representations are showr 
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sentations by which the coordinates themselves are transformed. The ar-axis 

is always taken along the principal axis of symmetry. The letters e and o> 

denote 

e _ e2ni/3j u _ e2ni/6 _ _ ^4. 

e+ e2 = -1, ufl-u, = -1. 

The simplest problem is to determine the irreducible representations for 

Table 7 

Characters of irreducible representations of point groups 

c, 

C, 

c. 

El C, E C, Cs* 

E <7 A;z 1 1 1 

1 c c» 

1 c> c 

E 2C, 3c, 

E 2C, 2U, 

A, 

Auix.y, 

C„ 

C„ 

D, 

A;z A';x,y 

z B;x,y A";z 

E C2 tjk I 

E C, <7, a'. 

E;x±iy | 
1 -1 

c„ 

, D, 

1 1 1 

■ 11 -1 

2-1 0 

A, As, z A 

Bt Bs.y B,;x 

Au;z A, Bt;z 

Bu;x,y Bt; x B,;y 

till A, A,;z 

1-1-1 1 E; x, y E; x, y 

1 1-1-1 

1-11 -1 

c, 

S, 

e cA c, cy c. EC, C, C, C,* C,‘ 

11 1111 

1-1 1-11-1 

l-o, o,* 1 -a, o,« 
1 o, o,* -1 -o, -a,* 

A;z A 

B B\z 

E\x±iy 

1111 B 

1-11-1 | 

1 -1 -/ ** I 
1 -• —1 »' | 
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Table 7—continued 

C4, I E C, 2 C4 2a, 2a', 

B4 I E C, 2 C4 2t7, 2t/', 

D,a I £ C2 2S4 2U, 2o g 

_I_ 

A^.z Ai Al 1111 1 

A, A2;z A, 111 -1 -1 

B, B, B4 11-11 -1 

Bs B2 £2;* 1 1 -1 -1 1 

E; x, y E; x,y E; x, y 2 -2 0 0 0 

O j E 80, 3C, 6C, 6C4 
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the cyclic groups (Cn, Sn). A cyclic group, like any Abelian group, has only 

one-dimensional representations. Let G be a generating element of the group 

(i.e. one which, on being raised to successive powers, gives all the elements 

of the group). Since Gg = E (where g is the order of the group), it is clear 

that, when the operator Q acts on a base function tft, the latter can be multi¬ 

plied only by l1/g, i.e.f 

Gf = (A = 1,2.g). 

The group C2h (and the isomorphous groups C2v and £>2) is Abelian, so 

that all its irreducible representations are one-dimensional, and the characters 

can only be ± 1 (since the square of every element is E). 

Next we consider the group C3V. As compared with the group C3, the 

reflections av in vertical planes (all belonging to one class) are here added. 

A function invariant with respect to rotation about the axis (a base function 

of the representation A of the group C3) may be either symmetric or anti¬ 

symmetric with respect to the reflections av. Functions multiplied by e 

and e2 under the rotation C3, on the other hand (base functions of the com¬ 

plex conjugate representations E), change into each other on reflection. J 

It follows from these considerations that the group CSv (and D3, which is 

isomorphous with it) has two one-dimensional irreducible representations 

and one two-dimensional, with the characters shown in the table. The fact 

that we have indeed found all the irreducible representations may be seen 

from the result l2 + l2+22 = 6, which is the order of the group. 

Similar considerations give the characters of the representations of other 

groups of the same type (Civ, C6„). 

The group T is obtained from the group D2 = V by adding rotations about 

four oblique axes of the third order. A function invariant with respect to 

transformations of the group V (a basis of the representation A) can be 

multiplied, under the rotation C3, by 1, « or e2. The base functions of the 

three one-dimensional representations B\, Bz, Bz of the group V change into 

one another under rotations about the axes of the third order (this is seen, 

for example, if we take as these functions the coordinates x, y, z themselves). 

Thus we obtain three one-dimensional irreducible representations and one 

three-dimensional (12+12+12 + 3Z = 12). 

Finally, let us consider the isomorphous groups O and Td. The group 

Td is obtained from the group T by adding reflections ud in planes each of 

which passes through two axes of the third order. A base function of the 

unit representation A of the group T may be symmetric or antisymmetric 

with respect to these reflections (which all belong to one class), and this 

gives two one-dimensional representations of the group Td. Functions 

multiplied by e or e2 under a rotation about an axis of the third order (the 

f For the point group C„ ue can, for example, take as the functions 0 the functions e‘**, 
fc=1.2. .. where 0 ,s the angle of rotation about the axis, measured from some fixed direction. 

I Ihesc functions may, tor example, be taken as = f‘*. 0-> = e'1*. On reflection in a 
vertical plane. 0 changes sign 
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basis of the complex conjugate representations E of the group T) change into 

each other on reflection in a plane passing through this axis, so that one 

two-dimensional representation is obtained. Finally, of three base functions 

of the representation F of the group T, one is transformed into itself on 

reflection (and can either remain unaltered or change sign), while the other 

two change into each other. Thus we have altogether two one-dimensional 

representations, one two-dimensional and two three-dimensional.f 

The representations of the remaining point groups in which we are inter¬ 

ested can be obtained immediately from those already given, if we notice 

that the remaining groups are direct products of those already considered 

with the group C4 (or Cs): 

C3h = C3xC, D3 j, = ZJjXCj D3(i = D3xCt 

= CjXCj = D,xCj Djj - D6xCj 

Cg;, = C6XC, S6 = C3 x Ci T), — TxCj 

Oh =OxCi 

Each of these direct products has twice as many irreducible representations 

as the original group, half of them being symmetric (denoted by the suffix g) 

and the other half antisymmetric (suffix u) with respect to inversion. The 

characters of these representations are obtained from those of the representa¬ 

tions of the original group by multiplying by ± 1 (in accordance with the 

rule (94.24)). Thus, for instance, we have for the group D$d the repre¬ 

sentations: 

E 2C3 3U2 I 2 Se 3cs 

Alff 1 1 1 1 1 1 

a2. 1 1 -1 1 1 -1 

E„ 2 -1 0 2 -1 0 

Au 1 1 1 -1 -1 -1 

Au 1 1 -1 -1 -1 1 

A 2 -1 0 -2 1 0 

§96. Irreducible representations and the classification of terms 

The quantum-mechanical applications of group theory are based on the 

fact that the Schrodinger’s equation for a physical system (an atom or 

molecule) is invariant with respect to symmetry transformations of the 

t Irreducible representations of higher dimension (4 and 5) occur in the icosahedron 
groups. 
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system.-}- It follows at once from this that, on applying the elements of a group 

to a function satisfying Schrodinger’s equation for some value of the energy 

(an eigenvalue), we must again obtain solutions of the same equation for the 

same value of the energy. In other words, under a symmetry transformation 

the wave functions of the stationary states of the system belonging to a given 

energy level transform into linear combinations of one another, i.e. they give 

some representation of the group. An important fact is that this representa¬ 

tion is irreducible. For functions which are invariably transformed into linear 

combinations of themselves under symmetry transformations must belong 

to the same energy level; the equality of the eigenvalues of the energy cor¬ 

responding to several groups of functions (into which the basis of a reducible 

representation can be divided), which are not transformed into combinations 

of one another, would be an improbable coincidence.! 

Thus, to each energy level of the system, there corresponds some irreduc¬ 

ible representation of its symmetry group. The dimension of this represen¬ 

tation determines the degree of degeneracy of the level concerned, i.e. the 

number of different states with the energy in question. The fixing of the 

irreducible representation determines all the symmetry properties of the 

given state, i.e. its behaviour with respect to the various symmetry trans¬ 

formations. 

Irreducible representations of dimension greater than one are found only 

in groups containing non-commuting elements; Abelian groups have only 

one-dimensional irreducible representations. It is apposite to recall here that 

the relation between degeneracy and the presence of operators which do not 

commute with one another (but do commute with the Hamiltonian) has 

already been found above from considerations unrelated to group theory 

(§10). 
The following important reservation should be made regarding all these 

statements. As has already been pointed out (§18), the symmetry (valid in 

the absence of. a magnetic field) with respect to a change in the sign of the 

time has, in quantum mechanics, the result that complex conjugate wave 

functions must belong to the same eigenvalue of the energy. Hence it follows 

that, if some set of functions and the set of complex conjugate functions give 

different (non-equivalent) irreducible representations of a group, these two 

complex conjugate representations must be regarded as forming together a 

single “physically irreducible” representation of twice the dimension. 

This will be assumed below. In the preceding section we had examples of 

such representations. Thus the group C3 has only one-dimensional repre¬ 

sentations; however, two of these are complex conjugates, and correspond 

physically to doubly degenerate energy levels. (In the presence of a magnetic 

field there is no symmetry with respect to a change in the sign of the time, 

t The methods of group theory were first applied m quantum mechanic. 
(1926). 

t Provided that there is no special reason for this. Reference may be 
“accidental” degeneracy that arises because the Hamiltonian of a system - 
symmetry than the purely geometrical symmetry considered in the presen 
end of §36). 

s by E. P. VVigner 

made here to the 
can have a higher 
it chapter (see the 
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and hence complex conjugate representations correspond to different energy 

levels.jf 

Let us suppose that a physical system is subjected to the action of some 

perturbation (i.e. the system is placed in an external field). The question 

arises to what extent the perturbation can result in a splitting of the degener¬ 

ate levels. The external field has itself a certain symmetry.! If this symmetry 

is the same as or higher than that of the unperturbed system, the symmetry 

of the perturbed Hamiltonian i? = i?0 + P- is the same as the symmetry 

of the unperturbed operator i?0. It is clear that, in this case, no splitting 

of the degenerate levels occurs. If, however, the symmetry of the pertur¬ 

bation is lower than that of the unperturbed system, then the symmetry of 

the Hamiltonian i? is the same as that of the perturbation P\ The wave 

functions which gave an irreducible representation of the symmetry group 

of the operator i?0 will also give a representation of the symmetry group 

of the perturbed operator i?, but this representation may be reducible, and 

this means that the degenerate level is split. 

We shall show by means of an example how the mathematical techniques 

of group theory enable us to solve the problem of the splitting of any given 

level. 

Let the unperturbed system have symmetry Ta, and let us consider a 

triply degenerate level corresponding to the irreducible representation F2 

of this group. The characters of this representation are 

E 8C3 3C2 6 cd 6S4 

3 0 -1 1 ^T 

Let us assume that the system is subjected to the action of a perturbation 

with symmetry Czv (with the third-order axis coinciding with one of those of 

the group Ta). The three wave functions of the degenerate level give a 

representation of the group Csv (which is a sub-group of the group Ta), and 

the characters of this representation are equal to those of the same elements 

in the original representation of the group Ta, i.e. 

E 2 C3 3 ov 

3 0 r 
This representation, however, is reducible. Knowing the characters of the 

f Strictly speaking, the fact that the characters are real (i.e that the complex conjugate 
representations are equivalent) is not a sufficient condition for the possibility of choosing real 
base functions of the representation of the group. For irreducible representations of point 
groups, however, it is sufficient (though not for the “double” point groups; see §99). 

1 For example, in the case of the energy levels of the d and / shells of ions in a crystal lattice 
which interact slightly with the surrounding atoms, the perturbation (the external field) is the 
field acting on an ion due to the other atoms. 

II If a symmetry group H is a sub-group of the group G, we say that H corresponds to a lower 
svmmeti v and G to a higher symmetry. It is evident that the symmetry of the sum of two ex¬ 
pressions, one of which has the symmetry of G and the other that of H, is the lower symmetry, 
that of H. 
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irreducible representations of the group C3V, it is easy to decompose it into 

irreducible parts, using the general rule (94.16). Thus we find that it consists 

of the representations A\ and E of the group Csv The triply degenerate 

level F2 is therefore split into one non-degenerate level Ai and one doubly 

degenerate level E. If the same system is subjected to the action of a per¬ 

turbation of symmetry C-zv, which is also a sub-group of the group Ta, then 

the wave functions of the same level F2 give a representation with characters 

E C2 ov o'v 

3 ~i i r 

Decomposing this into irreducible parts, we find that it contains the repre¬ 

sentations Ai, B1, B2■ Thus in this case the level is completely split into three 

non-degenerate levels. 

§97. Selection rules for matrix elements 

Group theory not only enables us to carry out a classification of the terms 

of any symmetrical physical system, but also gives us a simple method of 

finding the selection rules for the matrix elements of the various quantities 

which characterize the system. 

This method is based on the following general theorem. Let tfifa) be one 

of the base functions of an irreducible (non-unit) representation of a symmetry 

group Then the integral of this function over all spacef vanishes identically: 

J </,/“> dq = 0. (97.1) 

The proof is based on the evident fact that the integral over all space is 

invariant with respect to any transformation of the coordinate system, 

including any symmetry transformation. Hence 

J 0/“> d? = J <?,/'/“> d? = J E G,JaykM dq. 

We sum this equation over all the elements of the group. The integral on 

the left is simply multiplied byg, the order of the group, and we have 

g J dq = E J 0*«“> E (?*/“> d$. 

However, for any non-unit irreducible representation we have identically 

|^ = o; 

this is a particular case of the orthogonality relations (94.7), when one of 

the irreducible representations is the unit representation. This proves the 
theorem. 

+ That is, the configuration space of the physical system concerned 
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If / is a function belonging to the basis of some reducible representation 

of a group, the integral j / dq will be zero except when this representation 

contains the unit representation. This theorem is a direct consequence of 

the previous one. 

The matrix elements of a physical quantity / are given by the integrals 

<0*|/|«> = J d?, (97.2) 

where the indices a and / distinguish different energy levels of the system, 

and the suffixes i, k denumerate wave functions belonging to the same 

degenerate level/ We denote the irreducible representations of the symmetry 

group of the system concerned that are given by the functions and 

by the symbols Z)(2) and D^\ and by Df the representation of the same 

group that corresponds to the symmetry of the quantity/; this representation 

depends on the tensor character of/. For example, if/is a true scalar, then 

its operator /is invariant under all the symmetry transformations, and Df is 

the unit representation. The same occurs for a pseudoscalar quantity if 

the group contains only axes of symmetry, but if there are also reflections, 

Df is not the unit representation, though its dimension is unity. If / is a 

vector, then Df is a representation given by the three vector components 

that are transformed into combinations of each other; this representation is 

in general different for polar and axial vectors. 

The products </ijfc^>/<//“> give the representation that is the direct product 

The matrix elements are non-zero if this representation 

contains the unit representation or, equivalently, if the direct product 

£)<0> x Z)(a) contains Df. In practice, it is more convenient to decompose 

into irreducible parts the product Z)(“> x Df; this gives us immediately all 

the types DW of states for transitions into which (from a state of the type 

the matrix elements are not zero. 

In the simplest case of a scalar quantity, for which Df is the unit representa¬ 

tion, it then follows immediately that the matrix elements are non-zero only 

for transitions between states of the same type: the direct product D<x) x Z)^> 

of two different irreducible representations does not contain the unit 

representation, but the latter is always present in the direct product of an 

irreducible representation with itself. This is most general statement of a 

theorem of which particular cases have already been met with. 

The matrix elements diagonal with respect to energy, i.e. those for transi¬ 

tions between states belonging to the same term (as opposed to transitions 

between states belonging to tw'o different terms of the same type), need special 

treatment. In this case we have only one set of functions not 

two different ones. The selection rules here are found by different methods, 

depending on the behaviour of the quantity / under time reversal. 

t Since the base functions can be taken as real when “physically irreducible” represen¬ 
tations are used, we do not distinguish in (97.2) between the wave functions and their complex 
conjugates. 
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Let us consider a state described by a wave function of the form tp = 

£ The mean value of/ in this state is given by the sum 

/ = fkck*ci <ak\f\aiy. 

In the state with the complex conjugate wave function tp* = S 

we have 

/ = £ Ckd* <a£|/|az> 

= Sty** (<xi\f\ak}. 

If / is invariant under time reversal, the two states not only belong to the 

same energy level but must also have the same value of /. Since the co¬ 

efficients Ci are arbitrary, this means that 

<«&|/|«z'> = <af|/|afc>. 

Hence, in order to find the selection rules, we must consider not the direct 

product £><“> x DPI as a whole, but only its symmetric part [D^>2]; there are 

non-zero matrix elements if [Z)(a)2] contains Df.f 

If, however, / changes sign under time reversal, the change from tp to tp* 

has to be accompanied by a change in the sign of /. Hence we find by the 

same method that 

<«*l/|az> = -<.cd\f\ctk}. 

In this case, therefore, the selection rules are determined by the decom¬ 

position of the antisymmetric part of the direct product, {DM2}. 

PROBLEMS 

Problem ]. Find the selection rules for the matrix elements of the electric and magnetic 
dipole moments d and u when symmetry O is present. 

Solution. The group O includes no reflections; the polar vector d and the axial vector n 
are therefore transformed by the same irreducible representation, F\. The decompositions of 
the direct products of Fi with the other representations of the group O are 

FtxA, = F„ F,x<-h = F„, F,xE = 

FlxFl = At+E+Fi + Fz, FlxF2 = A^E+F.+F^ 

Hence the non-zero non-diagonal (with respect to energy) matrix elements are those for the 

Fi*-> A„ E, Ft, Ft\ F2*—> .“Ij, E, Flt F, 

t The product [£)<“>2] al\ 
(and non-diagonai elements 

is the unit representation, so that the diagonal elements 
Jtes of the same type) are non-zero for a scalar quantity. 
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The symmetric and antisymmetric products of the irreducible representations of the group O are 

[AS] = [A 2 2] = A i, [£2] = A^E, = [FV] = Al + E + F2, 

{&} = Ao, ’,FS] = {F-S} = Ft. 

The symmetric products do not contain F\; hence there are no diagonal (with respect to energy) 
matrix elements of the vector d (which is invariant under time reversal). The magnetic moment, 
which changes sign under time reversal, has diagonal matrix elements for the states F\ and F2. 

Problem 2. The same as Problem 1, but for symmetry D3(t. 

Solution. The vectors d and ft have different transformation laws in the group Dm '- 

di.dy—Eu, dz~A2u, 
ftZ, ftg-Eg, ftz~A2g', 

(2) 

here and in the Problems below, the symbol ~ stands for the words "is transformed by the 
representation”. We have 

EuxAu = Eu\A2s = £„, EuxA„ = £„Xr3,„ = E„ ) 

E„x£„ = Au+Ato+E,, EuxEe = A,„+Az„+Eu. f 

Hence the non-diagonal matrix elements of dz. dy are non-zero for the transitions E„—>AIff, 
A2g, Eg-, Eg<r-+Aiu, A2u, Eu. In the same way we find the selection rules 

for dz- Aig<-*A>U\A*g'-Alu\Eg*-*Eu', 
for ft.,, ftg-. Eg~Alg, A,g, Eg■ EU~A1U, A-lv, Eu; 
for ftz: Alg~A2g; Alu~A2u; E,~Eg-, EU~EU. 

The symmetric and antisymmetric products of the irreducible representations of the group 
Dm are 

[A,*] = [A*2] = [A*2] = [A*2] = Alg, 

[ES] = [£„2] = Eg+ Alg, {Eg*} = {£«* } = A2g. 

Hence we see that there are no diagonal (with respect to energy) matrix elements for any of the 
components d; for the vector ft, there are diagonal matrix elements of f±z for transitions between 
states belonging to a degenerate level of the type Eg or Ev. 

Problem 3. Find the selection rules for the matrix elements of the electric quadrupole 
moment tensor Qa, when symmetry O is present. 

Solution. The components of the tensor Qu (a symmetrical tensor with the sum Qu equal 
to zero) with respect to group O are transformed by the laws 

Qxy, 0«. Q»z~F* Qxx + <Qyy + <2Qxx, Qxx + <*Qyy+‘Qxx~E 
(£ = «2«*V3). 

Decomposing the direct products of F2 and E with all the representations of the group, we find 
the selection rules for the non-diagonal matrix elements: 

for Qxy, Q,z, Qyz: Ex~A2, E, Ft, F2- F*~AX, E, Fx, F2- 
for Q.„, QgV, Qzz: E~A,, A2, £; F^Ft, F2; F2~F2. 

The diagonal matrix elements exist (as we see from (2)) in the following states: 

f°r Qxy, QxZ, QyZ- Fi, Fo, 
for Qxx.Qyy.Qzz '- E, Fu F2. 

Problem 4. The same as Problem 3, but for symmetry Dm- 

Solution. The transformation laws of the components Qa- with respect to the group 

Dm are 
' QZZ-Alg', QrX-Qgg.Q.g-Eg', Qx,. QyX-F.g. 

I (4) 
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Oz: behaves as a scalar. Decomposing the direct products of E,j with all the representations of 
the group, we find the selection rules for the non-diagonal matrix elements of the remaining 
components On, ' 

E,j~AA;(J, E0; Ea~Alu, A,u, Eu. 

The diagonal elements are non-zero (as we see from (4)) only for the states Eq and Eu. 

§98. Continuous groups 

As well as the finite point groups enumerated in §93, there exist also what 

are called continuous point groups, having an infinite number of elements. 

These are the groups of axial and spherical symmetry. 

The simplest axial symmetry group is the group Cx, which contains rota¬ 

tions C(<f>) through any angle ^ about the axis of symmetry; this is called the 

two-dimensional rotation group. It may be regarded as the limiting case of 

the groups Cn as n -> co. Similarly, as limiting cases of the groups Cnh, 

Cnv,Dn, Dnh we obtain the continuous groups CooA, £>ooA. 

A molecule has axial symmetry only if it consists of atoms lying in a straight 

line. If it meets this condition, but is asymmetric about its midpoint, its 

point group will be the group Cxv, which, besides rotations about the axis, 

contains also reflections ov in any plane passing through the axis. If, on 

the other hand, the molecule is symmetrical about its midpoint, its point 

group will be Z)ooA = Ca0VxCi. The groups CB, CooA, Dw cannot appear as 

the symmetry groups of a molecule. 

The group of complete spherical symmetry contains rotations through any 

angle about any axis passing through the centre, and reflections in any plane 

passing through the centre; this group, which we shall denote by Kh, is 

the symmetry group of a single atom. It contains as a sub-group the group 

K of all spatial rotations (called the three-dimensional rotation group, or simply 

the rotation group)., The group Kh can be obtained from the group K by 

adding a centre of symmetry (Kh = Kx Ct). 

The elements of a continuous point group may Ije distinguished by one 

or more parameters which take a continuous range of values. Thus, in the 

rotation group, the parameters might be the three Eulerian angles, which 

define a rotation of the coordinates. 

The general properties of finite groups described in §92, and the concepts 

appertaining to them (sub-groups, conjugate elements, classes, etc.), can be 

at once generalized to continuous groups. Of course, the statements which 

directly concern the order of the group (for instance, that the order of a sub¬ 

group divides the order of the group) are no longer meaningful. 

In the group Coc all planes of symmetry are equivalent, so that all reflec¬ 

tions ov form a single class with a continuous series of elements; the axis of 

symmetry is bilateral, so that there is a continuous series of classes, each 
containing two elements C(±£). The classes of the group Da>h are obtained 
at once from those of the group CB„, since DcoA = CcavxCi. 

In the rotation group K, all axes are equivalent and bilateral; hence the 
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classes of this group are rotations through an angle of fixed absolute magnitude 

\<f>\ about any axis. The classes of the group Kh are obtained at once from 

those of the group K. 

The concept of representations, reducible and irreducible, can also be 

immediately generalized to continuous groups. Each irreducible representa¬ 

tion contains an infinite sequence of matrices, but the number of base 

functions transformed into combinations of one another (the dimension of 

the representation) is finite. These functions may always be chosen so as to 

make the representation unitary. The number of different irreducible 

representations of a continuous group is infinite, but they form a discrete 

sequence, i.e. they can be numbered successively. For the matrix elements 

and characters of these representations there are orthogonality relations which 

generalize the corresponding ones for finite groups. Instead of (94.9), we 

now have 

J Gikl*)GimW*dTG = j-KAlhm j drG, (98.1) 

and instead of (94.10) 

J XiaKG)x^{Gr drG = 8., J dr G. (98.2) 

The integration in these formulae is what is called an invariant integration 

over the group; the element dtg is expressed in terms of the parameters of 

the group and their differentials in such a way as to remain an element when 

subjected to any transformation in the group.j- For example, in the rotation 

group we can take drG = sin /S da d/S dy, where a, /S and y are the Eulerian 

angles, which define a rotation of the system of coordinates (§58); in this case, 

jdrG= 87t2. 

We have already found, in essence, the irreducible representations of the 

three-dimensional rotation group (without using the terminology of group 

theory), when determining the eigenvalues and eigenfunctions of the total 

angular momentum. For the angular momentum component operators are 

(apart from a constant factor) the operators of infinitely small rotations,! 

and the eigenvalues of the angular momentum characterize the behaviour of 

the w'ave functions with respect to spatial rotations. To a value j of the 

angular momentum there correspond 2j + 1 different eigenfunctions tpjm, 

differing in the values of the component m of the angular momentum and 

all belonging to one (2)+l)-fold degenerate energy level. Under rotations 

of the coordinate system, these functions are transformed into linear combi¬ 

nations of themselves, and thus give irreducible representations of the 

t The statements made here about the properties of irreducible representations of con¬ 
tinuous groups are valid only if the integrals (98.1) and (98.2) converge; in particular, the 
“volume of the group” f drG must be finite. This condition is satisfied for continuous point 
groups (but not, fpr instance, for the Lorentz group which occurs in the relativistic theory). 

J In mathematical terms, these operators are the generators of the rotation group. 
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rotation group. Thus, from the group-theory point of view, the numbers j 

number the irreducible representations of the rotation group, and one 

(2j+ l)-dimensional representation corresponds to each j. The number / 

takes integral and half-integral values, so that the dimension 2j + 1 of the 

representations takes all the integral values 1, 2, 3, ... . 

The base functions of these representations have been, in essence, 

investigated in §§56 and 57, and the matrices of the representations have 

been found in §58. The basis of a representation of given j is formed by 

the 2/-1-1 independent components of a symmetrical spinor of rank 2j (which 

are equivalent to the set of 2j+1 functions 

The irreducible representations of the rotation group which correspond 

to half-integral values of j are distinguished by an important property. 

Under a rotation through 2w, the base functions of the representations 

change sign (being components of a spinor of odd rank). Since, however, 

a rotation through 277 is the same as the unit element of the group, we 

reach the result that representations with half-integral j are, as we say, 

two-valued; to each element of the group (a rotation through an angle 

<f>, 0 ^ ^ 277, about some axis) there correspond in such a representation 

not one but two matrices, with characters differing in sign.")- 

An isolated atom has, as we have already remarked, the symmetry Kh 

= KxC^ Hence, from the group-theory point of view, there corresponds 

to each term of the atom some irreducible representation of the rotation 

group K (determining the value of the total angular momentum J of the atom) 

and an irreducible representation of the group Ct (determining the parity 

of the state). J 

When the atom is placed in an external electric field, its energy levels are 

split. The number of different levels resulting and the symmetry of the 

corresponding states can be determined by the method described in §96. 

It is necessary to decompose the (2J+ l)-dimensional representation of the 

symmetry group of the external field (given by the functions i}jjm) into 

irreducible representations of this group. This requires a knowledge of the 

characters of the representation given by the functions <Pjm- 

Since the characters of the irreducible representations of elements of one 

class are the same, it is sufficient to consider rotations about the js-axis. 

By a rotation through an angle <f> about this axis the wave functions ipjM 

t It must be mentioned that two-valued representations of a group are not representations 
in the true sense of the word, since they are not given by one-valued base functions; see 
also §99. 

I Moreover, the Hamiltonian of the atom is invariant with respect to interchanges of the 
electrons. In the non-relativistic approximation, the coordinate and spin wave functions are 
separable, and we can speak of representations of the permutation group that are given by the 
coordinate functions. If the irreducible representation of the permutation group is given, the 
total spin S of the atom is determined (§63). When the relativistic interactions are taken into 
account, however, the separation of the wave functions into coordinate and spin parts is not 
possible. The symmetry with respect to simultaneous interchange of the coordinates and 
spins of the particles does not characterize the term, since Pauli’s principle admits onlv those 
total wave functions which are antisymmetric with respect to all the electrons. This is in 
accordance with the fact that, when the relativistic interactions are taken into account the 
spin is not, strictly speaking, conserved; only the total angular momentum J is conserved 
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are, as we know, multiplied by ea,$, where M is the component of the angular 

momentum along this axis. The transformation matrix for the functions 

fjM " ill therefore be diagonal, with character 

*ij .(<4) = 2elM* 
e't — 1 

orf 

x(JK4>) = 
sin(J+^)<^> 

sin|</> 
(98.3) 

With respect to inversion 7, all the functions f jm with different M behave 

in the same way, being multiplied by +1 or — 1 according as the state of the 

atom is even or odd. Hence the character 

±(27+1). (98.4) 

Finally, the characters corresponding to reflection in a plane a and rotary 

reflection through an angle <f> are found by writing these symmetry trans¬ 

formations as 

a = 7C2, S(4>) = IC(n+f). 

Let us pause to consider also the irreducible representations of the 

axial symmetry group Cav. This problem has, in essence, been solved when 

we ascertained the classification of the electron terms of a diatomic molecule 

having this symmetry Cwr (i.e. when the two atoms are different). To the 

terms 0+ and 0~ (with Q = 0) there correspond two one-dimensional 

irreducible representations: the unit representation A\ and the representation 

A2, in which the base function is invariant under all rotations and changes 

sign under reflections in planes cv, while to the doubly degenerate terms with 

Q = 1, 2, ... there correspond two-dimensional representations denoted by 

Ei, £2, ••• • Under a rotation through an angle f about the axis, the base 

functions are multiplied by e±iC1^, while on reflection in planes ov they change 

into each other. The characters of these representations are 

E 2C(<f>) coav 

A\ 

A2 

1 

1 

1 

1 

1 

-1 
(98.5) 

Ek 2 2 cos k<f> 0 

■(■ To avoid misunderstanding, it should be emphasized that this formula corresponds to a 
parametrization of the group elements other than that by the Eulerian angles: the trans¬ 
formation is specified by the direction of the axis of rotation and the angle f of the rotation 
about the axis. It can be shown that, with this parametrization, the integration in (98.2), for 
example, is to be taken over 2(1 -cos 4,)d<t> do, where do is the element of solid angle for the 
direction of the axis of rotation. 
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The irreducible representations of the group Dxh~ CxvxCt are ob¬ 

tained at once from those of the group Cmv (and correspond to the classifi¬ 

cation of the terms of a diatomic molecule composed of like nuclei). 

If we take half-integral values for Q, the functions e±,n^ give two-valued 

irreducible representations of the group Cxv, corresponding to the terms of 

the molecule having half-integral spin.f 

§99. Two-valued representations of finite point groups 

To the states of a system with half-integral spin (and therefore half¬ 

integral total angular momentum) there correspond two-valued represen¬ 

tations of the point symmetry group of the system. This is a general property 

of spinors, and therefore holds for both continuous and finite point groups. 

The necessity thus arises of finding the two-valued irreducible representa¬ 

tions of finite point groups. 

As we have already remarked, the two-valued representations are not 

really true representations of a group. In particular, the relations discussed 

in §94 do not apply to them, and where all irreducible representations were 

considered in these relations (for example, in the relation (94.17) for the sum 

of the squared dimensions of the irreducible representations), only the true 

one-valued representations were meant. 

To find the two-valued representations, it is convenient to employ the 

following artifice (H. A. Bethe 1929). We introduce, in a purely formal 

manner, the concept of a new element of the group (denoted by Q); this is a 

rotation through an angle of 277 about an arbitrary axis, and is not the unit 

element, but gives the latter when applied twice: Q2 = E. Accordingly, 

rotations Cn about the axes of symmetry of the nth order will give identical 

transformations only after being applied 2n times (and not n times): 

C„n=Q, Cn2n = E.. (99.1) 

The inversion I, being an element which commutes with all rotations, 

must give E as before on being applied twice. A twofold reflection in a plane, 
however, gives Q, not E: 

a4 =£; (99.2) 

this follows, since the reflection can be written in the form oh = IC2. As a 

t Contrary to the result for the three-dimensional rotation group, it would here be possible 
by a suitable choice of fractional values of Cl, to obtain not only one-valued and two-valued 
representations, but also those of three or more values. However, the physically possible 
eigenvalues of the angular momentum, which is the operator of an infinitely small rotation 
are determined by the representations of the aforementioned three-dimensional rotation 
group. Hence the three (or more)-valued representations of the two-dimensional rotation 
group (and of any finite symmetry group), though mathematically determinate, are without 
physical significance. 
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result we obtain a set of elements forming some fictitious point symmetry 

group, whose order is twice that of the original group; such groups we shall 

call double point groups. The two-valued representations of the actual point 

group will clearly be one-valued (i.e. true) representations of the correspond¬ 

ing double group, so that they can be found by the usual methods. 

The number of classes in the double group is greater than in the original 

group (but not, in general, twice as great). The element Q commutes with all 

the other elements of the group,f and hence always forms a class by itself. If 

the axis of symmetry is bilateral, the elements Cnk and Cn2n~k = QCnn~k are 

conjugate in the double group. Hence, when axes of the second order are 

present, the distribution of the elements among classes depends also on 

whether these axes are bilateral (in ordinary point groups this is unimportant, 

since C2 is the same as the opposite rotation C2_1). 

Thus, for instance, in the group T the axes of the second order are equiva¬ 

lent, and each of them is bilateral, while the axes of the third order are equiva¬ 

lent but not bilateral. Hence the 24 elements of the double groupj T' are 

distributed in seven classes: E, Q, the class of three rotations C2 and three 

C2Q, and the classes 4C3, 4C32, 4C3Q, 4C32Q. 

The irreducible representations of a double point group include, firstly, 

representations which are the same as the one-valued representations of the 

simple group (a unit matrix corresponding to both Q and E)\ secondly, 

the two-valued representations of the simple group, a negative unit matrix 

corresponding to 0. It is these latter representations in which we are now 

interested. 

The double groups Cn’ (n = 1, 2, 3, 4, 6) and Sf, like the corresponding 

simple groups, are cyclic.|| All their irreducible representations are one¬ 

dimensional, and can be found without difficulty as shown in §95. 

The irreducible representations of the groups Dn' (or Cnt,', which are 

isomorphous with them) can be found by the same method as for the cor¬ 

responding simple groups. These representations are given by functions 

of the form e±ik$, where f is the angle of rotation about an axis of the Mth 

order, and k is given half-integral values (the integral values correspond to 

the ordinary one-valued representations). Rotations about horizontal axes 

of the second order change these functions into one another, while the rota¬ 

tion Cn multiplies them by e±%Tik/n. 

It is a little less easy to find the representations of the double cubic groups. 

The 24 elements of the group T' are. divided among seven classes. Hence 

there are altogether seven irreducible representations, of which four are 

the same as those of the simple group T. The sum of the squared dimensions 

of the remaining three representations must be 12, and hence we find that 

they are all two-dimensional. Since the elements C2 and C2Q belong to the 

f This is obvious for rotations and inversion; for a reflection in a plane, it follows since the 
reflection can be represented as the product of an inversion and a rotation. 

I We distinguish the double groups bv primes to the symbols for the ordinary groups. 
The groups S,' = CV, -V s C3,\ however, which contain the inversion I, are Abelian 

but not cyclic. 
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Table 8 

Two-valued representations of point groups 

C,(*> Cs(v) cy*> 
Dt E Q Ca(»>Q c,<*>e 

E' 2 -2 0 0 0 

Cl cv 
Ds' E 0 Ci‘Q CiQ 3Ut 3UiQ 

* 1 1 -1 

-1 

-1 
1 

1 

'■ 

E,' 2 -2 -1 0 0 

c3 Cl CV Cl cth 3U, 3U', 
De E 0 CiQ CSQ c3e c.se CiQ 3 UiQ 3U\Q 

Ei 2 -2 0 1 -i V3 -V3 0 0 

Ei 2 -2 0 1 -i -V3 V3 0 0 

Ei 2 -2 0 -2 2 0 0 0 0 

Cl c4 C4» ZLi 2U’i 
E>i E Q CiQ eve c4e 2UiQ 2U'iQ 

Ei 2 -2 0 V2 -V2 0 0 

Et' 2 -2 0 -V2 V2 0 0 

3C3 
T’ £ e 4C, 4C,a 4 c3e 4c,2e 3C3Q 

E' 2 -2 1 -1 -i 1 0 

| 2 -2 £ 0 
G' 

2 -2 * - « 0 

O' 
4CS 4C32 3C,2 3C4 3CV 6C, 

E e 4csae 4C,e 3c.2e 3c.2e 3C4Q 6C3Q 

Ei 2 -2 i -1 0 V2 -V2 0 

Ei 2 -2 i -1 0 -V2 V2 0 

G’ 4 "4 -1 1 0 0 0 0 
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same class, x(Q) = x(Q£?) — — x(Q)> whence we conclude that x(Q) = 0 
in all three representations. Next, at least one of the three representations 

must be real, since complex representations can occur only in conjugate 

pairs. Let us consider this representation, and suppose that the matrix of 

the element C3 is brought to diagonal form, with diagonal elements alt Oj. 

Since C33 = Q, Cj3 = a23 = —1. In order that xCQ) = «i+^2 may he real, 

we must take ax = e"^3, a2 = e~Ti/3. Hence we find that x(C3) = 1> x(Q2) 

= = —1. Thus one of the required representations is obtained. By 

comparing its direct products with the two complex conjugate one-dimensional 

representations of the group T, we find the other two representations. 

By means of similar arguments, which we shall not pause to give here, we 

may find the representations of the group O'. Table 8 gives the characters 

of the representations of the double groups mentioned above. Only those 

representations are shown which correspond to two-valued representations 

of the ordinary groups. The isomorphous double groups have the same 

representations. 

The remaining point groups are isomorphous with those we have con¬ 

sidered, or else are obtained by direct multiplication of the latter by the group 

C{, so that their representations do not need to be specially calculated. 

For the same reasons as for ordinary representations, two complex con¬ 

jugate two-valued representations must be regarded as one physically 

irreducible representation of twice the dimension. It is necessary to pair 

one-dimensional two-valued representations even when they have real 

characters. For (see §60) in systems with half-integral spin, complex 

conjugate wave functions are linearly independent. Hence, if we have a 

two-valued on .-dimensional representationf with real characters (given 

by some function ip), then, although the complex conjugate function is 

transformed by an equivalent representation, we can nevertheless see that <p 

and are linearly independent. Since, on the other hand, the complex 

conjugate wave functions must belong to the same energy level, we see that 

in physical applications this representation must be doubled. 

The whole of the discussion in §97 concerning the method of finding the 

selection rules for the matrix elements of various physical quantities / 

remains valid for states of a system with half-integral spin, except as regards 

the matrix elements diagonal with respect to energy. On repeating the 

analysis at the end of §97 but with formulae (60.2) and (60.3), we find that, 

if the quantity / is even or odd under time reversal, we must use, in finding 

the selection rules, respectively the antisymmetric {ZK°>2} and symmetric 

[ZD(“>2] products of the representation Z)<a) with itself; this is the opposite 

of the rule stated in §97 for systems with integral spin.J 

f Such representations are found in the group C„ tor odd tr, the characters are 

I In connection with the applicatior 
representations the unit representation 
of the representation with itself. For 
product {£)(a>2} is just the unit represe 

of these rules, it may be noted that for two-valued 
is in the antisymmetric, not the symmetric, product 
a two-valued representation with dimension 2, the 
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PROBLEM 
Determine how the levels of an atom (with given values of the total angular momentum J) 

art. split when it is placed in a field having the cubic symmetry-)- O. 
Solution. The wave functions of the states of an atom with angular momentum J and 

various values Mj give a (2J + l)-dimensional reducible representation of the group O, with 
characters determined by the formula (98.3). Decomposing this representation into irreduc¬ 
ible parts (one-valued for integral / and two-valued for half-integral J), we at once find the 
required splitting (cf. §96). We shall list the irreducible parts of the representations corres¬ 
ponding to the first few values of J: 

= 0 A 

1/2 E{ 

1 A 

3/2 G' 

2 e+f2 

5/2 E2'+G' 

3 a2+f1+f2 

t l-'or example, an atom in a crystal lattice. The presence or absence of a centre of symmetry in 
the symmetry group of the external field is immaterial to this problem, since the behaviour of the 
wave function on inversion (the parity of the level) is unrelated to the angular momentum J. 



CHAPTER XIII 

POLYATOMIC MOLECULES 

§100. The classification of molecular vibrations 

In its applications to polyatomic molecules, group theory first of all resolves 

the problem of the classification of their electron terms, i.e. of the energy 

levels for a given situation of the nuclei. They are classified according to 

the irreducible representations of the point symmetry group appropriate to 

the configuration of the nuclei. Here, however, we must emphasize what 

is really obvious, that the classification thus obtained belongs to the definite 

nuclear configuration considered, since the symmetry is in general destroyed 

when the nuclei are displaced. We usually discuss the configuration cor¬ 

responding to the equilibrium position of the nuclei. In this case the classi¬ 

fication continues to possess a certain amount of meaning even when the 

nuclei execute small vibrations, but of course becomes meaningless when 

the vibrations can no longer be regarded as small. 

In the diatomic molecule this question did not arise, since its axial sym¬ 

metry is of course preserved under any displacement of the nuclei. A 

similar situation occurs for triatomic molecules also. The three nuclei 

always lie in a plane, which is a plane of symmetry of the molecule. Hence 

the classification of the electron terms of the triatomic molecule with respect 

to this plane (wave functions symmetric or antisymmetric with respect to 

reflection in the plane) is always possible. 

For the normal electron terms of polyatomic molecules there is an empirical 

rule according to which, in the great majority of molecules, the wave function 

of the normal electron state is completely symmetrical (this rule, for diatomic 

molecules, has already been mentioned in §78). Thus, the wave function 

is invariant with respect to all the elements of the symmetry group of the 

molecule, i.e. it belongs to the unit irreducible representation of the group. 

The application of the methods of group theory is particularly significant 

in the investigation of molecular vibrations (E. P. Wigner 1930). Before 

beginning a quantum-mechanical investigation of this problem, a purely 

classical discussion of the vibrations of the molecule is necessary, in which 

it is regarded as a system of several interacting particles (the nuclei). 

A system of N particles (not lying in a straight line) has 3JV—6 vibrational 

degrees of freedom; of the total number of degrees of freedom 3N, three 

correspond to translational and three to rotational motion of the system as 

a whole (see Mechanics, §§23, 24).f The energy of a system of particles 

t If all the particles lie in 
3N — 5; in this case, only tv 
speak of the rotation of a lir 

straight line, the number of vibrational degrees of freedom is 
coordinates correspond to rotation, since it is meaningless to 

ir molecule about its axis. 
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executing small vibrations can be written 

E = * Zmlku,uk+lgklku,uk, (100.1) 

where mik, kik are constant coefficients, and the ui are the components of 

the vector displacements of the particles from their equilibrium positions 

(the suffixes i, h denumerate both the components of the vector and the 

particles). By a suitable linear transformation of the quantities uit we can 

eliminate from (100,1) the coordinates corresponding to translational motion 

and rotation of the system, and take the vibrational coordinates in such a 

way that both the quadratic forms in (100.1) are transformed into sums of 

squares. Normalizing these coordinates so as to make all the coefficients 

in the expression for the kinetic energy unity, we obtain the vibrational energy 

in the form 

E = * S QJ-H S «a2 ? QJ- (100.2) 

The vibrational coordinates Q*i are said to be normal-, the w, are the fre¬ 

quencies of the corresponding independent vibrations. It may happen that 

the same frequency (which is then said to be multiple) corresponds to several 

normal coordinates; the suffix a to the normal coordinate gives the number 

of the frequency, and the suffix i = 1, 2, ... , /„ numbers the coordinates 

belonging to a given frequency (Ja being the multiplicity of the frequency). 

The expression (100.2) for the energy of the molecule must be invariant 

with respect to symmetry transformations. This means that, under any 

transformation belonging to the point symmetry group of the molecule, the 

normal coordinates QaU i = 1, 2, ...,/0 (for any given a) are transformed 

into linear combinations of themselves, in such a way that the sum of the 

squares £ Qai2 remains unchanged. In other words, the normal coordinates 

belonging to any particular eigenfrequency of the vibrations of the molecule 

give some irreducible representation of its symmetry group; the multiplicity 

of the frequency determines the dimension of the representation. The 

irreducibility follows from the same considerations as were given in §96 for 

the solutions of Schrodinger’s equation. The equality of the frequencies 

corresponding to two different irreducible representations would be an 

improbable coincidence. A reservation is again necessary: since the normal 

coordinates are by their physical nature real quantities, two complex 

conjugate representations correspond physically to one eigenfrequency of 
twice the multiplicity. 

These considerations enable us to carry out a classification of the eigen- 

vibrations of a molecule without solving the complex problem of actually 
determining its normal coordinates. To do so, we must first find (by the 

method described below) the representation given by all the vibrational 

coordinates together, which we shall call the total vibrational representation; 
this representation is reducible, and on decomposing it into irreducible parts 
we determine the multiplicities of the eigenfrequencies and the symmetry 
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properties of the corresponding vibrations. Here it may happen that the 

same irreducible representation appears several times in the total represen¬ 

tation; this means that there are several different frequencies of the same 

multiplicity and with vibrations of the same symmetry. 
To find the total vibrational representation, vve start from the fact that the 

characters of a representation are invariant with respect to a linear transforma¬ 

tion of the base functions. Hence they can be calculated by using as base 

functions not the normal coordinates, but simply the components ut of the 

vectors of the displacements of the nuclei from their equilibrium positions. 

First of all, it is evident that, to calculate the character of some element 

G of a point group, we need consider only those nuclei which (or, more exactly, 

whose equilibrium positions) remain fixed under the given symmetry trans¬ 

formation. For if, under the rotation or reflection G in question, nucleus 1 

is moved to a new position, previously occupied by a similar nucleus 2, 

this means that under the operation G a displacement of nucleus* 1 is trans¬ 

formed into a displacement of nucleus 2. In other words, there will be no 

diagonal elements in the rows of the matrix Gik which correspond to this 

nucleus (i.e. to its displacement ui). The components of the displacement 

vector of a nucleus whose equilibrium position is not affected by the operation 

G, on the other hand, are evidently transformed into combinations of them¬ 

selves, so that they may be considered independently of the displacement 

vectors of the remaining nuclei. 

Let us first consider a rotation C(4>) through an angle 4> about some sym¬ 

metry axis. Let ux, uy, uz be the components of the displacement vector 

of some nucleus, whose equilibrium position is on the axis, and hence is 

unaffected by the rotation. Under the rotation these components are 

transformed, like those of any ordinary (polar) vector, according to the for¬ 

mulae (the ar-axis being the axis of symmetry) 

u'x — ux cos<f>+uv sin^, 

u’y = — ux sin^+H„ cos$, 

The character, i.e. the sum of the diagonal terms of the transformation matrix, 

is 1 +2 cos <f>. If altogether Nc nuclei lie on the axis in question, the total 

character is 

iVc(l-h2 cos c^>). (100.3) 

However, this character corresponds to the transformation of all the 3N 

displacements ut; hence it is necessary to separate the part corresponding to 

the transformations of translation and (small) rotation of the molecule as a 
whole. The translation is determined by the displacement vector U of the 

centre of mass of the molecule; the corresponding part of the character is 
therefore 1 +2 cos^6. The rotation of the molecule as a whole is determined 
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by the vector 8 £2 of the angle of rotation.f The vector 8£2 is axial, but with 

respect to rotations of the coordinate system an axial vector behaves like 

a polar vector. Hence a character of 1 +2 cos f also corresponds to the vector 

8£2. Altogether, therefore, we must subtract from (100.3) a quantity 

2(1 +2 cos<f). Thus we finally have the character X(C) of the rotation C(<f) 

in the total vibrational representation: 

X(C)=(NC-2)(l + 2co60. (100.4) 

The character of the unit element is evidently just the total number of 

vibrational degrees of freedom: x(E) = 3iY— 6 (as is obtained from (100.4) 

when Nc = N, f = 0). 
In a similar manner, we calculate the character of the rotary-reflection 

transformation S(<£) (a rotation through an angle f about the 2-axis and a 

reflection in the xy-plane). Here a vector is transformed according to the 

formulae 

u'x = ux cos4>+uv sinf, 

u'y = —uxsinf+uycos<j>, 

to which there corresponds a character —1+2 cos <f. Hence the character 

of the representation given by all the 3N displacements ut is 

iys(-l+2cos^), (100.5) 

where Ns is the number of nuclei left unmoved by the operation S(f); this 

number is evidently either none or one. To the vector U of the displacement 

of the centre of mass there corresponds a character —1+2 cosf. The vector 

8£2 being an axial vector, is unchanged by an inversion of the coordinate 

system; on the other hand, the rotary-reflection transformation S(<f) can be 

represented in the form 

S(f) = C(0K = C(f)C2l = Cl*+<£)/, 

i.e. as a rotation through an angle n+f, followed by an inversion. Hence 

the character of the transformation S(fi) applied to the vector 8£2 is equal 

to the character'of the transformation C(jr+f) applied to an ordinary vector, 

i.e. it is 1+2 cos (*+<£)= 1—2 cosf. The sum ( — 1+2 cos f)+(1—2 cosf) 

= 0, so that we reach the conclusion that the expression (100.5) is equal to 

the required character x(S) of the rotary-reflection transformation S(<£) in 
the total vibrational representation: 

X(S) = A(s(-l + 2 cosf). (100.6) 

In particular, the character of reflection in a plane (f = 0) is x(o) = N , 
while that of an inversion (<f> = tt) is x(7) = —3Nj. ° 

t As is well known, the angle of a small rotation can be regarded as a vector Sfi, whose modulus 
is equal to the angle of rotation and which is directed along the axis of rotation in the direction 
determined by the corkscrew rule. The vector Sfi so defined is clearly axial. 
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Having thus determined the characters x of the total vibrational representa¬ 

tion, we have only to decompose it into irreducible representations, which is 

done by formula (94.16) and the character tables given in §95 (see the Prob¬ 

lems at the end of the present section). 

To classify the vibrations of a linear molecule there is no need to have 

recourse to group theory. The total number of vibrational degrees of freedom 

is 37V—5. Among the vibrations, we must distinguish those in which the 

atoms remain in a straight line, and those where this does not happen.f The 

number of degrees of freedom in the motion of TV particles in a straight line 

is A'; of these, one corresponds to the translational motion of the molecule 

as a whole. Hence the number of normal coordinates of the vibrations 

which leave the atoms in a straight line is TV— 1; in general, TV— 1 different 

eigenfrequendes correspond to them. The remaining (37V—5) — (TV— 1) 

= 27V —4 normal coordinates relate to vibrations which destroy the col- 

linearity of the molecule; to these, there correspond TV— 2 different double 

frequencies (two normal coordinates, corresponding to the same vibrations 

in two mutually perpendicular planes, belong to each frequency).^ 

PROBLEMS 
Problem 1. Classify the normal vibrations of the molecule NHS (an equilateral triangular 

pyramid, with the N atom at the vertex and the H atoms at the comers of the base; Fig. 41). 

N 

Fig. 41 

Solution. The point symmetry group of the molecule is Cs„. Rotations about an axis 
of the third order leave only one atom (N) fixed, while reflections in planes each leave two 
atoms fixed (N and one H). From formulae (100.4), (100.6) we find the characters of the 
total vibrational representation: 

E 2 C, 

6 6" 

3o„ 

Decomposing this representation into irreducible parts, we find that it contains the repre¬ 
sentations Ax and E twice each. Thus there are two simple frequencies corresponding to 
vibrations of the type Alt which conserve the complete symmetry of the molecule (what are 
called totally symmetric vibrations), and two double frequencies with corresponding normal 
coordinates which are transformed into combinations of each other by the representation E. 

Problem 2. The same as Problem 1, but for the molecule HsO (Fig. 42). 

Solution. The symmetry group is C,.. The transformation Ct leaves the O atom fixed; 
the transformation c. (a reflection in the plane of the molecule) leaves all three atoms fixed; 

f If the molecule 
appears ; see Probli 

1 Using the nota 
that there are N- 1 

trical about its centre, a further characteristic of the 
..._ : end of this section. 
ion for the irreducible representations of the group Cmv (see §98), 
vibrations of the type Ai, and N - 2 of the type E,. 

vibrations 

we can say 



Problem 5. The same as Problem 1, but for the molecule C,H, (Fig. 43c). 

Solution. The symmetry of the molecule is D,h. The vibrations are 2Alt, IA.„, 1j4,u, 
IB,5, 1J9„, 3jBju. 1 3E1U, 4£„, 2EJU. 

Problem 6. The same as Problem 1, but for the molecule OsF, (the Os atom is at the 
centre of a cube with the F atoms-at the vertices; Fig. 43d). 

Solution. The symmetry of the molecule is Oh. The vibrations are 1 Alt, \A+U, IE*. 

Problem 7. The same as Problem 1, but for the molecule UF. (the U atom is at the centre 
of an octahedron with the F atoms at the vertices; Fig. 43e). 

Solution. The symmetry of the molecule is Oh. The vibrations are 1 Alf 1 Ea 2F 
1 Fig, * 1 * 



Polyatomic Molecules 

CL CL CL 

Problem 8. The same as Problem 1, but for the molecule CjH6 (Fig- 43f). 

Problem 9. The same as Problem 1, but for the molecule CjH4 (Fig. 43g; 
: coplanar). 

Solution. The symmetry of the molecule is £)2*. The vibrations are 3 Alt 

Problem 10. The same as F 

Solution. To the dassificat 

the atoms in line are symmetrical with respect to the centre, ■. 
p — 1 vibrations of this type are antisymmetrical. Next, p s 
for motions in which the atoms do not remain in line. On gi 
ments to symmetrically placed atoms, we should obtain 2p 

vibrations leaving 
ling (2p—1) p = 
legrees of freedom 
opposite displace- 
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the end of §98), we can say that there are p vibrations of the type Aie and p—1 of the types 
A,u, Eit, EIU. 

If N is odd (N = 2p -f 1), similar arguments show that there are p vibrations of each of the 
types Aie, AIU, E1U and p — 1 of the type Eig. 

§101. Vibrational energy levels 

From the viewpoint of quantum mechanics, the vibrational energy of a 

molecule is determined by the eigenvalues of the Hamiltonian 

ft* = } S (P„f2 + co*2Q*i2), (101.1) 

where Pai = —ilidjdQai are the momentum operators corresponding to the 

normal coordinates Q„. Since this Hamiltonian falls into the sum of in¬ 

dependent terms (P^2 + o>x2Qii2), the energy levels are given by the sums 

= h s coa s (**+*) = s ho>a{va+ya), (ioi.2) 

where va — E vai, and fa is the multiplicity of the frequency u>a. The wave 

functions are given by the products of the corresponding wave functions for 

linear harmonic oscillators: 

</< = n</.*, (101.3) 

where </q = constant xexp{—|ca2 S Qa?}fl HVat(c0LQ!J), (101.4) 

where Hv denotes the Hermite polynomial of order v, and ca— \/(toajh). 

If there are multiple frequencies among the o>a, the vibrational energy levels 

are in general degenerate. The energy (101.2) depends only on the sums 

va = E vai. Hence the degree of degeneracy of the level is equal to the 

number of ways of forming the given set bf numbers va from the vai. For a 

single number va it isf 

(Vh/a-mK/a-1)!- 

Hence the total degree of degeneracy is 

n K+/a-i)i 
(101.5) 

For double frequencies, the factors in this product are ®a + l, while for triple 

frequencies they are i(®a + 1)(®a + 2). 

It must be borne in mind that this degeneracy occurs only so long as we 

consider purely harmonic vibrations. When terms of higher order in the 
normal coordinates are taken into account in the Hamiltonian (anharmonic 

vibrations), the degeneracy is in general removed, though not completely 
(see §104 for a further discussion of this point). 

t This is the number of ways in which va balls be distributed among/a urns. 
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The wave functions (101.3) belonging to the same degenerate vibrational 

term give some representation (in general reducible) of the symmetry group 

of the molecule. The functions belonging to different frequencies are 

transformed independently of one another. Hence the representation given 

by all the functions (101.3) is the product of the representations given by the 

functions (101.4), so that we need consider only the latter. 

The exponential factor in (101.4) is invariant with respect to all the 

symmetry transformations. In the Hermite polynomials, the terms of any 

given degree are transformed only into similar terms; a symmetry trans¬ 

formation evidently does not change the degree of any term. Since, on the 

other hand, each Hermite polynomial is completely determined by its highest 

term, it follows that it is sufficient to consider only the highest term, writing 

fa 
^vaiKQai) = constant xQalv«‘Qa2v«> ... Qat^t* 

+ terms of lower degree. 

The functions for which the sum va = S vai has the same value belong 

to the same term. Thus we have a representation given by the products of 

va quantities Qai\ this is just the symmetric product (see §94) of the irreducible 

representation given by the Qxi with itself z-x times (L. Tisza 1933). 

For one-dimensional representations, the finding of the characters of their 

symmetric products with themselves v times is trivial :j- 

X.(G) = [X(G)]». 

For two- and three-dimensional representations it is convenient to use the 

following mathematical device. J The sum of the squared base functions of 

an irreducible representation is invariant with respect to all symmetry 

transformations. Hence we can formally regard these functions as the com¬ 

ponents of a vector in two or three dimensions, and the symmetry transfor¬ 

mations as some rotations (or reflections) applied to these vectors. We 

emphasize that there is in general no relation between these rotations and 

reflections and the actual symmetry transformations, the former depending 

(for any given element G of the group) also on the particular representation 

considered. 

Let us consider two-dimensional representations more closely. Let y(G) 

be the character of some element of the group in the two-dimensional repre¬ 

sentation concerned, with y(G) # 0. The sum of the diagonal elements of 

the transformation matrix for the components x, y of a two-dimensional 

vector on rotation through an angle ^ in a plane is 2 cos 4>. Putting 

2 cos</> = y(G), (101-6) 

we find the angle of the rotation which formally corresponds to the element 

t We use the notation x„(G) in place of the cumbersome [x'](G)- 
i It was applied to this problem by A. S. Kompaneets (1940). 
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G in the irreducible representation considered. The symmetric product of 

the representation with itself v times is the representation whose basis is 

formed by the o + l quantities xv, ..., yv. The characters of this 

representation aref 

X„(G) = sin(o+l)<£/sin<£. (101.7) 

The case where x(G) = 0 requires special consideration, since a zero charac¬ 

ter corresponds both to a rotation through \tt and to a reflection. If 

\(G2) = —2, we have a rotation through \tt, and for Xv(G) we obtain 

X„(G) = -*(-l)»[l +(-1)1. (101.8) 

If x(G2) = 2, on the other hand, x(G) must be regarded as the character 

of a reflection (i.e. a transformation x -> x, y -> — y); then 

*„(<?)= m i+(-in (ioi.9) 

We can similarly obtain the formulae for the symmetric products of three- 

dimensional representations. The finding of the rotation or reflection which 

formally corresponds to an element of the group in a given representation is 

easily accomplished with the aid of Table 7 (§95). This is the transformation 

which corresponds to the given x(G) in that isomorphous group in which the 

coordinates are transformed by the representation in question. Thus, for 

the representation F1 of the groups O and Td we must take a transformation 

from the group O, but for the representation F2 we must take one from the 

group Td. We shall not pause here to derive the corresponding formulae for 

the characters Xv(G)- 

§102. Stability of symmetrical configurations of the molecule 

For a symmetrical position of the nuclei, an electron term of the molecule 

may be degenerate, if there are among the irreducible representations of the 

symmetry group one or more whose dimensions exceed unity. We may ask 

whether such a symmetrical configuration is a stable equilibrium configura¬ 

tion of the molecule. Here we shall neglect the effect of spin (if any), which 

is usually insignificant in polyatomic molecules. The degeneracy of the 

electron terms of which we shall speak is therefore only the orbital degeneracy, 

and is unrelated to the spin. 

If the configuration in question is stable, the energy of the molecule as a 

function of the distances between the nuclei must be a minimum for the given 

position of the nuclei. This means that the change in the energy due to a small 

displacement of the nuclei must contain no terms linear in the displacements. 

t For purposes of calculation lt is convenient to take the base functions in the form 

the matrix of the diagonal, and the sum of the diagonal elements takes the form 
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Let i? be the Hamiltonian of the electron state of the molecule, the 

distances between the nuclei being regarded as parameters. We denote by /?0 

the value of this Hamiltonian for the symmetrical configuration considered. 

The quantities defining the small displacements of the nuclei can be taken 

as the normal vibrational coordinates Qxt. The expansion of H in powers 

of the Qai is of the form 

n = tf0+Z VaiQai+a XWai£kQaiQlilc+ .... (102.1) 

The expansion coefficients V, W, ... are functions only of the coordinates of 

the electrons. Under a symmetry transformation, the quantities Qai are 

transformed into combinations of one another, and the sums in (102.1) are 

changed into other sums of the same form. Hence we can formally regard 

the symmetry transformation as a transformation of the coefficients in these 

sums, the Qai remaining unchanged. Here, in particular, the coefficients 

Vai (for any given a) will be transformed by the same representation of the 

symmetry group as the corresponding coordinates Qxi. This follows at 

once from the fact that, by virtue of the invariance of the Hamiltonian under 

all symmetry transformations, the group of terms of any given order in its 

expansion must be invariant also, and in particular the linear terms must be 

invariant.-|- 

Let us consider some electron term E0 which is degenerate in the sym¬ 

metrical configuration. A displacement of the nuclei which destroys the 

symmetry of the molecule generally results in a splitting of the term. The 

amount of the splitting is determined, as far as terms of the first order in 

the displacements of the nuclei, by the secular equation forir.;d from the 

matrix elements of the linear term in the expansion (102.1), 

Vpa = 2 Qai J dq, (102.2) 

where ipp, <pa are the wave functions of electron states belonging to the 

degenerate term in question (and are chosen to be real). The stability of the 

symmetrical configuration requires that the splitting linear in Q should be 

zero, i.e. all the roots of the secular equation must vanish identically. This 

means that the matrix Vpo must itself be zero. Here, of course, we must 

consider only those normal vibrations which destroy the symmetry of the 

molecule, i.e. we must omit the totally symmetric vibrations (which cor¬ 

respond to the unit representation of the group). 
Since the Qai are arbitrary, the matrix elements (102.2) vanish only if 

all the integrals 

j<PpVa^0dq (102.3) 
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vanish. Let Del be the irreducible representation by which the electron 

wave functions <pp are transformed, and Da the same for the quantities Vai; 

as we have already remarked, the representations Da are those by which the 

corresponding normal coordinates QIX are transformed. According to the 

results of §97, the integrals (102.3) will be non-zero if the product 

[/)(eO2] x j)x contains the unit representation or, what is the same thing, if 

[£)(«*>2] contains Dx. Otherwise all the integrals vanish. 

Thus a symmetrical configuration is stable if the representation [Z)<e*>2] 

does not contain any (except the unit representation) of the irreducible 

representations Dx which characterize the vibrations of the molecule. This 

condition is always satisfied for non-degenerate electron states, since the sym¬ 

metric product of a one-dimensional representation with itself is the unit 

representation. 

Let us consider, for instance, a molecule of the type CH4, in which one 

atom (C) is at the centre of a tetrahedron, with four atoms (H) at the vertices. 

This configuration has the symmetry T d. The degenerate electron terms 

correspond to the representations E, Fu F2 of this group. The molecule has 

one normal vibration Al (a totally symmetric vibration), one double vibration 

E, and two triple vibrations F2 (see §100, Problem 4). The symmetric pro¬ 

ducts of the representations E, Fv F2 with themselves are 

[£2] = Ax+E, [Li2] = [Ff] = Ax+E+F2. 

We see that each of these contains at least one of the representations E, F2, 

and hence the tetrahedral configuration considered is unstable when there 

are degenerate electron states. 

This result constitutes a general rule, the Jahn-Teller theorem (H. A. Jahn 

and E. Teller 1937): when there is a degenerate electron state, any symmetri¬ 

cal position of the nuclei (except when they are collinear) is unstable. As a 

result of this instability, the nuclei move in such a way that the symmetry of 

their configuration is destroyed, the degeneracy of the term being completely 

removed. In particular, we can say that the normal electron term of a 

symmetrical (non-linear) molecule can only be non-degenerate.f 

As we have just mentioned, the linear molecules alone form an exception. 

This is easily seen, without using group theory. A displacement of a nucleus 

whereby it moves off the axis of the molecule is an ordinary vector with £ 

and 17 components (the £-axis being along the axis of the molecule). We 

have seen in §87 that such vectors have matrix elements only for transitions 

in which the angular momentum A about the axis changes by unity. On the 

other hand, to a degenerate term of a linear molecule there correspond states 

with angular momenta A and —A about the axis (A > 1). A transition be¬ 

tween them changes the angular momentum by at least 2, and therefore the 

t The Physical idea of destruction of symmetry in an electron state that is degenerate 
because of the same symmetry is due to L. D. Landau (1934). Jahn and Teller proved the 
theorem by considering all possible types of symmetrical configuration of the nuclei in the 
molecule and examining each one by the method given above. 
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matrix elements always vanish. Thus the linear position of the nuclei in the 

molecule may be stable, even if the electron state is degenerate. 

A constructive general proof of the theorem is based on the following 

consideration (E. Ruch 1957). The degeneracy of electron states due to the 

symmetry of the configuration of the nuclei can exist only in point symmetry 

groups of the molecule which include at least one rotation (CK) or rotary- 

reflection (Sn) axis of order n > 2. Then the wave functions of mutually 

degenerate states (i.e. the base functions of the corresponding representation 

Dtel>) include at least one for which the electron density p = \ip\2 = <p2 is 

not invariant under rotations about this axis; the electric field due to the 

electrons, like the electron density, will not be symmetrical about the axis. 

In a (non-linear) molecule, there are equivalent nuclei, not on the axis, 

which move to one another’s positions in the rotation Cn or Sn. Thus 

equivalent nuclei lie at points that are not equivalent as regards the electric 

field. But an equivalence of the equilibrium positions of charged particles 

in a field that is not required by the symmetry of the field is impossible, in 

the sense that it can only result from an unlikely coincidence. 

The systematic proof is a mathematical embodiment of this physical 

situation. We shall indicate the structure of the proof (E. Ruch and A. 

Schonhofer 1965). 

Let us consider (in a non-linear molecule) some nucleus a that is not at 

the “centre” of the molecule (i.e. not at the fixed point for the transformations 

in its symmetry group) and not on the principal axis of symmetry, if any.f 

Let H be the set of all symmetry transformations of the molecule that leave 

the nucleus a fixed; H is a sub-group of the total symmetry group G of the 

molecule, and may be one of the point groups C\, Cs, Cr, Cnv. The trans¬ 

formations in G that are not in H move the nucleus a to the positions of other 

equivalent nuclei a\ a", ... ; let s be the number of nuclei in this set. It 

is evident that the order of the sub-group H is gjs, where g is the order of 

the whole group G (i.e. s is the index of the sub-group H in the group G).J 

The number s is certainly at least 3, since for the existence of an irreducible 

representation Z)<e*> with dimension exceeding unity it is necessary (as 

already mentioned) that there should be at least one axis of symmetry of 

higher than the second order, and the nucleus a is not on this axis, by the 

condition stated. 

The representation of the group G is in general reducible with respect 

to the group H, which has a lower symmetry. Let us suppose that its de¬ 

composition into irreducible representations of H includes a representation 

</(ei) 0f dimension unity. This is given by an electron wave function </i, one 

of the base functions of the representation Since the dimension of 

d<ei) is unity, p = 4>2 is invariant under all transformations in H, i.e. it gives 

a unit irreducible representation of this group. 

t By the principal axis we mean (in 
the axis Cn or Sn with n> 2. 

I All the elements of the group G car 
G", ..., are the elements that move the m 

symmetry groups other than cubic and icosahedron) 

n be divided into s cosets H. G'M. G"M, .... where G , 
ucleus a to a', a”, .. 
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Such a unit representation of H can also be obtained by taking as the basis 

one of the displacements Qa of the atom a: the displacement along the 

position vector of the nucleus a from the centre of the molecule. 

By applying to this displacement all the operations in the group G, we 

obtain the basis of a representation Dq (in general reducible) of this group. 

Since every transformation in G that is not in H changes the displacement Qa 

into a displacement of one of the other s—1 equivalent nuclei a, a", ... , 

and the displacements of different nuclei are of course linearly independent, 

the dimension of Dq is s. The displacements Qa, Qa••• which form the 

basis of Dq certainly cannot correspond to either pure translation or pure 

rotation of the molecule as a whole: if there are three or more equivalent 

nuclei, radial displacements of them cannot be combined to form such 

displacements of the molecule. 

In a similar way, we can find a representation Dp of the group G by 

applying all its transformations to the function p = tp2. The dimension of 

Dp may be s, but may also be less, since there is no reason to suppose that all 

the s functions p, G'p, G"p, ... are linearly independent. We can, however, 

say that the representation Dp, if not the same as Dq, will always be entirely 

contained in Dg.f Moreover, it is not the unit representation, since ip2 is 

certainly not invariant with respect to the whoLe group G; only the sum of 

the squares of the base functions of the irreducible representation with 

dimension exceeding unity, is invariant. 

These properties of the representations Dq and Dp give the required 

result immediately: Dq is part of the total vibrationai representation, and Dp 

is part of the representation [Z5<e!>2], not containing the unit representation. 

The fact that Dq contains Dp therefore means that [Z5<e!>2] contains at least 

one of the non-unit vibrational representations Da, as was to be proved. 

In these arguments, however, it has also been assumed that the decom¬ 

position of into irreducible representations of the sub-group H includes 

a representation of dimension unity. This assumption is correct in the 

great majority of cases. For example, it is certainly correct if H = 

Ci, Cs, Co, C-2v (since all irreducible representations of these groups have 

dimension unity). It is certainly correct also if H = Cn, Cnv with n > 2, 

provided that the dimension of is odd (since the groups Cn and Cnv have 

only irreducible representations of dimension 1 or 2). An examination of the 

character tables of the irreducible representations of point groups shows 

that an exception occurs for the two-dimensional representations of the 

cubic groups G = O, Ta, Oh, with respect to the sub-groups H = C3, Czv. 

Let us take the particular case of G = O and H — C3; this affects only 
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the naming of the representations. The two electron functions <pi, 4>2 give 

the representation D(el'> = E of the group O, and the representation 

diel> =£ of the sub-group C3; the representation of the latter given by the 

products 4>\2, i/<22, i/'i </'2> is [£2] = A-\-E. A similar representation of C3 

is obtained with the three components of the vectors of any displacement 

Qa of the nucleus a as basis. The representation Dp of O is in this case 

j-/)<eZ)2] = Ai + E, and does not contain the representation F2 corresponding 

to the vector of translation or rotation of the molecule as a whole; it contains 

both the unit and a non-unit representation. Hence the fact that Dp is 

(for the same reasons as previously) contained in Dq (whose dimension here 

is 3s) proves that in this case also the molecule is unstable.f 

In accordance with the remark at the beginning of this section, the whole 

of the above discussion has regarded the degeneracy of the electron states 

as being purely orbital in origin. It may be mentioned, however, that the 

Jahn-Teller theorem remains valid even when the spin-orbit and spin-spin 

interactions are taken into account, the only difference being that in (non¬ 

linear) molecules with half-integral spin the Kramers double degeneracy 

does not cause instability, in accordance with the general theorem proved in 

§60. The latter case corresponds to the two-dimensional two-valued 

irreducible representations of the double point groups. The absence of 

instability in this case may be seen by the following formal argument. To 

determine the selection rules for matrix elements (102.3) in the case of 

two-valued representations D(el\ we must consider the antisymmetric 

products {Z5<e!>2}, not the symmetric ones (see §99). But, for every two¬ 

valued irreducible representation with dimension 2, these products are the 

unit representation, i.e. they certainly do not contain representations 

corresponding to any vibrations of the molecule that are not totally 

symmetrical. 

§103. Quantization of the rotation of a top 

The investigation of the rotational levels of a polyatomic molecule is often 

hampered by the necessity of considering the rotation simultaneously with 

the vibrations. As a preliminary example, let us consider the rotation of a 

molecule as a solid body, i.e. with the atoms “rigidly fixed” (a top). 

Let £, 17, f be a system of coordinates with axes along the three principal 

axes of inertia of a top, and rotating with it. The corresponding Hamiltonian 

is obtained by replacing the components Jn, J. of the angular momentum 

of the rotation, in the classical expression for the energy, by the corresponding 

operators: 

fi = W( H+Ll+Il), (103.1) 
\ IA Ib Ic / 

where I a, Ib, Ic are the principal moments of inertia of the top. 

f One further exceptional case comprises the four-dimensional representatit 
icosahedron groups. This is treated similarly, and gives the same result. 

if the 
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The commutation rules for the operators J,, /((, J. of the angular momen¬ 

tum components in a rotating system of coordinates are not obvious, since 

the usual derivation of the commutation rules relates to the components 

Jx,)y,}z in a fixed system of coordinates. They are, however, easily obtained 

by using the formula 

(J.a)(J.b)-(J.b)(J.a) = —fj.axb, (103.2) 

where a, b are any two commuting vectors which characterize the body in 

question. This formula is easily verified by calculating the left-hand side 

of the equation in the fixed system of coordinates .v, y, z, using the general 
rules for the commutation of angular momentum components with one 

another and with the components of an arbitrary vector. 

Let a and b be unit vectors along the f and 17 axes. Then axb is a unit 

vector along the f-axis, and (103.2) gives 

JtJv-JJl = ~iU (103-3) 

Two other relations are obtained similarly. Thus the commutation rules for 

the operators of the angular momentum components in the rotating system of 

coordinates differ from those in the fixed system only in the sign on the right- 

hand side of the equation.! Hence it follows that all the results which we 

have previously obtained from the commutation rules, relating to the 

eigenvalues and matrix elements, hold for /,, /„, /{ also, with the difference 

that all expressions must be replaced by their complex conjugates. In 

particular, the eigenvalues of /? (which will be denoted in this section by k, 
whereas the eigenvalues of Jz are denoted by M) take the values k = — J, 
.... +/, where J, an integer, is the magnitude of the angular momentum of 

the top. 

The spherical top 

The finding of the eigenvalues of the energy of a rotating top is simplest 

for the case where all three principal moments of inertia of the body are 

equal: IA = IB — Ic= I- This holds for a molecule in cases where it has 

the symmetry of one of the cubic point groups. The Hamiltonian (103.1) 

takes the form 

/? = £2J2/27, 

and its eigenvalues are 

E=h*J{J+WI- 003.4) 

Each of these energy levels is degenerate with respect to the 2/4-1 directions 

of the angular momentum relative to the body itself (i.e. with respect to the 
values of /. = &). J 

t This expresses the fact that, as 
rotation of the system x, y, z is equival 

J Here and subsequently we ignore tl 
of the angular momentum relative tt 
occurs, and is not physic; -curs, aiiu is uui ^nysicaiiy important. It it 

le energy levels of a spherical top is (2J + 1) 

:gards its effect on the wave function of the top, a 
nt to an opposite rotation of the system (, 17, 
: (2/+ 1 )-fold degeneracy with respect to the directions 
a fixed coordinate system. This degeneracy always 

ncluded, the total degree of degeneracy of 
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The symmetrical top 

There is also no difficulty in calculating the energy levels in the case where 

only two of the moments of inertia of the top are the same: 1A = IB # Ic- 
This holds for molecules having one axis of symmetry of order above the 

second. The Hamiltonian (103.1) takes the form 

fi = hHjf+JS)l2IA+Vjfl21c 

= h*3*l2IA+lh*(J--^j\\ (103.5) 

Hence we see that, in a state with given values of J and k, the energy is 

A2 / 1 1 \ 

E = 2ZJU+])+hh\Tc~TAr' (103'6) 
which determines the energy levels of a symmetrical top. 

The degeneracy with respect to values of k which occurred for a spherical 

top is here partly removed. The values of the energy are the same only for 

values of k differing in sign alone, corresponding to opposite directions of 

the angular momentum relative to the axis of the top. Thus the energy 

levels of a symmetrical top are (for k ^ 0) doubly degenerate. 

The stationary states of a symmetrical top are thus described by three 

quantum numbers: the angular momentum J and its components along the 

axis of the top (/? = k) and along the n-axis fixed in space (Jz = M)\ the 

energy of the top is independent of the last of these. The simultaneous 

measurability of the angular momentum and its components along an axis 

fixed in space and along an axis rigidly attached to a physical systemf 

follows since the operators j2 and Jz commute not only with each other but 

also with the operator J, = J . n, where n is a unit vector along the f-axis. 

This is easily shown by direct calculation, but is also obvious a priori', the 

angular momentum operator is that of an infinitesimal rotation, and the 

scalar product J . n of two vectors fixed to the top is invariant under any 

rotation of the coordinate axes. 

The determination of the wave functions of the stationary states of a 

symmetrical top therefore amounts to finding the common eigenfunctions 

of the operators J2, jz and J.. This is in turn mathematically dependent on 

the law of transformation of the angular momentum eigenfunctions under 

finite rotations. With a change in the notation for the quantum numbers, we 

can write this law (58.7) as 

4>jm = £ D[J^(cc, fi, y)<pjk- (103.7) 

We shall take tpjM to be the wave function of a state of the top described in 

terms of the fixed coordinates x, y, z, and the ipJk to t>e the wave functions of 

states described in terms of the axes £, rj, £ attached to the top. In coordinates 

t Not to be confused with the components (not simultaneously measurable) along two axes 
fixed in space. 
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rigidly attached to a physical system (such as the top), the 4>Jk have definite 

values i/ry®’ independent of the spatial orientation of the system. Formula 

(103.7) gives the angle dependence of the <pJM• Let the state \JM> also 

have a definite value k of the angular-momentum component along the f-axis. 

This means that only the ipjk with that k will be non-zero. Then the sum 

in (103.7) reduces to one term: 

1hMk = 'IfflDtiK*, P, y). 

This gives the dependence of the wave functions of the states \JMk~) on 

the Eulerian angles, which define the rotation of the axes of the top with 

respect to the fixed axes. Normalizing the wave function by the condition 

J" \fjMk\2 sin P da d/3 dy = 1, 

we have 

fjMk = iJ p, y); (103.8) 

the phase factor is chosen so that, for k = 0, the function (103.8) becomes the 

eigenfunction of the free (not attached to the f-axis) integral angular momen¬ 

tum J with component M, i.e. the ordinary (spherical harmonic) function; 

cf. (58.25).f 

The asymmetrical top 

For IA / Ib / Ic, the calculation of the energy levels in a general form is 

impossible. The degeneracy with respect to the directions of the angular 

momentum relative to the top is here removed completely, so that 2J+1 

different non-degenerate levels correspond to any given J. To calculate 

these levels (for a given J) we have to start from Schrodinger’s equation 

written in matrix form (O. Klein 1929). This is done as follows. 

The wave functions ipjk of states of the top with definite values of J and the 

^-component of the angular momentum are the functions (103.8) derived 

above (we shall omit for brevity the suffix M giving the ^-component of the 

angular momentum, since the energy does not depend on this); in these 

states the energy of the asymmetrical top does not have definite values. 

In the stationary states, on the other hand, the component does not have 

definite values, i.e. no definite values of k can be assigned to the energy levels. 

The wave functions of these states are sought as linear combinations 

4>J = S ckipJlc; (103.9) 

t The direct derivation of (103 8) without the use of the theory of finite rotations is given 
in Problem 1 See §§110 and 87 for the calculation of the matrix elements of various quantities 
with respect to the wave functions (103.8); the corresponding formulae differ from those for a 
diatomic molecule (without spin) only in the nomenclature of the quantum numbers fsee the 
second footnote to §82). 
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it is assumed that all functions have some common value of .V/. Substitution 

in Schrodinger’s equation H4>J — Ejipj leads to the equations 

Z{<Jk'H,Jk,'>-E8kk.)ek. =0, (103.10) 

and the condition for these to have a solution leads to the secular equation 

\{Jk\H\Jk'y-Ehkk\ = 0. (103.11) 

The roots of this equation give the energy levels of the top, and then the 

equations (103.10) give the linear combinations (103.9) which diagonalize 

the Hamiltonian, i.e. the wave functions of the stationary states of the top 

with a given value of J (and of M). The calculation of the matrix elements 

of any physical quantity with respect to these wa\e functions thus reduces 

to that of the matrix elements of the symmetrical top. 

The operators J have matrix elements only for transitions in which 

k changes by unity, while J ^ has only diagonal elements (see formulae (27.13), 

in which we must write J, k instead of L, M). Hence the operators J 
J2, J 2, and therefore /?, have matrix elements only for transitions with 

k -> k or A±2. The absence of matrix elements for transitions between 

states with even and odd k has the result that the secular equation of degree 

2j +1 immediately falls into two independent equations of degrees J and 

7 + 1. One of these contains matrix elements for transitions between states 

with even k, and the other contains those for transitions between states 

with odd k. Each of these equations, in turn, can be reduced to two equations 

of lower degree. To do this, we must use the matrix eLments defined, not 

with respect to the functions ipJk, but with respect to the functions 

4‘Jk+ — (4,Jk + 4,J.-k)IV2, IpJO ~ 4’joj 

4jk~ = {4jk—4>jrk)l\/2 (k * 0). 

Functions differing in the index + and — are of different symmetry (with 

respect to a reflection in a plane passing through the £-axis, which changes 

the sign of k), and hence the matrix elements for transitions between them 

vanish. Consequently we can form the secular equations separately for the 

+ and — states. 

The Hamiltonian (103.1), with the commutation rules (103.3), has a 

particular symmetry: it is invariant with respect to a simultaneous change in 

sign of any tw;o of the operators /,,, JThis symmetry formally cor¬ 

responds to the group D2. Hence the levels of an asymmetrical top can be 
classified in accordance with the irreducible representations of this group. 

Thus there are four types of non-degenerate level, corresponding to the 

representations A, B\, Bo, Bz (see Table 7, §95). 
It is easy to establish which states of the asymmetrical top belong to each 

of these typ.es. To do so, we must find the symmetry properties of the 
i/jjic and the functions (103.12). This could be done directly from (103.8), 

■ (103.12) 
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but it is simpler to begin from the more usual spherical harmonic functions, 

noting that, as regards their symmetry properties, the wave functions of 

states with definite values of the ((-component of the angular momentum are 

the same as the angular-momentum eigenfunctions 

4>Jk ~ <f>) ~ r«*0Jt(0), (103.13) 

where 8 and <f> are the spherical angles in the axes £, 77, £, and the symbol ~ 

stands for the words “is transformed as”; the complex conjugate is taken in 

(103.13) because of the change in sign on the right of the commutation 

relations (103.3). 

A rotation through an angle n about the £-axis (i.e. the symmetry operation 

Co(;>) multiplies the function (103.13) by (— l)fc: 

Cs®: 

The operation C2(T) may be regarded as the result of successively per¬ 

forming an inversion and a reflection in the plane; the first operation 
multiplies fjk by ( — 1)J, and the second (a change in sign of <f>) is equivalent 

to changing the sign of k. Using the definition (28.6) of the functions 

Qj-k, we therefore have 

C^: 

Finally, the operation C2<0 — C2(,)C2(^ gives 

Co®: fjk ->( -1 )J4,j-k. 

Using these transformation rules, we find that the states corresponding 

to the functions (103.12) belong to the following types of symmetry: 

J even, k even A . 

J even, k odd £3 

J odd, k even B\ 

J odd, k odd B-i 
(103.14) 

J even, k even B\ 

J even, k odd Bo 

J odd, k even A 

J odd, h odd B3 

By simple counting it is easy to find the number of states of each type for 

a given value of J. The following numbers of states correspond to .the types 
A and each of B\, Bo, Bz- 

4>Jk+\ 

<f>Jk 

J even 

J odd 

47+1 

47-4 

Bi,Bo,B3 

iJ 

U+i 
(103.15) 



418 Polyatomic Molecules §103 

For the asymmetrical top there are selection rules for the matrix elements 

of transitions between states of the types A, Blt B2, B3; these rules are easily 

obtained from symmetry considerations in the usual way. Thus, for the 

components of a vector physical quantity A we have the selection rules 

for Ai : A+-+ BP, Bp*-* BP, 

for Av : Bp*-* Bp, (103.16) 

for Ac : Air* BP, Bp*-+ Bp. ] 
For clarity we show, as an index to the symbol for the representation, the 

axis about which a rotation has the character +1 in the representation 

concerned. 

PROBLEMS 

Problem 1. Find the wave functions of the states \ JMK) of a symmetrical top by direct 
calculation as the eigenfunctions of the operators j2, jz, (F. Reiche and H. Rademacher 
1926). 

SOLUTION. In order to obtain the ipjMk as functions of the Eulerian angles a, /3, y, we 
must express in terms of them the operators of the angular momentum components along 
fixed axes x, y, z. Since the operator of such a component along any axis is—where 4> 
is the angle of rotation about this axis, we can write 

Jx = ~ Jv = ~ ii';i>4y, ]i = - ii'F4z. 

where 4>x, ‘f’y, <f>z are the angles of rotation about the corresponding axes. The derivatives 
with respect to these angles can be expressed in terms of those with respect to a, P, y by 
noting that infinitesimal rotations are added like vectors along the axes of rotation. Figure 20 
(§58) shows the dr actions of the vectors 5a, 8/3, 8y of the infinitesimal rotations in terms of 
Eulerian angles. Taking components along the fixed axes ,v, y, z, we obtain for the angles of 
rotation about these axes 

8^ = -sin a 8/3 + ct 

H^y = cos a 8/3 + sin 

= 8a + cos /3 8y. 

in /3 8y, 

0 8* 

Hence, conversely, 
8a = —cot /3 cos a 8$* —cot /3 sin a f>tf>y + &<f>z, 

8/3 = —sin a 8dx + cos a 8$^, 

8y = -t—f sin p sin p 

From these expressions we find 

h = ~fa 

When the operators Jz = -ifS/Sa and /e = -iS/dy (y being the angle of rotation about the 
C-axis) act on the function they are replaced by M and h (the corresponding depen- 
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dence of the wave function on the angles z and y is given bv the factor exp(iaM + iyk)) Then 

J =j.-j,= 

j =]■->]„ = 

The normalized solution of this equation is 

= ,V(-1)/ -11 '(cos * (sjn ipy-t 
Ixz+w-wJ 

ftlJa-Hry) 

the normalization integral i: 
apart from a phase factor, as 

a Euler beta function. This expression is 

fty); 

cf. (58.26). The phase factor is chose with the definition in (103.7). 
with M< J are then calculated by repeated application to of the 

formula 

j *j.». i.t = v[J-M)U + M+l)WJim.. 

The final result is the same as (103.8), where the functions DkM ate (58.10) and (58.11), and 
the symmetry properties (58.18) of these functions are to be taken into account. 

(,Jk’\H\Jk' for an asymmetrical top. Problem 2. Calculate the matrix e! 

Solution. From formulae (27.13) we find 

<*i/.**> - <*iy.ai*> = 1[A/+1)-A2], 

<WI* + 2> = <A + 2|y42|A> = -<A|y,2|* + 2> 

- lV[(J-k)U-k-l)U + k+\)(J + k + 2)]-, 

imit the 

<*!«'*> = \h-(a + h)[J(J+\)-k*]+Wck\ 

<k]H IA + 2> = <l< + 2\Hih) 

= 'J-(« - h) \ [(J - k)(J - h - I)(/ + * + I)(/ + A + 2)]. 

<*±|W|A±> = <*|//|*> (**!), <l±|/f|l + > = <1|W|1>±<1|W|-1>. 

(M ± \H\k + 2, + > = <A|/f|A + 2>(A*0). <6 + |/f|2 + > = v/2<0|/7|2>. 

e simplified by using the notation + In Problems 2-5, the formulae 

= 1 IIa, - 1 Ha. 
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Problem 3. Determine the energy levels for an asymmetrical top with 7=1. 

Solution. The secular equation, of the third degree, falls into three linear equations. 
One of these gives 

Ei = <(M-,W|0 + > = ),h\a + b). (3) 

From this we can at once write down the other two energy levels, since it is obvious that the 
three parameters a, b, c enter the problem in a symmetrical manner. Hence 

E-2 = lh2(a-i-r), E3 = >/,2(i+r). (4) 

The levels £,, E2, Es belong! to the symmetry types Blt B2, Bs respectively. The wave 
functions of these states are 0, = 0^, 02 = 0^, 03 = 0H- 

Problem4. The same as Problem 2, but for J = 2 

Solution. The secular equation, of the fifth degree, falls into three linear equations and 
one quadratic. One of the linear equations gives 

Ei = <2 - |WI2 - > = 2lfic+\h\a + b), (5) 

a level of the type B,. Hence we at once conclude that there must be two other levels, of the 
types B2 and B,: 

E2 = 2/i-i + Ufl(a + c), E3 = 2h-a + + r). 

These three levels have the wave functions 0, = yi-aa, 'll — 021, 0s = 0ii- 
The equation of the second degree is 

|<0 + |W|0 + >-£ <2 + |W|() + > 
<2 + |//|0 + > <2 + |W2 + > -£ 

= 0. (6) 

Solving this, we obtain 

= hHa + b+c)±h2[(a + b + cY~3(ah + bc + ac)yiz (7) 

These levels belong to the type A The corresponding wave functions are linear combinations 
of 02o and 02t. 

Problem 5. The same as Problem 2, but for J = 3. 

Solution. The secular equation, of the seventh degree, falls into one linear equation and 
three quadratic. The linear equation gives 

Ei = <2-|W|2-> = 2/i2(o + i + r), (8) 

a level of the type A. One of the quadratic equations is equation (6) of Problem 3, with a 
different value of J. Its roots are 

£,,3 = -i- b) + h*c ± £2[4(tf - by + c- + ab-ac- bc]m. (9) 

levels of the type B2. The remaining levels are obtained from these by permuting a, b and c. 

Problem 6. Determine the splitting of the levels of a system having a quadrupole 
moment, in an arbitrary external electric field. 

Solution. Taking as coordinate axes the principal axes of the tensor 8s<j>l8xi8xic (see 
§76, Problem 3), we bring the quadrupole part of the Hamiltonian of the system to the form 

n = AjS + Bjy + Cjy, A + B + C= 0. 

f This follows at once from considerations of symmetry. The energy £,, for instance, is 
vmmetrical with respect to the parameters a and b, and this property belongs to the energy of 
rstate whose symmetry about the f and v axes is the same, i.e. a state of the type B„ 
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Owing to the complete formal analogy between this expression and the Hamiltonian (103.1), 
the problem under consideration is equivalent to that of finding the energy levels of an 
asymmetrical top, the only difference being that here the sum of the coefficients A + B + C= 0, 
and the angular momentum can have half-integral values also. For these the calculations must 
be done afresh by the same method, but for integral J we can use the results of Problems 3 
to 5, obtaining the following values for the energy displacement A£ for the first few values 
of/: 

7=1: A E=-A,-B,-C-, 

7=3 2: AE = ± \ [3(.72 + B-+ C2)'2]; 

7 = 2: AE=3A,3B,3C,t\ [6(.^+^+0=)]. 

For J = 3/2 the energy levels remair doubly degenerate, in accordance with Kramers’ 
theorem (§60). 

§104. The interaction between the vibrations and the rotation of the 

molecule 

Hitherto we have regarded the rotation and the vibrations as independent 

motions of the molecule. In reality, however, the simultaneous presence of 

both motions results in a peculiar interaction between them (E. Teller, 

L. Tisza and G. Placzek 1932-33). 

Let us start by considering linear polyatomic molecules. A linear molecule 

can execute vibrations of two types (see the end of §100): longitudinal vibra¬ 

tions with simple frequencies and transverse ones with double frequencies. 

We shall here be interested in the latter. A molecule executing transverse 

vibrations has in general some angular momentum. This is evident from 

simple mechanical considerations,f but it can also be shown by a quantum- 

mechanical discussion. The latter also enables us to determine the possible 

values of this angular momentum in a given vibrational state. 

Let us suppose that some one double frequency has been excited in 

the molecule. The energy level with the vibrational quantum number va 

is (®a + l)-fold degenerate. To this level there correspond the ®a + l wave 

functions 

= constant x e^'^Q^HvJcaQal)HVai(caOa2), 

where val+vat = va, or any independent linear combinations of them. 

The total degree (in Qal and Oo2 together) of the polynomial by which the 

exponential factor is multiplied is the same in all these functions, and is equal 

to va. It is evident that we can always take, as the fundamental functions, 

linear combinations of the functions v of the form 

= constant xe-e*,io«,,+ Cca'>/2 [(0al+(Oa2)(1''a+G/2(go[1-fga2)(^-G/2-(- ... ]. 

(104.1) 

The square brackets contain a determinate polynomial, of which we have 

t For example, two mutually perpendicular transverse vibrations with a phase difference 
of irr can be regarded as a pure rotation of a bent molecule about a longitudinal axis. 
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written out only the highest term. la is an integer, which can take the va +1 

different values va, va — 2, va—4, ..., —va. 

The normal coordinates QxQz% of the transverse vibration are two 

mutually perpendicular displacements off the axis of the molecule. Under a 

rotation through an angle <j> about this axis, the highest term of the poly¬ 

nomial (and therefore the whole function ifiv t ) is multiplied by 

'2£—1<£( va—Za)/2 = 

Hence we see that the function (104.1) corresponds to a state with angular 

momentum la about the axis. 

Thus we reach the result that, in a state where the double frequency cva 

is excited (with quantum number va), the molecule has an angular momentum 

(about its axis) which takes the values 

la = va, va—2, va—4,..., — va. (104.2) 

This is called the vibrational angular momentum of the molecule. If several 

transverse vibrations are excited simultaneously, the total vibrational angular 

momentum is equal to the sum £/?. On being added to the electron orbital 

angular momentum, it gives the total angular momentum l of the molecule 

about its axis. 

The total angular momentum J of the molecule cannot be less than the 

angular momentum about the axis (just as in a diatomic molecule), i.e. J 

takes the values 

/H*l. I'l+i. 

In other words, there are no states with J = 0,1,..., |/| — 1. 

For harmonic vibrations, the energy depends only on the numbers va, and 

not on /0. The degeneracy of the vibrational levels (with respect to the 
values of la) is removed by the presence of anharmonic vibrations. The 

removal is not complete, however: the levels remain doubly degenerate, the 

same energy belonging to states differing by a simultaneous change of sign of 

all the 4 and of /. In the next approximation (after that of harmonic motion), 

a term quadratic in the angular momenta la, of the form (the 

being constants), appears in the energy. This remaining double degeneracy 

is removed by an effect similar to the A-doubling in diatomic molecules. 

When we turn to non-linear molecules, we must first of all make the 

following remark, which has a purely mechanical significance. For an arbi¬ 

trary (non-linear) system of particles, the question arises how we can at all 

separate the vibrational motion from the rotation; in other words, what we are 

to understand by a “non-rotating system”. At first sight it might be thought 

that the vanishing of the angular momentum, 

Zmrxv=0 (104.3) 

(the summation being over the particles in the system), could serve as a 
criterion of the absence of rotation. However, the expression on the left- 
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hand side is not the complete derivative, with respect to time, of any function 
of the coordinates. Hence the above equation cannot be integrated with 

respect to time in such a way as to be formulated as the vanishing of some 

function of the coordinates. This, however, is necessary if a reasonable 

definition of the concepts of “pure vibrations” and “pure rotation" is to be 

possible. 

As a definition of the absence of rotation, we must therefore use the 

condition 

2 mr0xv = 0, (104.4) 

where r0 are the radius vectors of the equilibrium positions of the particles. 

Putting r = r0+u, where u are the displacements in small vibrations, we 

have v = r — u. The equation (104.4) can be integrated with respect to 

time, giving 

2 mr0Xu = 0. (104.5) 

The motion of the molecule will be regarded as a combination of the purely 

vibrational motion, in which the condition (104.5) is satisfied, and the 

rotation of the molecule as a whole.f 

Writing the angular momentum in the form 

2 Brxv = 2 mr0xvi 2 muxv, 

we see that, in accordance with the definition (104.4) of the absence of 

rotation, the vibrational angular momentum must be understood as the sum 

Zwuxv. However, it must be borne in mind that this angular momentum, 

being only a part of the total angular momentum of the system, is not con¬ 

served. Hence only a mean value of the vibrational angular momentum can 

be ascribed to each vibrational state. 

Molecules having no axis of symmetry of order above the second belong to 

the asymmetrical-top type. In a molecule of this type, all the frequencies 

are simple (their symmetry groups have only one-dimensional irreducible 

representations). Hence none of the vibrational levels is degenerate. In any 

non-degenerate state, however, the mean angular momentum vanishes (see 

§26). Thus, in a molecule of the asymmetrical-top type, the mean vibra¬ 

tional angular momentum vanishes in every state. 

If, among the symmetry elements of the molecule, there is one axis of order 

higher than the second, the molecule is of the symmetrical-top type. Such a 

molecule has vibrations with both simple and double frequencies. The mean 

vibrational angular momentum of the former again vanishes. To the double 

frequencies, however, there corresponds a non-zero mean angular momentum 

component along the axis of the molecule. 

It is easy to find an expression for the energy of the rotational motion of the 
molecule (of the symmetrical-top type), taking into account the vibrational 

angular momentum. The operator of this energy differs from (103.5) in that 

t The translational motion is supposed removed from the start, by choosing a system of 
coordinates in which the centre of mass of the molecule is at rest. 
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the rotational angular momentum of the top is replaced by the difference 

between the total (conserved) angular momentum J of the molecule and its 

vibrational angular momentum JW: 

tfrot = (J-y«)* + W-(j-c - (7c (104.6) 

The required energy is the mean value HTot- The terms in (104.6) which 

contain the squared components of J give a purely rotational energy which is 

the same as (103.6). The terms which contain the squared components of 

j(v) give constants independent of the rotational quantum numbers and may 

be omitted; the terms which contain products of components of J and 

constitute the interaction here considered between the vibrations of the 

molecule and its rotation. This is called the Coriolis interaction (since it 

corresponds to the Coriolis forces in classical mechanics). In averaging these 

terms it must be borne in mind that the mean values of the transverse (£,77) 

components of the vibrational angular momentum are zero. The mean energy 

of the Coriolis interaction is therefore 

£cor= -Ifikkvllc, (104.7) 

where the integer k is, as in §103, the component of the total angular momen¬ 

tum along the axis of the molecule, and kv = is the mean value of 

the component of the vibrational angular momentum for the vibrational 

state concerned; kv, unlike k, is not an integer. 

Finally, let us consider molecules of the spherical-top type. These include 

molecules whose symmetry is that of any of the cubic groups. Such molecules 

have simple, double and triple frequencies (there being one-, two- and three- 

dimensional irreducible representations of the cubic groups). The degeneracy 

of the vibrational levels is, as usual, partly removed by the presence of 

anharmonic motion; when these effects have been taken into account there 

remain, apart from the non-degenerate levels, only doubly and triply degene¬ 

rate levels. Here we shall discuss these levels that are split by the presence of 

anharmonic motion. 

It is easy to see that, for molecules of the spherical-top type, the mean 

vibrational angular momentum is zero not only in the non-degenerate 

vibrational states but also in the doubly degenerate ones. This follows from 

simple considerations based on symmetry properties. The mean angular 

momentum vectors in two states belonging to the same degenerate energy 

level must be transformed into each other in all possible symmetry trans¬ 

formations of the molecule. None of the cubic symmetry groups, however, 

allows the existence of two directions transformed only into each other; 

only sets of three or more directions are so transformed. 
From these arguments it follows that, in states corresponding to triply 

degenerate vibrational levels, the mean vibrational angular momentum is 

non-zero. After averaging over the vibrational state, this angular momentum 
is represented by an operator whose matrix elements correspond to transitions 
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between three mutually degenerate states. In accordance with the number of 

these states, this operator must have the form £i, where i is the operator of 

an angular momentum of unity (for which 2/+1 = 3) and £ is a constant 

characterizing the vibrational level in question. The Hamiltonian of the 

rotational motion of the molecule is 

and, after averaging, becomes the operator 

i?rot==Sj2+27^2_rC2j-i- (104-8) 

The eigenvalues of the first term give the ordinary rotational energy (103.4); 

the second term gives an unimportant constant, which does not depend on the 

rotational quantum number. The last term in (104.8) gives the desired energy 

of the Coriolis splitting of the vibrational level. The eigenvalues of the 

quantity J.l are calculated in the usual way; it has (for a given J) three 

different values corresponding to the values 7+1, J-l, J of the vector 

J + l The result is 

ECOru+"= -hKfil, s 

Ecoru~1) = hzC(J+ !)/T, (104.9) 

£cor(J> = vyi. 1 

§105. The classification of molecular terms 

The wave function of a molecule is the product of the electron wave func¬ 

tion, the wave function of the vibrational motion of the nuclei, and the rota¬ 

tional wave function. We have already discussed the classification and types 

of symmetry of these functions separately. It now remains to examine 

the question of the classification of molecular terms as a whole, i.e. of the 

possible symmetry of the total wave function. 

It is clear that, if the symmetry of all three factors with respect to some 

transformation is given, the symmetry of the product with respect to that 

transformation is determined. For a complete description of the symmetry of 

the state, we must also specify the behaviour of the total wave function when 

the coordinates of all the particles in the molecule (electrons and nuclei) 

are inverted simultaneously. The state is said to be negative or positive, 

according as the wave function does or does not change sign under this 
transformation.-)- 

It must be remembered, however, that the characterization of the state 
with respect to inversion is significant only for molecules which do not 

igh unfortunate, terminology as for diatomic molecules 
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possess stereoisomers. If stereoisomerism is present, the molecule assumes 

on inversion a configuration which can by no rotation in space be made to 

coincide with the original configuration; these are the “right-hand"’ and 

“left-hand” modifications of the substance, f Hence, when stereoisomerism 

is present, the wave functions obtained from each other on inversion belong 

essentially to different molecules, and it is meaningless to compare them.J 

We have seen in §86 that, for diatomic molecules, the spin of the nuclei 

exerts an important indirect effect on the arrangement of the molecular 

terms by determining their degree of degeneracy, and in some cases entirely 

forbidding levels of a certain symmetry. The same is true for polyatomic 

molecules. Here, however, the investigation of the problem is considerably 

more complex, and requires the application of the methods of group theory 

to each particular case. 

The idea of the method is as follows. The total wave function must con¬ 

tain, besides the coordinate part (the only part we have considered so far), a 

spin factor, which is a function of the projections of the spins of all the nuclei 

on some chosen direction in space. The projection a of the spin of a nucleus 

takes 2f+l values (where i is the spin of the nucleus); by giving to all the 

cq, cr2, ... , aN (where N is the number of atoms in the molecule) all possible 

values, we obtain altogether (Zq-fl) (2t2+l)... (2zA +1) different values of 

the spin factor. In each symmetry transformation, certain nuclei (of the same 

kind) change places, and if we imagine the spin values to “remain fixed”, 

the transformation is equivalent to an interchange of spin values among 

the nuclei. Accordingly, the various spin factors will be transformed into 

linear combinations of one another, thus giving some representation (in 

general reducible) of the symmetry group of the molecule. Decomposing 

this into irreducible parts, we find the possible types of symmetry for the 

spin wave function. 

A general formula can easily be written down for the characters Xsp(G) 

of the representation given by the spin factors. To do this, it is sufficient 

to notice that, in a transformation, only those spin factors are unchanged in 

which the nuclei changing places have the same cr„; otherwise, one spin 

factor changes into another and contributes nothing to the character. Bearing 

in mind that oa takes 2ia +1 values, we find that 

Xsp(G) =ri(2zfl+l), (105.1) 

where the product is taken over the groups of atoms which change places 

under the transformation G considered (there being one factor in the product 

from each group). 
We are, however, interested not so much in the symmetry of the spin 

function as in that of the coordinate wave function (by which we mean its 
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symmetry with respect to interchanges of the coordinates of the nuclei, the 

coordinates of the electrons remaining unchanged). These two symmetries 

are directly related, however, since the total wave function must remain 

unchanged or change sign when any pair of nuclei are interchanged, accord¬ 

ing as they obey Bose statistics or Fermi statistics (in other words, it must be 

multiplied by ( — l)2i, where i is the spin of the nuclei that are interchanged). 

Introducing the appropriate factor in the characters (105.1), we obtain the 

system of characters x(G) for the representation containing all the irreducible 

representations by which the coordinate wave functions are transformed: 

x(G) = n(2i„+1)(- l)“J».-«, (105.2) 

where na is the number of nuclei in each group which change places under the 

transformation in question. Decomposing this representation into irreducible 

parts, we obtain the possible types of symmetry of the coordinate wave 

functions of the molecule, together with the degrees of degeneracy of the 

corresponding energy levels (here and later we mean the degeneracy with 

respect to the different spin states of the system of nuclei).f 

Each type of symmetry of the states is related to definite values of the 

total spins of the groups of equivalent nuclei in the molecule (i.e. groups of 

nuclei which change places under the various symmetry transformations of 

the molecule). This relation is not one-to-one; each type of symmetry of 

states can, in general, be brought about with various values of the spins of 

equivalent groups. The relation can also be established, in any particular 

case, by means of group theory. 

As an example, let us consider a molecule of the asymmetrical-top type, the 

ethylene molecule C^H1* (Fig. 43g), with the symmetry group D2h. The 

index to the chemical symbol indicates the isotope to which the nucleus 

belongs; this indication is necessary, since the nuclei of different isotopes 

may have different spins. In this case, the spin of the H1 nucleus is i, while 

the C12 nucleus has no spin. Hence we need consider only the hydrogen 

atoms. 

We take the system of coordinates shown in Fig. 43g; the sr-axis is per¬ 

pendicular to the plane of the molecule, while the x-axis is along the axis 

of the molecule. A reflection in the xy-plane leaves all the atoms fixed, 

while other reflections and rotations interchange the hydrogen atoms in 

pairs. From formula (105.2) we have the following characters of the represen¬ 
tation : 

E g(xy) a(xz) g(y2) / C2(x) Ct(y) C2(z) 

16 16 4 4 4 4 4 4 

Decomposing this representation into irreducible parts, we find that it con¬ 

tains the following irreducible representations of the group D2h: 7Ag, 3Bu, 

3B2u, 3BSu. The figures show the number of times each irreducible rep’resen- 

t The degree of degeneracy of the level in this respect is often called its nuclear statistical 
weight; see the last footnote to §86 
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tation appears in the reducible one; these numbers are also the nuclear 

statistical weights of the levels with the corresponding symmetry,-)1 

The classification of the states of the ethylene molecule thus obtained 

relates to the symmetry of the total (coordinate) wave function, including 

the electron, vibrational and rotational parts. Usually, however, it is of 

interest to arrive at these results from a different point of view. Knowing 

the possible symmetries of the total wave function, we can find at once which 

rotational levels are possible (and with what statistical weights) for any 

prescribed electron and vibrational state. 

Let us consider, for instance, the rotational structure of the lowest vibra¬ 

tional level (that for which the vibrations are not excited at all) of the normal 

electron term, assuming that the electron wave function of the normal 

state is completely symmetrical (as is the case for practically all polyatomic 

molecules). Then the symmetry of the total wave function with respect to 

rotations about the axes of symmetry is the same as the symmetry of the 

rotational wave function. Comparing this with the results obtained above, we 

therefore conclude that in the ethylene molecule the rotational levels of the 

types A and B1 (see §103) are positive with statistical weights 7 and 3, 

while those of the types B% and £3 are negative with statistics weight 3. 

As with diatomic molecules (see the end of §86), owing to the extreme 

weakness of the interaction between the nuclear spins and the electrons, 

transitions between states of different nuclear symmetry in the ethylene 

molecule do not occur in practice. Hence molecules in such states behave 

like different modifications of the substance. Thus ethylene C122H14 has 

four modifications, with nuclear statistical weights 7, 3, 3, 3. 

In reaching this conclusion ;t is important that s'.ates with different 

symmetry belong to different energy levels (the intervals between which are 

large compared with the interaction energy of nuclear spins). The conclusion 

is therefore invalid for molecules in which there exist states of different 

nuclear symmetry belonging to the same degenerate energy level. 

Let us consider another example, the ammonia molecule Nl4H1s, of the 

symmetrical-top type (Fig. 41), whose symmetry group is CSo. The spin of 

the nucleus N14 is 1, and that of H1 is Using formula (105.2), we find the 

characters of the representation of the group C3„ in which we are interested: 

E 2 Cs 3 a. 

24 6 — 12 

It contains the following irreducible representations of the group C3v: l2At, 

6E. Thus two types of level are possibU; their nuclear statistical weights 

arej 12 and 6. 

The rotational levels of a symmetrical top are classified (for a given J) 

according to the values of the quantum number k. Let us consider, as in the 

t The relation between the symmetry of states and the values of the total spin of the four 
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previous example, the rotational structure of the normal electron and 

vibrational state of the NH3 molecule (i.e. we suppose the electron and vibra¬ 

tional wave functions to be completely symmetrical). In determining the 

symmetry of the rotational wave function, we must bear in mind that it is 

meaningful to speak of its behaviour only with respect to rotations about axes. 

Hence we replace the planes of symmetry by axes of symmetry of the second 

order perpendicular to them, a reflection in a plane being equivalent to a 

rotation about such an axis, followed by an inversion. In the present case, 

therefore, instead of the group C3v we have to consider the isomorphous point 

group D3. 

The rotational wave functions with k = ±|£| are multiplied by e*2771141/3 

respectively under a rotation C3 about a vertical axis of the third order, 

while under a rotation U2 about a horizontal axis of the second order they 

change into each other, thus giving a two-dimensional representation of the 

group Ds. If |&| is not a multiple of three, this representation is irreduc¬ 

ible; it is E. The representation of the group C3v corresponding to the total 

wave function is obtained by multiplying the character x(U2) by 1 or —1, 

according as the term is positive or negative. Since, however, in the repre¬ 

sentation E we have — 0, we obtain the same representation E in 

either case (but this time as a representation of the group C3v, and not D3). 

Bearing in mind the results obtained above, we thus conclude that, when |A:| 

is not a multiple of three, both positive and negative levels are possible, with 

nuclear statistical weights of 6 (the symmetry of the total coordinate wave 

function being of the type E). 

When |&| is a multiple of three (but not zero), the rotational functions 

give a representation (of the group D3) with characters 

E 2 C3 3 U2 

~2 2 0~' 

This representation is reducible, and divides into the representations Au A2. 

In order that the total wave function should belong to the representation A2 of 

the group C3v, the rotational level Al must be negative and A2 positive. 

Thus, when |&| is a multiple of three and not zero, both positive and negative 

levels are possible, with nuclear statistical weights of 12 (levels of the type 
A2). 

Finally, only one rotational function corresponds to an angular momentum 

component k = 0; it gives a representation with characters! 

E 2 C3 3 U2 

i i pip 

If the total wave function has the symmetry A2, its behaviour with respect to 
inversion must therefore be given by the factor ( —iy+i. Thus, for k = 0, 

f On rotation through an angle 7r, the eigenfunction of the angular momentum with 
magnitude J and component zero is multiplied by ( — 1 y. 
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levels with even and odd J can only be negative and positive respectively; 

the statistical weight is 6 in either case (levels of the type A2). 

Summarizing these results, we have the following table of possible states 

for various values of the quantum number k for the normal electron and 

vibrational term of the molecule N14HX3 (the symbols + and — denoting 

positive and negative states). 

1*1 not a multiple of 3 6 E 6 E 

1*1 a multiple of 3 \2AZ \2A2 

k = 
( J even - 6A2 

i J odd 6A2 - 

For given J and k, the energy levels of the NH3 molecule are in general 

degenerate (see also the table for ND3 in Problem 3). This degeneracy is 

partly removed by a peculiar effect due to the flat shape of the ammonia 

molecule and the small mass of the hydrogen atoms. By a fairly small vertical 

displacement of the atoms in this molecule a transition can be brought about 

between two configurations obtained from one another by a reflection in a 

plane parallel to the base of the pyramid (Fig. 44). These transitions cause a 

splitting of the levels, separating positive and negative levels (an effect 

similar to the one-dimensional case considered in §50, Problem 3). The 

magnitude of the splitting is proportional to the probability of passage of the 

atoms through the “potential barrier” separating the two configurations of 

the molecule. Although this probability is comparatively high in the ammonia 

molecule, owing to the above-mentioned properties, the splitting is still 

small (1 x 10-4eV). 

An example of a molecule of the spherical-top type is discussed in 

Problem- 5. 

N 

N 

Fig. 44 

PROBLEMS 
Problem 1. Find the relation between the symmetry of the state of the C122H14 molecule 

and the total spin of the hydrogen nuclei in the molecule. 
SoLUTiON.t The total spin of the four H1 nuclei can take the values 1 = 2, 1,0, and its 

component Mi takes values from 2 to -2. Let us consider the representations given by the 
spin factors for each value of Mi, beginning with the largest. 

+ A method of solving problems of this kind, based on the theory of permutation groups, 
--- TCnr>lan*s book foUOted in §63), ch. VI, §2. 
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The value Mi = 2 corresponds to only one spin factor, in which all the nuclei have a spin 
component + £. The value Mi = 1 corresponds to four different spin factors differing as 
regards the nucleus which has spin component — £. Finally, the value Mi = 0 is given 
' Jin factors, depending on the pair of nuclei which have spin components — i. The 
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group Ta', it is obtained from the latter by replacing all planes of symmetry by axes of the 
second order perpendicular to them. The characters in this representation are given by 
formula (98.3). Thus for example, for J = 3 we obtain a representation with characters 

E 8C3 6C2 6C, 3 C4! 

7 i rp TT' 

This contains the following irreducible representations of the group O: At, Fit F,. Again 
considering the rotational structure of the normal electron and vibrational term, we therefore 
conclude that, for J = 3, the states with a symmetry At of the total wave function can only 
be positive, while those of type Fx can be either positive or negative. For the first few values 
of J we thus obtain the following states (which we write together with their statistical weights): 

+ 
/ = 0 — 
7 = 1 3 Ft - 
7 = 2 IE IE, 3Ft 
7 = 3 5A,, 3Ft 3Ft 
7 = 4 IE, 3F, 5At, IE, 3Ft 



CHAPTER XIV 

ADDITION OF ANGULAR MOMENTA 

§106. 37-symbols 

The rule of addition of angular momenta deduced in §31 gives the possible 

values of the total angular momentum of a system consisting of two particles 

(or more complex components) with angular momenta 71 and 72.f This rule 

is in fact closely related to the properties of wave functions with respect to 

spatial rotations, and follows immediately from the properties of spinors. 

The wave functions of particles with angular momenta 71 and 72 are sym¬ 

metrical spinors of ranks 2ji and Ijz, and the wave function of the system is 

their product, 

0<i> ht. 
r 2 h Y 2U 

(106.1) 

Symmetrizing this product with respect to all the indices, we obtain a sym¬ 

metrical spinor of rank 2{ji +72), corresponding to a state with total angular 

momentum 71+70. If we contract the product (106.1) with respect to one 

pair of indices, of which one must belong to 0(1> and the other to 0® (since 

otherwise the result is zero), the symmetry of each of the spinors 0d) and 

0<2> shows that it does not matter which indices are taken from A, p.,... and 

p, a, ... . After symmetrization we obtain a symmetrical spinor of rank 

2(71+72—1), corresponding to a state with angular momentum71+72— l.J 

Continuing this process, we find, in agreement with the rule already known, 

that 7 takes values from 71+72 to I71—72I, each occurring once. 

Mathematically, this involves the decomposition of the direct product 

D(i‘) x DW*> of two irreducible representations of the rotation group (with 

t Strictly speaking, we shall always be considering (without explicitly mentioning the fact 
each time) a system whose parts interact so weakly that their angular momenta may be 
regarded as conserved in a first approximation. 

All the results given below apply, of course, not only to the addition of the total angular 
momenta of two particles (or systems) but also to the addition of the orbital angular momen- 
tUTr^,nd sP‘n the same system, assuming that the spin-orbit coupling is sufficiently weak. 

I To avoid misunderstanding, the following comment is useful. The wave function of a 
system of two particles is always a spinor of rank 2(7, +/s), and this is in general not equal to 
i], where v is the total angular momentum of the system. Such a spinor may, however, be 

r of lower rank- For example, the wave function of a system of two 
1 = 7i = I IS a spinor of rank two; but if the total angular 
s antisymmetrical, and therefore reduces to a scalar. In 
turn7 determines the symmetry of the spinor wave function 
with respect to 2j indices and antisymmetrical with respect 

equivalent ti _ _ 
particles with angular i 
momentum j = 0, this spinor 
general, the total angular raomi 
of the system: this is symmetric 
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dimensions 2ji + 1 and 2j2 + 1) into irreducible parts. The addition rule for 

angular momenta may then be written as 

flWxfliM = DV'-'-to + DV'-'-i’-D+ + JD<1*-*1). 

For a complete solution of the problem of the addition of angular momenta, 

we must also consider the problem of constructing the wave function of a 

system with a given total angular momentum from those of its two component 

particles. 

Let us begin with the simple case of the addition of two angular momenta 

to give a zero total angular momentum. Here we must evidently have 

ji — J2 and angular momentum components m\ = — mo. Let be the 

normalized wave functions of the states of one particle with angular momen¬ 

tum j and component thereof m (in the non-spinor representation). The 

required wave function 0o of the system is the sum of the products of the wave 

functions of the two particles with opposite values of m: 

1 V' 
0o = -■■■ > (-1 (106.2) 

V(2/ + l)mt^ 

where j is the common value of j\ and jo. The factor preceding the sum is 

due to the normalization. The coefficients in the sum must all have the 

same absolute value, since all values of the components m of the angular 

momenta of the particles are equally probable. The sequence of signs in 

(106.2) is easily found by means of the spinor representation of the wave 

functions. In spinor notation the sum in (106.2) is a scalar (the total angular 

momentum of the system being zero) 

(106.3) 

formed from two spinors of rank 2j. Using this, we find the signs in (106.2) 

directly from (57.3). 

It should be borne in mind, however, that in general only the relative 

signs of the terms in the sum (106.2) are determinate, while the sign of the 

whole sum may depend on the “order of addition” of the angular momenta. 

For, if we lower all spinor indices (j+m ones and j — m twos) in 0(1> and 

raise them in 0<2>, the scalar (106.3) is multiplied by (—1)2}, and therefore 

changes sign when j is half-integral. 

Next we consider a system with zero total angular momentum consisting of 

three particles with angular momenta j\, jo, ja and components thereof mi, 

mo, m3. The condition for the total angular momentum to be zero is that 

mi + m-z + m3 = 0 and ji, jo, ja have values such that each of them can be 

obtained by vector addition of the other two, i.e. geometrically ji, jz, ja must 

be the sides of a closed triangle. In other words, each of them lies between 

the difference and the sum of the other two: 

|;i—/2I < h < h +h, etc. 

It is evident that the algebraic sum ji +j2 +jz is an integer. 
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The wave function of the system under consideration is the sum 

435 

0o = 2 (Jl 72 73)^W'2W(3,;3, 
WZ3/ 

(106.4) 

taken over the values of each mi from —j\ to ji. The coefficients in this formula 

are termed Wigner 3j-symbols. By definition they are non-zero only if 

mi + 7M2 + t«3 = 0. 
When the suffixes 1, 2, 3 are permuted, the wave function (106.4) can 

change only by an unimportant phase factor. The 3/-symbols can in fact be 

defined as purely real quantities (see below), and then the indeterminacy of 

i/fo can consist only in its sign as a whole being indefinite (as is true of the 

function (106.2) also). This means that interchanging the columns of a 

37-symbol can either leave it unchanged or change its sign. 

The most symmetrical way of defining the coefficients in the sum (106.4), 

which is the definition generally used for the 37-symbols, is as follows. In 

spinor notation, ^0 is a scalar formed by contracting the product of the three 

spinors 0(1)^-, 0(2)V-) with respect to all pairs of indices belonging 

to two different spinors. In each pair belonging to particles 1 and 2 the spinor 

index will be written superior with 0(1> and inferior with 0<2>; in a pair belong¬ 

ing to particles 2 and 3, superior with 0<2> and inferior with 0<3>; and in a pair 

belonging to particles 3 and 1, superior with 0<3> and inferior with It 

is easily seen that the total number of pairs of each kind is/1+72 — 73,72+73— ji, 

71+73—72 respectively. This rule determines uniquely the sign of 0o- 

It is evident that, with this definition, cyclic interchange of the indices 

1, 2 and 3 leaves <Jjq unchanged. This means that the 37-symbol is unchanged 

when its columns are cyclically permuted. Interchange of any two indices 

is easily seen to require the raising of the lower indices and lowering of the 

upper indices in all 71+72+73 pairs. This means that ipo is multiplied by 

(— l)7i+7i+7i; in other words, the 37-symbols have the property 

'h jl j3) = (-iy^Jh * ^etc. 
\tni m\ m3) \m! m2 m3) 

(106.5) 

i.e. they change sign when two columns are interchanged if 71+72+73 is odd. 

Finally, we easily see that 

7i 72 73 

. — 77l\ — 7719 — 771% 
(_ 1)1.^+13 | fh h 73' 

\77l\ 771% 77X9, > 
(106.6) 

a change in the sign of the ^-component of each angular momentum can 

be regarded as the result of a rotation through an angle -n about the j-axis, 

and this is equivalent to raising all the lower spinor indices and lowering all 
the upper ones (see (58.5)). 

From (106.4) we can derive an important formula which gives the wave 
function ipJm of a system consisting of two particles and having given values 
of/ and m. To do so, we consider the particles 1 and 2 together as one system. 
Since the angular momentum j of this system together with the angular 
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momentum j3 of particle 3 gives a total angular momentum of zero, we must 

have j =73, m = —m3. According to (106.2) we can then write 

^ = ^(2j+\)2 (106.7) 

This formula is to be compared with (106.4) (in which we replace 73, m3 by 

7', — m). Here, however, we must first take into account the fact that the 

rule for constructing the sum in (106.7) according to (106.3) does not corres¬ 

pond to the rule for constructing the sum (106.4): to bring (106.7) to the 

form (106.4) we must, as is easily seen, interchange pairs of upper and lower 

indices corresponding to particles 1 and 3. This leads to an additional factor 

(_1)jW-j\ The result isf 

hm={-+1) 2 (■71 72 1VW(2W (106-8) 
\m\ m2 —ml 

where the summation over mi and m2 is subject to the condition mi + m2 = m. 

Formula (106.8) gives the required expression for obtaining the wave 

function of a system from those of its two particles, which have definite 

angular momenta 7) and 72. It can be written in the form 

4>jrn = <^1^21 {m2 = m — my). (106.9) 

The coefficients 

(mim2\jmy= J2 (106.10) 

form the matrix of the transformation from the complete orthonormal set of 

(2ji+l)(2j2+l) wave functions of states \my m2> to the similar set of wave 

functions of states \jm') (for given values of71,72)- They are called vector 

addition coefficients or Clebsch-Gordan coefficients. The notation (,mim2\jm') 

corresponds to the general notation for the coefficients in the expansion of 

one set of functions in terms of another (11.18). To simplify, we have 

omitted the quantum numbers j\ and 72, which are the same in both sets of 

functions. When necessary, these are included, in the form <7i»U72m2| 

71727^)4 

f Under time reversal, the wave functions change in accordance with (60.2): 

4m-(-1 

It is easily verified that the function ip,m on the le^ 1S transformed in this way if the 
functions 4hmi an^ on the right are. 

X The Clebsch-Gordan coefficients are also denoted in the literature bv 
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The matrix of the transformation (106.9) is unitary (see §12). The co¬ 

efficients of the inverse transformation 

+U 

= 2 <i. ml + mz\mlmZ>4>j.rn,+m, (106.11) 

are therefore the complex conjugates of those in the transformation (106.9). 

We shall see later that these coefficients are real, so that we have simply 

According to the general rules of quantum mechanics, the squares of the 

coefficients in the expansion (106.11) give the probability for the system to 

have any particular values of j and m (for given j i, m\ and jr, mz)- 

The unitarity of the transformation (106.9) means that its coefficients 

satisfy certain orthogonality conditions. According to formulae (12.5) and 

(12.6) 

^ <Jnim2\j3n'y<mimo\j'm'> 

-«+D 2{hh Xh r) \mi m2 — ml \mi m2 — m / 

2 <wiiwi2|jm><wii'm2'jym> 

(106.12) 

-3>'+1)( 
} 

= 8 8 

ji h 

X 
h 

mz 0 

(106.13) 

The explicit general form of the 3_/-symbols is quite lengthy. It can be 

written asf 

/7i h h\ _ [~(ji +72 ~73)!(ji -72 +7~3)!( —ji +72 +J~3)1~11/2 

Wi m2 m^J L 0'i+72+;3+1)! J 

t The coefficients in (106.9) were first calculated by E. P. Wigner (1931). Their symmetry 
properties and the symmetrical expression (106.14) were first derived by G. Racah (1942). 
The most direct method of calculation is probably to go immediately from the spinor repre¬ 
sentation of <f,0 (appropriately normalized) to the representation in the form of the sum (106.4) 
by means of the correspondence formula (57.6); it may be noted that, since the coefficient in 
this formula is real, so also must be the 3y-symbols. Another derivation is given by A. R. 
Edmonds, Angular Momentum in Quantum Mechanics, Princeton, 1957. The table of 37- 
symbols given below is also taken from Edmonds’s book. 
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x [(ji + - mi)!(j2+m2)!(j2- m2)!(j3+?n3)!(j3- m3)!]1'2 x • 

y _(-!)«+*-*-"■_ 

^ z!(j1+;2-j3-zy.(ji-mi-z)!(j2 + m2-zy(j3-j2+fn1 + z)!(j3-ji-m2+zy. 

(106.14) 

The summation is over all integers z but, since the factorial of a negative 

number is infinite, the sum contains only a finite number of terms. The 

coefficient of the sum is obviously symmetrical in the suffixes 1, 2, 3; the 

symmetry of the sum itself appears if the values of the summation variable 

z are interchanged. 

Besides the symmetry properties (106.5) and (106.6), which follow imme¬ 

diately from the definition of the 37-symbols, the latter also have other 

symmetry properties, though the derivation of these is more complex and 

will not be given here. The properties in question can be conveniently 

formulated in terms of a three-by-three array of numbers derived from the 

parameters of the 37-symbol as follows: 

'h n 73 

\m\ m2 m3 

r-72+73-7! 

J= ji-m 

L- ji + mi 

73+71-72 

jz-m2 

h + m2 

71+72-73 

h~m2 

73+^3 ] (106.15) 

the sum of the numbers in each row and each column of this array isji + j2 +73. 

Then (1) interchange of any two columns of the array multiplies the 37- 

symbol by (— 1 )h+h+u (the same property as that given by (106.5)); (2) the 

same is true for interchange of any two rows (for the two lower r ivvs, the same 

property as that given by (106.6)); (3) the 37-symbol is unchanged when the 

rows and columns of the array are interchanged.]- 

Some of the simpler formulae for particular cases will be given here. The 

value 

' °) 
-m 0/ 

= (-l)J-™- 

Y'(27 + l) 
(106.16) 

corresponds to formula (106.2). The formulae 

'71 72 71+72 \ (_iyi_,1+ni+intx 

\.m\ m2 —m\ — m2) 

[~ (27i)!(272)!(7i+72 + mi + w2)!(7i+72—mx-mjy 17^ 

L (2/'i + 272-;- l)!(j‘i + - mi)!(j2 + m2)!(72 - m2)! J ’ 

p1 ^ = (-l)-ii+J2+m3x 
\ji -ji-m m3J 

fSee T. Regge, II nuovo cimento [10] 10, 544, 1958; 11, 116, 1959. The more profound 
mathematical features of the svmmetrv property (106.15) (and of the property (108.3) of the 
67-svmbols) are discussed in the review article by Ya. A. Smorodinskii and L. A. Shelepin, 
Soviet Physics Uspekhi IS, 1, 1972. 
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r (2/i)-(—71 +j2 +mn + h+«3)!(j3—^3)! *i1/ 
L (ji+jz +73 + l)!(ji -72 +73)!(71 +72-73)!( -71 +h ~ ™s)Kh+m*)' -I 

are obtained directly from (106.14). The derivation of the formula 

/71 h M _ _ j r (ji +72—73)1(71 -72 +73)K 71 +72 +73)!~l112 

\0 0 0/ L (2/>+1)! J 

x P[ 
(p —ji)KP ~hY(p —73)1' 

(106.18) 

where 2p = 71+72+73 is even, requires a number of additional calculations;! 

when 2p is odd, this 37-symbol is zero owing to the symmetry property 

(106.6). 

Table 9 gives for reference the values of the 37-symbols for 73 = 1, £, 2. 

For each 73 the minimum number of 37-symbols are shown from which 

the remainder may be obtained by means of the relations (106.5), (106.6). 

Table 9 

Formulae for 3j-symbols 

ti+\ 1 h = (_,v-m.1/2r, J~m.1*—l1" 
-m-aJ L(27+1)(2; + 2)J 

(-ly-f1 ; *) \I.. — m — m3 WI3/ 

1+' 

Hi 

,+i 

p2(7+m+1)(7~m+1)~11 • ~ 

L(2;+l)(2;+2)(2>+3) J 

r2Q — m)(j + m +1 )~|1 2 

L 27(2>+l)(27+2) J 

L(2/+ I)(2/-r2)(2; +3)J 

.„»3»+i)r—!z=y—]' 
L2/(2;+l)(2; + 2)(2y+3)J 

r3(;-m^-i)(;-m+})(; + m +j)T' - 

L (2>+l)(2; + 2)(2; + 3)(2; + 4) J 

t See Edmonds’s book already quoted. 
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j+i 

i 

. 2;(2;+1)(2; + 2)(2; + 3) J 

-(; - m m + DQ-ffl + jn1 

- (2;+l)(2; + 2)(2; + 3)(2, + 4) J 

J+i 

J+2 

2[3w=-yQ-+l)l 

\(2j-])2j(2j+\)(2j + 2)(2j + 3)r~ 

2 r 60 + ,«+l)(;-ffl+1) -|i« 

mL2;(2;+l)(2; + 2)(2; + 2)(2; + 4)J 

■6(; + m + 2)0+m-t-1)0-m + 2)(;-m+1)Y'2 

. (2;-ul)(2; + 2)(2; + 3)(2; + 4)(2; + 5) J 

2+1 

2+2 

2i\ 

2 

2+1 

2 + 2 

; T 6Q + m+l)(;-m) -|l/» 

m)L(2;-l)2;(2y+l)(2; + 2)(2; + 3)J 

2)r__T 
l2>(2;+l)(2; + 2)(2y+3)(2; + 4)J 

'-w+2)Q-iw + 1)(y-in)-|»/5 

(22+ 1 )(22 + 2)(2; + 3)(2; + 4)(2/+ 5) J 
2I~-+ —— 

L (2y +1)(2y+: 

■ 6(; - »I - 1 )(j - m)(; + « + 1)(; + m + 2)" 

rT (2j-l)2j(2j+l)(2j+2)(2j+3) 

■(2-™-l)(2-m)(2-m+l)(2 + m + 2)- 

22(22 + 1 )(2y+2)(2y + 3)(2y+4) 

(2;+\)(2j+2)(2j+ 3K2>+4)(2>+ 5) J 

PROBLEM 

Determine the angle dependence of the wave functions of a particle with spin 4 in states 
with given values of the orbital angular momentum Z, the total angular momentum j and 
component thereof m. 

Solution. The problem is solved by the general formula (106.8), in which iM1* must 
be taken as the eigenfunctions of the orbital angular momentum (i.e. the spherical harmonic 
functions Vim',), and <Z(2) as the spin wave function x(°) (where a = +4): 

<hm = (-l),+”‘“1/2v(22^1)]> 

Substituting the values of the 3/-symbols, we obtain 
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§107. Matrix elements of tensors 

In §29 formulae have been obtained which give the matrix elements of a 

vector physical quantity in terms of the value of the angular momentum 

component. These formulae are really a particular case of the corresponding 

general formulae for an irreducible (see §57) tensor of any rank.-f 

The set of 2k + 1 components of an irreducible tensor of rank k (an integer) 

are equivalent, as regards their transformation properties, to a set of 2k+ \ 

spherical harmonic functions Ykq, q = — k, ..., k (see the last footnote to 

§57). This means that, by means of appropriate linear combinations of the 

components of the tensor, we can obtain a set of quantities which are trans¬ 

formed under rotations as the functions Ykq. A set of such quantities, which 

will be denoted here by /*5, is called a spherical tensor of rank k. 

For example, k = 1 for a vector, and the quantities f\q are related to the 

components of the vector by the formulae 

_ i 
/to = taz, fi,±i = + ——{ax ± ioy); (107.1) 

v2 

cf. (57.7). The corresponding formulae for a tensor of rank two are 

/20 = — \/iaiz, /2,±i = ± (axz±iaVz), 

/2,±2 = — \ip-xx — ayy ± 2iaxy), 

with axx + ayy 4- azz = 0.{ 

The construction of tensor products from two (or more) spherical tensors 

/*i8i> fk,g, is effected in accordance with the rules for addition of angular 

momenta, with ku ki formally representing the “angular momenta” corres¬ 

ponding to these tensors. Thus from two spherical tensors of ranks £1 and 

kz, one can form spherical tensors of ranks K = k 1 + k%t ..., |&i — kz\ by means 

of the formulae 

(/*,£*,)*« = ^ <?i?2|AT<2>/* xQxSkxQ* 

= (-l)^+V(2^+l) T (kl k2 (107.3) 
f-L V ?2 ~Qf 

cf. (106.9). The scalar product of two spherical tensors of the same rank k is, 

however, usually defined as 

(A»)oo = r (- (107.4) 

which differs from the definition according to (107.3) with K = Q = 0 by 

+ The analysis of the problems discussed in §§107-109 and m 
due to G. Racah (1942-1943). 

t It is assumed that the quantities fkq are complex only beet 
components, i.e. that the original Cartesian components of the te 

st of the results given, are 

ise of the use of spherical 
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the factor \/{2k + \)\ cf. (106.2).f This definition can also be written in the 

form 

(fkgk)dO = Zficqgkq* 

if we note that the complex conjugate of a spherical tensor is given by 

cf. (28.9).| 

The representation of physical quantities in the form of spherical tensors is 

particularly convenient for the calculation of their matrix elements, since it 

allows the direct application of the results of the theory of addition of angular 

momenta. 

By the definition of the matrix elements we have 

fktfpn]m= 2 <nj m'\fkq\njm)npn.j.m; (107.5) 
n'j'm' 

where the fnjm are the wave functions of the stationary states of the system, 

described by its angular momentum j, component thereof m and the set of 

the remaining quantum numbers n. As regards transformation properties, 

the functions on the right-hand and left-hand sides of equation (107.5) 

correspond to the respective sides of equation (106.11). Hence we imme¬ 

diately obtain the selection rules: the matrix elements of the components fkq- 

of an irreducible tensor of rank k are zero except for transitions jm -+j'm 

which satisfy the “angular momentum addition rule” j' = j + k; the numbers 

j',j, k must satisfy the “triangle rule”, i.e. must be able to form the sides of a 

closed triangle, and m = m + q. In particular, the diagonal matrix elements 

can be different from zero only if 2j > k. 

Next, it follows from the same transformation correspondence that the 

coefficients in the sum (107.5) must be proportional to the coefficients in 

(106.11) (the Wigner-Eckart theorem). This determines the dependence of 

the coefficients on the numbers m and m\ and the matrix elements are there¬ 

fore written in the form 

(n'j'm'\fkg\njm} = z'*( - 1)W-™'^ * }^<n'j'\\ fk\\nj}, (107.6) 

where jmm is the greater of j and j', and the (n'j'\\fic\\nj} are quantities 

independent of m, m and q, called the reduced matrix elements. This formula 

gives the solution to the problem of determining the dependence of the 

matrix elements on the angular momentum components. The dependence 

+ If A and B are two vectors corresponding to the spherical tensors/,„ and gIQ according to 
formulae (107.1), then (figi)00 = A . B. 

1 Here we may repeat the comment made concerning formula (106.8): with this rule, 
taking the complex Conjugate of the tensors of ranks ^ and kt on the right of (107 3) leads to 
a similar result for the tensor of rank K on the left. 
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is entirely governed by the symmetry properties with respect to the rotation 

group, whereas the dependence on the other quantum numbers is deter¬ 

mined by the physical nature of the/*fl themselves.] 

The operators/*? are related by 

/**+ = (-1)*-*/*.-,. (107.7) 

The equation 

<n'j'm'\ fkq\njmy = ( - l)*-e<n/'m| fk.-q\n'j'm'> (107.8) 

therefore holds for their matrix elements. Substituting (107.6) and using the 

properties (106.5) and (106.6) of the 3y-symbols, we obtain for the reduced 

matrix elements the “Hermitian” relation]; 

in'j’Whlnjy = <nj\\Mn’f>*. (107.9) 

The matrix elements of the scalar (107.4) are diagonal inj and m. According 

to rule of matrix multiplication 

<n'jm\(fkgk)oo\njm> = ^(-')k-qn,,£m..<n'j™\fkQ\n"j"m"y x 

x <n"j"m"\gk'-g\njm'>. 

Substituting here the expressions (107.6) and effecting the summation over q 

and m" by means of the orthogonality relation for the 3y-symbols, we obtain 

Wjm\(fkgk)oo\njm'> = 2 (n'j\ fk\n"j"'>(n"j"\\gk\\nj'). 

J+ n"J" (107.10) 

Similarly, we easily obtain the following formulae for the sums of the 

squared matrix elements: 

2\(njm\fka\njmW = _1_| /JK»| 2, (107.11) 

2\<njm’\fkq\njmy\ 2= (107.12) 

In the first of these the summation is over q and m' for a given value of m, 

and in the second it is over m and m for a given value of q (in every case, 
m = m + q). 

t From these results, m particular, there follow at once the selection rules Riven in 529 for 
the matrix elements of a vector and formulae (29.7)-(29.9) for these 

t The phase factor in the definition (107.6) is in fact chosen so as to make this relation valid 



444 Addition of Angular Momenta §108 

For reference purposes we may consider the case where the quantities 

are the spherical harmonic functions YicQ themselves, and give their matrix 

elements for transitions between the states of one particle with integral orbital 

angular momenta /j and /2, he- the integrals 

Yim\l2m2y = J YhmfYlmYKmt do. (107.13) 

Besides the selection rule corresponding to the rule of addition of angular 

momenta (1 +12 = U), there is also a rule for these matrix elements whereby 

the sum I + I1 + I2 must be even. This is due to the conservation of parity, 

according to which the product (— l)h+,« of the parities of the two states must 

be the same as the parity ( — 1)' of the physical quantity considered (see §30). 

The matrix elements (107.13) are a particular case of a more general 

integral to be calculated in §110 (see the footnote to that section). They are 

given by 

(lim\\Y im\kmz) 

V ; \-mi m mzJ\0 0 0/ 

x j-(2/+l)(2/1 + l)(2/2 + l)ji/2. (107.14) 

In particular, for mi = mz = m = 0 we find the integral of the product of 

three Legendre polynomials: 

j p^p^p^) = 2Q ' 4y. (107.15) 

§108. 6y'-symbols 

In §106 we have defined 3/-symbols as the coefficients in the sum (106.4) 

which represents the wave function of a system of three particles with zero 

total angular momentum. As regards the transformation properties under 

rotations, this sum is a scalar. Hence it follows that the set of 3_/-symbols 

with given values o{ji,jz,iz (and all possible mi, mZt m3) may be regarded as 

a set of quantities which are transformed under rotations according to a law 

contragredient to that for the products so that the sum as a 

whole is invariant. 

From this viewpoint we may put the problem of constructing a scalar 

consisting of 3/-symbols only. This scalar must depend only on the numbers 

j, and not on the numbers m, which are altered by rotations. In other words, 

it must be expressible in terms of sums over all the numbers m. Each such 

sum consists of a “contraction” of the product of two 3_/-symbols according 

to the formula 

cf. the method of constructing the scalar (106.2). 

(108.1) 
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Since in each “contraction” a pair of numbers m is involved, we must 

consider products of an even number of 3;'-symbols in constructing the 

complete scalar. The contraction of the product of two 3;-symbols gives, 

owing to their orthogonality, the trivial result 

y In h A\/ h k 
\m\ m2 ms / \~—mo —msJ 

- i 

here we have used the equation mi + m2 + m3 = 0 and formulae (106.6) and 

(106.12). The smallest number of factors needed to form a non-trivial scalar 

is therefore four. 

In each 3;"-symbol the three numbers j form a closed triangle. Since 

each number; must appear in the “contraction” in two 3;'-symbols, it is clear 

that in the construction of a scalar from the products of four 3;'-symbols 

there are six numbers j forming the edges of an irregular tetrahedron (Fig. 45), 

one face of which corresponds to each 3;'-symbol. In defining the required 

scalar it is customary to use a certain condition as regards the contraction 

process, given by the formula 

174 75 TeJ 7 \ - 
*)> n3/ 

/7i 75 7e\/74 72 76 \/ 74 75 73 \ 

Wi — ms ms) \ffi4 m2 — ms) \ — mn ms ms) 
(108.2) 

The summation here is over all possible values of all the numbers m; however, 

since the sum of the three m in every 3;-symbol must be zero, only three of the 

six m are in fact independent. The quantities defined by the formula (108.2) 
are called 6j-symbols or Racah coefficients,f 

+ The m 
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From the definition (108.2), using the symmetry properties of the 3j- 

symbols, we easily see that a 67-symbol is unchanged by any permutation of 

its three columns, and in any pair of columns the two numbers can be 

simultaneously interchanged. Owing to these symmetry properties, the 

sequence of numbers j\, .. ,;6 in the 67-symbol can be put in 24 equivalent 

forms-t In addition, the 67-svmbols have another, less evident, symmetry 

property which states an equality between symbols with different sets of 

numbers j:% 

pi h h) _ pi i(h+js+h~jc) Uh+h+k~h)\ 

04 75 jcl 04 2 (72+75+76-73) 1(73+76+75-72)) 
(108.3) 

We may mention a useful relation between the 6j- and 37-symbols which can 

be derived from the definition (108.2): 

2 

«( 
74 72 

(J1 ;5 ;® \ x 
\mi —ms ms) 

76 \/ 74 75 73 \ _ fji 72 73 \ |7i 72 73) 

msJX-mi ms ms) \mi ms ms) \74 75 je) 
(108.4) 

The expression which is summed on the left-hand side of the equation differs 

from that in (108.2) by the absence of one 37-symbol. We can therefore say 

that the sum in (108.4) is represented by the tetrahedron (Fig. 45) without 

one of its faces; this determines the difference of the sum from a scalar. 

In other words, as regards transformation properties it corresponds to one 

37-symbol, the one on the right-hand side of equation (108.4), to which it 

must be proportional. The proportionality coefficient (the 67-symbol on the 

right-hand side of the equation) is easily found by multiplying both sides by 

f h h is \ 
\wji mz ms) 

and summing over the remaining numbers mi, mz, ms- 
The 67-symbols arise naturally in connection with the following problem 

concerning the addition of three angular momenta. 

Let three angular momenta 71,72,73 be added to give a resultant angular 

momentum J. If the value of J (and of its component M) is given, the state 

of the system is not yet uniquely determined, but depends also on the manner 

of addition of the angular momenta (or, as we say, on their coupling scheme). 

For example, let us consider two such coupling schemes: (1) first the 

angular momenta ji and 72 are added to give a total angular momentum 712, 

and then 7)2 and 73 are added to give the final angular momentum J; (2) the 

f If we regard the tetrahedron in F.g. 45 as being regular, the 24 equivalent permutations of 
the numbers j can be obtained by means of the 24 symmetry transformations (rotations and 
reflections) of the tetrahedron. 

j See T. Regge, It nuovo cimento [10] 10, 544, 1958; 11, 116, 1959. 
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angular momenta j2 and jz are added to give j23, and then j2z and ]\ to give J. 

The former scheme corresponds to states in which the quantity jn (as well 

as ji,j2,jz, J, M) has a definite value; their wave functions will be denoted 

by (omitting for brevity the repeated suffixes ji,j2,jz). Similarly, the 

wave functions of the second coupling scheme are denoted by 

In both cases the values of the “intermediate” angular momentum (j 12 or 

J23) are in general not unique, so that (for given J and M) we have two different 

sets of states differing in the values of /12 or j23. According to the general 

rules, functions of these two sets are related by a certain unitary transfor¬ 

mation : 

<PiJM = £ </l2[/23>^ls./Af- (108.5) 

It is evident from physical considerations that the coefficients in this 

transformation are independent of the number M: they must be independent 

of the orientation of the whole system in space. Thus they depend only on 

the values of the six angular momenta j\, j2, jz, ji2, j2z, J, not on their com¬ 

ponents, i.e. are scalar quantities (in the sense defined above). The actual 

calculation of these coefficients is easily effected as follows. 

By a repeated application of formula (106.9) we find 

4)iaJM - <,nnm23\JMyip^m,>Pjt3ma, 

= 2, <.mm2z\JMy{rn2mz\iz3m2zy4)i,m^hm^hm,’ 

<PivlJM = (mzm2\JMy(m1mo\ji2m12y4)jtmi4)]amJ>j,m,, 

where (m) denotes that the summation is over all numbers mi, m2, ... that 

appear in the expression. From the orthonormality of the functions ipjm we 

have 

(/i2l723> = J &q 

= £} {mzmi2\JMyimim2z\JMyimim2\ji2mi2y(ni2mz\j2zm2zy. 

The sum on the right-hand side is taken for a fixed M, but the result is 

actually independent of M (for the reason already mentioned). The sum¬ 

mation can therefore be extended over the values of M if the sum is multiplied 

by a factor l/(2_/+l). Expressing the coefficients (jmm^jviy in terms of 

3y-symbols by (106.10), we obtain the following expression: 

O'isl>23> = (-l)/.e/,+/.^V[(2y12+1)(2,23+ l)]/71 ^ "H (108.6) 
l>3 J ]23> 

The relation between the 6/-symbols and the transformation coefficients in 
(108.5) makes it easy to derive some useful formulae for the sums of products 
of 6/-symbols. 
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First of all, since the transformation (108.5) is unitary and its coefficients 

are real, the relation 

]T(2, + l)(2f + 

1/3 h j I U'l 74 j") 
(108.7) 

holds. 

Next, let us consider the three coupling schemes of three angular momenta, 

with intermediate sums 712,723 and /31 respectively. The coefficients (108.6) 

of the corresponding transformations are related, according to the matrix 

multiplication rule, by 

? <Jl2|j23><723|j31 > = <jl2l731>- 

Substituting here (108.6) and renumbering the suffixes we have 

't I7175 7 > v/2 75 73J 1. 

|7i 7z 73l 

I74 75 Jel 

Finally, by considering the various coupling schemes of four angular 

momenta, we can derivet following addition formula for the products of 

three 67-symbols: 

2(-l)/+^(27+l) 
(74 7 2 761(72 71 73H74 73 75I 

t/9 78 7 A77 7 7*9^^J7X78 7 > 

fji h 731(76 71 75l 

^74 75 76/177 78 79/ 
(108.9) 

(L.'C. Biedenharn, and J. P. Elliott, 1953). 

For reference we shall give some explicit formulae for the 67-symbols. 

In the general case, a 67-symbol can be written as the following sum: 

(7i 72 73| 

l74 7s J6J 
= A (717273) A (71/5/6) A (74/2/6) A (747573) * 

x 2 
_(—i)z(g+i)i_ 

(z-ji-72-73)1(2:-71 -75 —76)!(~—74-j2-je)Kz-h /s-73)! 

where 

1 

(71 +72 +74 +75 - z)](}2 +73 +75 +76 - *)!(js +71 +76 +71 - *)'• 

(a+f>-c)!(a-f> + c)!(-a + f> + c)! 

, (108.10) 

A(< :*>-[•* (o+fc + c+1)! 

+ c)- j1'* 

and the sum is taken overall positive integers z for which none of the factorials 

in the denominator has a negative argument. 

f See Edr in §106. 
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Table 10 gives the values of the 67-symbols for cases where one of the 

parameters is 0, £ or 1. 

Finally, we shall make a few remarks concerning the higher-order scalars 

constructed from the 3y-symbols. 

The next in complexity after the 67-symbols is a scalar formed by contract¬ 

ing products of six 37-symbols. These 37-symbols contain 18 numbers j 

equal in pairs, and so the resulting scalar depends on 9 parameters 7. It 

is called a 9j-symbol and is defined as follows! (E. P. Wigner 1951): 

Table 10 

Formulae for 6j-symbols 

l0 c bl y'[(26+l)(2c+l)]’ 

r p-26)p~2c+l) -j W 

L (26 +1 )(26+2)2c(2r+1) J 
+ l)0-2O) -11/2 [0+1 

26(26 + .26(26+ l)2o(2c+l)J 

o 6 t | r ip+l)p-2n-l)0 —2o) -1U~ 

1 c— 1 6—li “ L(26-1)26(26+ l)(2c-l)2r(2c+l)J 

_ r 2p+l)0-2o)p-26)p-2C+l) 

L 26(26 + 1 )(26 + 2)(2<r - 1 )2c(2r +1) J 
rp-26-l)P-26)p-2c+l)0-2c+2)- 

L(26 + l)(26 + 2)(26 + 3)(2r— l)2r(2c+ 1). 

2[6(6+l) + c(c+l)-o(o + l)] 

" (_1)S+ [26(26 +1 )(26 + 2)2r(2r + l)(2r + 2)]1'2 

711 712 713) . 

721 722 7231 = (hl 712 713)(72‘ ^ 723 ) 
\w!n mi2 m 13/ \wz21 mo-2 m23/ v 

731 732 733 \ 

Wl31 m32 IW33/ 

/7ll 721 73l\ /7l2 722 73’!/713 723 733 

wn m2i m3i/ \ni12 m22 m3: 
)(ja 723 733 Y (108.11) 

>/ Wl3 m23 1”33/ 

This quantity can also be written as the sum of products of three 67-symbols: 

(jii 712 713-1 

in in in - T (-ITO+lJ" A‘ ,31)H“ * *](" M (108.12) 
. 1732 733 7H721 7 723M7 711712; 

f According to the general rule of contraction (108.1) it would be necessary to write the 
arguments m in the last three 37-symbols with the minus sign and to include in the summand 
a factor ( — 1)2.0 m> However, by using the property (106.6) of the 37-symbols and the fact 
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The equivalence of (108.11) and (108.12) can be seen by substituting in 

(108.12) the definition (108.2) and using the orthogonality properties of 

the 3/-symbols. 

The 9/-symbol has a high degree of symmetry, which follows directly from 

the definition (108.11) and the symmetry properties of the 3/-symbols. It is 

easily seen that when any two rows or columns are interchanged the 9/-symbol 

is multiplied by (— 1)E;’. Moreover, the 9/-symbol is unaltered by transposi¬ 

tion, i.e. interchange of rows and columns. 

Scalars of still higher orders depend on a still larger number of parameters 

j. It is evident that this number will always be a multiple of three (3nj- 

symbols). We shall not pause to discuss their properties, but merely mention 

that for every n > 3 there is more than one type of 3n/-symbol, and these 

do not reduce to one another. For example, there are two different types of 

12/- symbol, j- 

§109. Matrix elements for addition of angular momenta 

Let us again consider a system consisting of two parts (referred to as sub¬ 

systems 1 and 2), and let /ke(1) be a spherical tensor pertaining to sub-system 

1. Its matrix elements with respect to the wave functions of this sub-system 

are given, According to (107.6), by the formula 

<ni'/l'»«l'|/*B(1)|wi/l,wl>= ffc(-l),,’"**“m,*f i i )<«l'/l'||/k(1)|l«l/l>- 
\ — mi q mi/ 

(109.1) 

The question arises of calculating the matrix elements of these quantities 

with respect to the wave functions of the system as a whole. We shall show 

how they may be expressed in terms of the same reduced matrix elements 

as appear in the expression (109.1). 

The states of the system as a whole are defined by the quantum numbers 

jujz, J, M, m, «2 (where J and M are the angular momentum and its com¬ 

ponent for the whole system). Since/k?(1) refers to sub-system 1, its operator 

commutes with the angular momentum operator of sub-system 2. Its matrix 

is therefore diagonal with respect to jz; it is also diagonal with respect to the 

remaining quantum numbers n% of this sub-system. These indicesn% will 

be omitted, for brevity, and the required matrix elements will be written as 

<ni'ji'J'M'\fkq(l)\nihJMy. 

According to (107.6), their dependence on the number M is given by 

| A more detailed account of the theory of 9/-symbols and of the properties of 3ry-symbols 
is given in Edmonds’s book quoted in §106 and by A. P. Yutsis, I. B. Levinson and V. V. 
Vanagas, Mathematical Apparatus of the Theory of Angular Momentum, Oldboume Press, 
London 1963 (Matematicheskii apparat teorii momenta kolichcscua d-uizheniya, Vilnius 1960). 
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To establish the relation between the reduced matrix elements on the right- 

hand sides of (109.1) and (109.2) we write, using the definition of the matrix 

elements, 

Wji'J’M^fk^n^JMy = J d? 

= y (-l)V-n^--MV[(27'+l)(27+l)](;i< 12 Mx 
*-> , \mi mz -M7 

x(;i ;'2 <”i7i'OTi'l/fcs(1)l”i;'iwi>. 
\OTi m2 — M/ 

Substituting here (109.1) and (109.2) and comparing the resulting relation 

with formula (108.4), we see that the ratio of the reduced matrix elements in 

(109.1) and (109.2) must be proportional to a certain 6/-symbol. A careful 

comparison of the two relations mentioned leads to the final formula 

{m'h'J'W /fc(1)ll«ij'i/> = (- l)i..-„+W-.+*V[(27+1)(27'+1)] x 

*{y Jj11^<ni'h'Uk{l)l!”i;i>’ (109’3) 

where j1-max is the greater of ji,ji, and Jmln the smaller of J, J'. A similar 

formula for the reduced matrix elements of the spherical tensor pertaining 

to the second sub-system is 

Way'll =(- iy.+i.-^-+V[(27+1)(27'+1)] X 

xP2 3 nVnfjoJ\\fkVY\\n2j2y. (109.4) 
\ J h k> 

The lack of complete symmetry between the expressions (109.3) and (109.4) 

(in the exponent of —1) is due to the dependence of the phase of the wave 

functions on the order of addition of the angular momenta. The difference 

must be borne in mind when calculating matrix elements for both sub-systems 

simultaneously. 

We shall also derive a useful formula for the matrix elements, with respect 

to the wave functions of the whole system, of a scalar product (see the defini¬ 

tion (107.4)) of two spherical tensors of the same rank k pertaining to different 

sub-systems (and therefore commuting). According to (107.10), these matrix 

elements are given in terms of the reduced matrix elements of each tensor 

(with respect to the wave functions of the whole system) by 

<"i'"27i'>2y-W|(Acl,Ac2))ooi«iW2y1y2 jMy 

= 2 Wi7« f^WnihrXn^'J'l fk™\\n2j2J>, 

where we have used the fact that the matrix of a quantity pertaining to one 
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sub-system is diagonal with respect to the quantum numbers of the other 

sub-system. Substituting (109.3) and (109.4) and using the summation 

formula (108.8), we obtain the desired formula expressing the matrix elements 

of the scalar product in terms of the reduced matrix elements of each tensor 

with respect to the wave functions of the corresponding sub-systems: 

(ni'n2'ji'j2jM\(fkWfk&))00\nin2jij2jMy 

= (-iy—h jl km'ii'i Aa)!!«iyi><n2'i2'li (109.5) 
U j 1 h 1 

§110. Matrix elements for axially symmetric systems 

The basis for calculating the matrix elements of quantities pertaining to 

systems of the symmetrical-top type is the expression for the integral of the 

product of three D functions. 

To derive this, we return to the expansion (106.11): 

= £ <jm\mimoy4ijm, m = mi+m2, 

and transform both sides by a finite rotation of the coordinates. Each of the 

functions ip is transformed according to (58.7), so that we have 

Now, expressing the functions on the right by means of the expansion 

(106.9) and comparing the coefficients of the respective products < 

we find the relations 

= I im'mrtjm'yDyjwKtnwljmy, (110.1) 

where m = m\ + m2, m' = mf + and to denotes the set of three Eulerian 

angles a, /?, y. Expressed in terms of 3y-symbols, this formula becomes 

= y{2j+\)(i1 n j )(h J’2 j (110-2) 
j \mi’ m2 -m'J\mi m2 —mj 

here we have also used the property (58.19) of the D functions. 

Multiplying both sides of equation (110.2) by and integrating 

with respect to to by means of the orthogonality relation (58.20), we have 

(jl, 
\mi 

>2 >3 \( ji h AV 

m2 m3 J\mi m2 m3) 
(110.3) 

here the indices have been renamed in an obvious manner, in order to make 
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the result more symmetrical. This is the required formula.j- 

Let ficg■ be a spherical tensor of rank k pertaining to a top, in coordinates 

.v', v', z' = rj, i fixed to the top (with £ along the axis): for example, the 

electric or magnetic multipole moment tensor. Let fkQ be the components of 

the same tensor relative to the fixed coordinates .v, y, 2. The relation between 

these is given by the matrix of finite rotations: 

/fc9 = S^H/,5.. (110.4) 

The wave functions describing the rotation of the system as a whole differ 

from the D functions only as regards normalization: 

&*, = «■' J2J£rD^’ (H0.5) 

where y is the total angular momentum of the system, m its component along 

the fixed 2-axis, p its component along the axis of the system; the phase 

factor is chosen so that, for integral^ and p = 0, the function (110.5) becomes 

the eigenfunction of the free angular momentum (cf. (103.8)). On calculating 

with respect to these functions the matrix element of the quantity (110.4) by- 

means of formula (110.3), and expressing the complex conjugate D function 

by means of (58.19), we find 

ij’h'm'| /jt0|jpm> 

= - V[(2; + l)(2;' + l)]x 

*( rVl i 1 Lhv^y. (110.6, \-p q q mj 

here q = p' - p, q = m -m. 

This formula gives the solution of the problem proposed, expressing the 

dependence of the matrix elements on the angular momenta j,j' and their 

components m, m'. The dependence on the quantum numbers p, p' is, of 

course, indeterminate; their values are related to the “internal” states of the 

system, between which the “internal” matrix element <p'| //t5 |p) is taken. 

The dependence of the matrix elements (110.6) on the numbers m, m is, of 

course, of the same kind as for any system with a given total angular momen¬ 

tum. Separating out this dependence by using the reduced matrix elements 

according to (107.6), we obtain for the latter the expression 

= I)'"”-'* v[(2;+l)(2/'+l)]= (jV * ^)<p'|/t9.|p>. (110.7) 
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The squared modulus of the matrix element (110.6), summed over all 

values of the final number m (and over q = m —m) for a given m, is indepen¬ 

dent of the value of m and equal, by the general rule (107.11), to 

2 |</Vm'|/*elj»l2 fktjh>\2 

= {2j‘ + l)( J\ k (110-8) 
\-m q v-i 

The Hermitian relations (107.9) for the reduced matrix elements in the 

coordinates x, y, z (110.7) are, as we should expect, in agreement with the 

relations (107.8) 

= (-l)*-«'<fx|/*,-<iV># 

for the matrix elements in the coordinates £, 77, £. 

The rotation of such axially symmetric systems as a diatomic molecule (or 

an axial nucleus) is described by only two angles (a = (f>, = 6), which 

define the direction of the axis of the system. The rotational wave function 

differs in this case from (110.5) by the absence of the factor j \/(2it)\ cf. 

the second footnote to §82. This difference, however, does not affect the 

matrix elements: since the dependence of the functions D^m(a, fi, y) on y 

is represented by the factor eim r, formula (110.3) can be written as 

8m-o | ft °)Z)wU(a. ft 0)Z)j£U“. ft 0)sm-~A^ 

= fji h M/ii h h \ 

\mi mz mz/\mi’ mf mf j 

where m' — + m2 + m3 ; the result of calculating the integral is un¬ 

changed. The selection rule for the axial component of the angular momen¬ 

tum is the same as before (/x' — /a = q), resulting from the orthogonality of 

the electron wave functions (because of the symmetry of the molecule about 

the C-axis). In formulae (110.6) and (110.7), </x'|/*0 |m> must now be 

understood as the matrix elements with respect to the electron states for 

nuclei at rest. 



CHAPTER XV 

MOTION IN A MAGNETIC FIELD 

§111. Schrodinger’s equation in a magnetic field 

A particle that has a spin also has a certain “intrinsic” magnetic moment //. 

The corresponding quantum-mechanical operator is proportional to the spin 

operator s, and can therefore be written as 

= (111.1) 

where r is the magnitude of the particle spin and n a constant characterizing 

the particle. The eigenvalues of the magnetic moment component are 

/xz = /xtr/r. Hence we see that the coefficient fj. (which is usually called just 

the magnitude of the magnetic moment) is the maximum possible value of 

/xz, reached when the spin component a = s. 

The ratio p.jhs gives the ratio of the intrinsic magnetic moment and the 

intrinsic angular momentum of the particle (when both are along the 2-axis). 

For the ordinary (orbital) angular momentum, this ratio is ejlmc (see Fields, 

§44). The coefficient of proportionality between the intrinsic magnetic 

moment and the spin of the particle is not the same. For an electron it is 

— \e\lmc, i.e. twice the usual value, as is found theoretically from Dirac’s 

relativistic wave equation (see RQT, §33). The intrinsic magnetic moment 

of the electron (spin ^) is consequently —/xb, where 

fi.B = \e\hl2mc = 0-927 x 10-20 erg/gauss. (111.2) 

This quantity is called the Bohr magneton. 

The magnetic moment of heavy particles is customarily measured in 

nuclear magnetons, defined as eh/lmpC, with mv the mass of the proton. The 

intrinsic magnetic moment of the proton is found by experiment to be 2-79 

nuclear magnetons, the moment being parallel to the spin. The magnetic 

moment of the neutron is opposite to the spin, and is 1-91 nuclear magneton. 

It should be noted that the quantities ft and s on the two sides of (111.1) 

are the same type of vector, as they should be: both are axial vectors. 

A similar equation for the electric dipole moment d ( = constant x s) would 

contradict the symmetry under inversion of the coordinates: the relative sign 

of the two sides would be changed by inversion.f 

t Such an equation (and therefore the existence of an electric moment of an elementary 
particle) would also contradict the symmetry under time reversal: a change in the sign of the 
time does not alter d. but does change the sign of the spin (as is evident, for example, from 
the definitions of these quantities in orbital motion, that of d involving only the coordinates, 
whereas that of the angular momentum also involves the velocity of the particle). 

455 
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In non-relativistic quantum mechanics, the magnetic field may be regarded 

as an external field only. The magnetic interaction between the particles is a 

relativistic effect, and a consistent relativistic theory is needed to take it into 

account. 

In the classical theory, the Hamilton’s function of a charged particle in an 

electromagnetic field is 

where <j> is the scalar and A the vector potential of the field, and p the general¬ 

ized momentum of the particle; see Fields, §16. If the particle has no spin, 

the transition to quantum mechanics can be made in the usual manner: the 

generalized momentum must be replaced by the operator p = -ihV, and 

we obtain the Hamiltonianf 

^ = ^(p-fi-A)2 + 4- (Hl-3) 

If, on the other hand, the particle has a spin, this procedure does not suffice. 

This is because the intrinsic magnetic moment of the particle interacts 

directly with the magnetic field. In the classical Hamilton’s function, this 

interaction does not appear, since the spin, which is a purely quantum effect, 

vanishes in the limit of classical mechanics. The correct expression for the 

Hamiltonian is obtained by including in (111.3)an extra term—/i.H corres¬ 

ponding to the energy of the magnetic moment ft in the field H. Thus the 

Hamiltonian of a particle having a spin isj 

H = J-^p--A^2-/I.H + 4. (111.4) 

In expanding the square (p—eA/c)2, we must bear in mind that p does not 

in general commute with the vector A, which is a function of the 

coordinates. Hence we must write 

H = p2/2?n—(e/27nc)(A.p+p.A)+e2A2/27nc2—(yt/i)s. H+ H. (111.5) 

According to the rule (16.4) for thecommutationof the momentum operator 

with any function of the coordinates, we have 

p.A—A.p = — j'^divA- (111.6) 

t The generalized momentum is here denoted by the same letter p as the ordinary momen¬ 
tum (and not by P as in Fields, §16), in order to emphasize that it corresponds to the same 
operator. 

J There should be no misunderstanding here caused by the use of the same letter for the 
field and the Hamiltonian, since the latter always has a circumflex over it. 
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Thus p and A commute if div A = 0. This holds, in particular, for a 

uniform field, if its vector potential is expressed in the form 

A = |H x r. (111.7) 

The equation = H*¥ with the Hamiltonian (111.4) is a generaliza¬ 

tion of Schrodinger’s equation to the case where a magnetic field is present. 

The wave functions on which the Hamiltonian acts in this equation are 

symmetrical spinors of rank 2s. 

The wave functions of a particle in an electromagnetic field are not 

uniquely defined, because the choice of the field potentials is not unique: they 

are defined (see Fields, §18) only to within a gauge transformation 

A -*A + V/, <j> -+<j> — (111.8) 
c dt 

where/is an arbitrary function of the coordinates and the time. This trans¬ 

formation does not affect the values of the field strengths, and it is therefore 

clear that it cannot essentially alter the solutions of the wave equation; in 

particular, it must leave 1^12 unchanged, since it is easy to see that the original 

equation is restored if we make the changes (111.8) in the Hamiltonian and 

at the same time change the wave function according to 

'F -T exp (teflhc). (111.9) 

This non-uniqueness of the wave function does not affect any quantity 

having a physical significance (in whose definition the potentials do not 

appear explicitly). 

In classical mechanics, the generalized momentum of a particle is related to 

its velocity by 

mx = p—eA/c. 

In order to find the operator v in quantum mechanics, we have to commute 

the vector r with the Hamiltonian. A simple calculation gives the result 

mx = p—eA/c, (111.10) 

which is exactly analogous to the classical expression. For the operators of 

the velocity components we have the commutation rules 

[vx, vy} = i(ehlm2c)Hz, \ 

[vy, ilz] = i(ehlm2c)Hx, j (111.11) 

{Vz, Vx} = i(eh,m2c)Hy, ] 

which are easily verified directly. We see that, in a magnetic field, the 
operators of the three velocity components of a (charged) particle do not 
commute. This means that the particle cannot simultaneouslv have definite 
values of the velocity components in all three directions. 
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In motion in a magnetic field, the symmetry with respect to time reversal 

occurs only if the sign of the field H (and of the vector potential A) is changed. 

This means (see §§18 and 60) that Schrodinger’s equation Hip = Eip must 

keep the same form when we take complex conjugates and change the sign of 

H. This is immediately evident for all terms in the Hamiltonian (111.4) 

except — s . H. The term — s . Hip in Schrodinger’s equation becomes 

I* . Hi//* under the transformation in question, and at first sight this destroys 

the required invariance, since the operator i* is not the same as — i. It must 

be remembered, however, that the wave function is in reality a contravariant 

spinor i//Am which has the complex conjugate i//Am * transformed as a 

covariant spinor (see §60). The spinor i/^M... is contravariant. Using 

(57.4) and (57.5) to find the components (s.Hip)* and expressing them in 

terms of i/^M.., we can see that under time reversal a Schrodinger’s 

equation for the i/^M is obtained which has the same form as the original 

equation for the ip**- 

§112. Motion in a uniform magnetic field 

Let us determine the energy levels of a particle in a constant uniform 

magnetic field (L. D. Landau 1930). The vector potential of the uniform 

field is conveniently taken here not in the form (111.7), but as 

Ax = -Hy, Ay = Az = 0 (112.1) 

(the z-axis being taken in the direction of the field) 

The Hamiltonian then becomes 

fl =- (px+eHylc)*+p^+^-(nls)szH. (112.2) 
2m 2 m 2m 

First of all, we notice that the operator sz commutes with the Hamiltonian, 

since the latter does not contain the operators of the other components of the 

spin. This means that the ^-component of the spin is conserved, and there¬ 

fore that sz can be replaced by the eigenvalue sz = a. Then the spin depen¬ 

dence of the wave function becomes unimportant, and ip in Schrodinger’s 

equation can be taken as the ordinary coordinate function. For this function 

we have the equation 

_L ^px + e^.yj +py2+p2y_l±0Hp = Elp. (112.3) 

The Hamiltonian of this equation does not contain the coordinates x and z 

explicitly. The operatorspx and pz (of differentiation with respect to x and z) 

therefore also commute with the Hamiltonian, i.e. the x and 2 components of 

the generalized momentum are conserved. We accordingly seek 1p in the form 

0 _ el.lWl>Tz+PzZlx(y). (112.4) 
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The eigenvalues px and pz take all values from - co to + so. Since Az = 0, 

the ^-component of the generalized momentum is equal to the ordinary 

momentum component mvz. Thus the velocity of the particle in the direction 

of the field can take any value; we can say that the motion along the field is 

“not quantized”. 

Substituting (112.4) in (112.3), we obtain the following equation for the 

function x{y) '■ 

*" + ^^E + ^H~P£^-hm^{y-y0)^x = 0, (112.5) 

with the notation yo = —cpx!eH and 

ion = \e\Hlmc. (112.6) 

Equation (112.5) is formally identical with Schrodinger’s equation (23.6) for 

a linear oscillator, oscillating with frequency iou- Hence we can conclude 

immediately that the expression in round brackets in (112.5), which takes the 

part of the oscillator energy, can have the values (n + h)hiof{, where n = 

0, 1, 2. 
Thus we obtain the following expression for the energy levels of a particle 

in a uniform magnetic field; 

E = (n + b)hioH+p^l2m-^oHls. (112.7) 

The first term here gives the discrete energy values corresponding to motion 

in a plane perpendicular to the field; they are called Landau levels. For an 

electron, = - \e\hjmc, and formula (112.7) becomes 

E = (n + ^ + o)hcon+pz2l2m (112.8) 

The eigenfunctions Xn(}') corresponding to the energy levels (112.7) are 

given by (23.12) with the appropriate changes of notation: 

(U2'9) 

where oh = ^{hlmcaii). 

In classical mechanics, the motion of particles in a plane perpendicular to 

the field H (the xy-plane) takes place in a circle about a fixed centre. The 

quantity yo, which is conserved in the quantum case, corresponds to the 
classical y coordinate of the centre of the circle. The quantity x0 = cpyeH + x 
is also conserved; it is easy to see that its operator commutes with the 
Hamiltonian (112.2). This quantity x0 corresponds to the classical x co- 
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ordinate of the centre of the circle.f The operators x0 and yo, however, do 

not commute. In other words, the coordinates x0 and yo cannot take definite 

values simultaneously. 

Since (112.7) does not contain the quantity px, which assumes a continuous 

sequence of values, the energy levels are continuously degenerate. However, 

the degree of degeneracy becomes finite if the motion in the xy-plane is 

restricted to a large, but finite, area 5 = LXLV. The number of (now 

discrete) possible values of px in an interval Apx is (Lx(2-nK)Apx. All values 

of px are admissible for which the orbit centre is inside 5 (we neglect the 

radius of the orbit in comparison with the large quantity Ly). From the con¬ 

dition 0 < yo < Ly we have Apx = eHLyjc. Hence the number of states 

(for given n,pz) is eHS/lntic. If the region of motion is bounded in the 

^-direction also (dimension Lz), the number of possible values of pz in 

an interval Apz is (Lzl2-nfi)Apz and the number of states in this interval is 

eHS Lz A eHVApz 

2rrhc 2trfl Pt ~ M9-lFc 
(112.10) 

For an electron there is an additional degeneracy: the levels (112.8) with 

n, c7 = | and n+ 1, a = — | are the same. 

PROBLEMS 
Problem 1. Find the wave functions of an electron in a uniform magnetic field in states 

in which it has definite values of the momentum and angular momentum in the direction of 
the field. 

Solution. In cylindrical polar coordinates p, 4, z with the c-axi- .n the direction of the 
field, the vector potential has components Atj> = {lip, At = Ap = 0, and Schrodinger’s 
equation isj 

- *iri ++1 m _ lihWH m+, = E4) m 
2Mlp?pV?p) ?z* p*<W J ‘ 84, 

We seek a solution in the form 

obtaining for the radial function the equation 

t For, in classical motion in a circle of radius cmvtleH (wher 
velocity on the Ary-plane; see Fields, §21), we have 

y0 = —cpijeH = —cmvzleH + y. 
It is evident from this that y„ is the y coordinate of the centre 

°r mate 1S Ar0 = cmvy/eH-t-x = cpJeH+s. 

re vt is the projection of the 

of the circle. The other co- 

| The electron charge is wi 
distinguish it from the angular 

|e|. and the electron mass is denoted by M to 
The spin term is unimportant in this problem, 
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the form 

Motion in a uniform magnetic field 

a new independent variable f = (McjjhIIIx)p2, vve can write this equation in 

As£ -*■ oo the required function behaves as e"*f, and for £ -*■ 0 as f|m|/2. Accordingly we 
seek a solution in the form 

R(Z) = e-02? 

the equation for t«(£) is satisfied by the confluent hypergeometric function 

If the wave function is everywhere finite, the quantity /S —i|m|— i must be 
integer np. The energy levels are then given by the formula 

which is equivalent to (112.7). The corresponding radial wave functions are 

where an = \f (hi Main); these are normalized by the condition 

|'«2pdp = 1. 

(2) 

The hypergeometric function is here a generalized Laguerre polynomial. 

Problem 2. Find the lowest energy level corresponding to a bound state of an electron in 
a potential well U(r) of small depth (| U\ <^h2jma2, where a is the range of the forces in the 
well), with a uniform magnetic field superimposed (Yu. A. Bychkov 1960). 

Solution. The condition stated for the field U(r) ensures (in the absence of the magnetic 
field) that perturbation theory is applicable to it, and there are no bound states in the well 
(§45). When the magnetic field also is present, U(r) can be regarded as a perturbation only 
for the motion in the plane transverse to H; the (discrete) nature of the energy spectrum of 
this motion is unaltered when U is applied. The nature of the motion in the direction of H is 
altered, however, becoming (as we shall see) finite instead of infinite, i.e. the spectrum 
becomes discrete instead of continuous. Thus for this motion the field of the well cannot be 
treated by perturbation theory. 

Accordingly, when the variables are separated in Schrodinger’s equation (equation (1) of 
Problem 1, with the added term Ut/i on the left), the radial functions R( p) are taken in the 
previous form (2); the lowest level corresponds to the values np = m = 0 of the quantum 
numbers. Substituting in Schrodinger’s equation 0 = Rm( p)x(a), multiplying by R00( p) 
and integrating over p dp, we obtain for y(c) the equation 

(3) 

where * = E—itU 

b'(*) = / t-(V(=- + p*))R2m(p)pdp. 



nass of the particle. This equation_has the same form as Schrodinger’ 
vensional motion in a potential well U(z), with e the energy of this motion 
mply use the result of §45, Problem 1, according to which the discreti 

The wave function i?00(p) *s clamped at distances p~««. If the magnetic field is So weal 
it ani>o, the integral over p is governed by the range p <,a, in which we can take Rc0( p 
flco(O) = 1/«H- Then 

re dV = 2ttP dp dz -v4Trr2dr. In the opposite case of a strong magnetic field, when oh<« 
e integral in (4) is governed by the range p < an, in which we can put U(\^(z2 + p!))ss U(z) 
hen the integral over p reduces to the normalization integral of the function Rm and i: 
ual to unity, so that 

either case, an estimate of the integral shows that €<^hmn- 

Problem 3. Find the energy levels of a hydrogen atom in a magnetic field that is so stronf 
at an<^as, where at is the Bohr radius (R. J. Elliott and R. Loudon 1960). 

Solution. With the condition stated, hwt/>me4/62, the influence of the Coulomb fielc 
the nucleus on the motion of the electron in the plane transverse to H may be regarded as i 
lall perturbation. We thus return to the situation considered in Problem 2, and equation (3 
ay be used, with 

' writing the radial function R„„ in this expression, we take only the energy levels of th< 
igitudinal motion, pertaining to the zero Landau level (\hu>n) of the transverse motion. 
The ground-state wave function x0(z) extends to a distance |z| $ at and varies slowly ovei 
is distance (without zeros, so that it does not vanish at z = 0). Hence the ground leve 
tisfies the conditions used in §45, Problem 1, and we can use formula (6), which is basec 
the solution of that problem. The logarithmically divergent integral is "cut oflf’’ at ar 

per limit of distance |z|~fle and at a lower limit |z|~ uh (where |z|~ p and it is not per 
issible to replace \/(p, + z2) by M in (7)). The result is 

t7(z)ss —e*/z (obtained 
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can be brought, by the substitution x = z4>(z), to the form 

which is the same as the equation for the radial wave functions of j states in the three- 
dimensional Coulomb problem. The required levels are therefore given by (36.10): 

€„ = (10) 

with n = 1,2, 3, .... This expression too has only logarithmic accuracy; the next correction 
term would be small in comparison with the principal term, but only in the ratio 1/log 
(OBlaH)- 

Equation (9) gives the wave function only for 2 > 0. It can be continued into the region 
2 < 0 as y( — 2) = x(z) or as x( — 2) = — *(z). Accordingly, in this approximation the levels 
(10) are doubly degenerate. This degeneracy is, however, removed in higher approximations 
with respect to ohIob- 

§113. An atom in a magnetic field 

Let us consider an atom in a uniform magnetic field H. Its Hamiltonian 

H = + + S, (H3.1) 

where the summation is taken over all the electrons (the electron charge being 

written as — |e|); U is the energy of interaction of the electrons with the 

nucleus and with one another, and S = Esa is the operator of the total 

(electron) spin of the atom. 

If the vector potential of the field is taken in the form (111.7), then, as 

already noted, the operator p commutes with A. Expanding the bracket in 

(113.1) and denoting by Ho the Hamiltonian of the atom in the absence of 

the field, we find 

//= //0 + ^2A-Pa + ^2A«2 + —1H- S- 
me „ 2me1 „ me 

Substituting A from (111.7), we obtain 

H = H0 + P-H.Jr 
2 me ^ 

f>a + J— y (Hxra)2+^H. S. 
^ 8mc9-^ me 

The vector ra x pa, however, is the operator of the orbital angular momentum 

of the electron, and the summation over all the electrons gives the operator 

JiL of the total orbital angular momentum of the atom. Thus 

fi = /?0 + mb(L + 2S) .H + (C2/8W<:2) 2 (Hxr„)2, (113.2) 

where p.B is the Bohr magneton. The operator 

Pat = ~ /ifi(L + 2S) (113.3) 
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may be regarded as the operator of the “intrinsic” magnetic moment of the 

atom, which it possesses in the absence of the field. 

The external magnetic field splits the atomic levels and removes the 

degeneracy with respect to the directions of the total angular momentum (the 

Zeeman effect). Let us determine the amount of this splitting for atomic 

levels having definite values of the quantum numbers J, L and 5 (i.e. 

assuming the case of LS coupling for the levels; see §72). 

We shall assume that the magnetic field is so weak that psH is small com¬ 

pared with the distances between the energy levels of the atom, including the 

fine-structure intervals. Then the second and third terms in (113.2) can be 

regarded as a perturbation, the unperturbed levels being the separate com¬ 

ponents of the multiplets. In the first approximation we can neglect the third 

term, which is quadratic with respect to the field, in comparison with the 

second term, which is linear. 

In this approximation, the energy AE of the splitting is determined by the 

mean values of the perturbation in the (unperturbed) states which have 

different values of the projection of the total angular momentum on the 

direction of the field. Taking this direction as the ar-axis, we have 

A E = pBH{Lz + 2Sz) = pBH{Jz + Sz). (113.4) 

The mean value Jz is just the given eigenvalue of Jz = Mj. The mean value 

Sz can be found as follows, using stepwise averaging (cf. §72). 

We first average the operator S over a state of the atom with fixed values of 

5, L and J, but not of Mj. The operator § thus averaged must be “parallel” 

to J, the only conserved “vector” characterizing a free atom. We can there¬ 

fore write ' 

S = constant x J. 

In this form, however, the equation is purely conventional, since the three 

components of the vector J cannot simultaneously have definite values. Its 

^-component can be taken literally: 

Sz = constant xjz = constant x Mj, 

as can the equation 

S . J = constant x J2 = constant x J(J + 1), 

which is obtained on multiplying both sides by J. Taking the conserved 

vector J under the averaging sign gives S . J = S . J. The mean value S . J 

is the same as the eigenvalue 

s.j = i[7(7+l)-L(L + l) +5(5+1)], 

to which it is equal in a state having definite values of L2, S2 and J2; cf. 
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formula (31.4). Determining the constant from the second equation and 

substituting in the first equation, we therefore have 

£ = Mj] . S/J2. (113.5) 

Collecting the above expressions and substituting in (113.4), we find the 

following final expression for the amount of the splitting: 

A E = fxBgMjjH, (113.6) 

where 

J(J+l)-L(L + l) + S(S+l) (113.7) 

g W+i) 

is called the Lande factor or the gyromagnetic factor. If there is no spin 

(S = 0, and so7 = L),g = 1; if L = 0 (and so J = S),g = 2.f 

Formulae (113.6) gives different values of the energy for all the 27+1 

values Mj = —J, -J+\, ..., J. Thus the magnetic field completely 

removes the degeneracy of the levels with respect to directions of the angular 

momentum, unlike the electric field, which leaves the levels with Mj = 

±\Mj\ unsplit (§76)7 However, the linear splitting described by (113.6) 

does not occur if g = 0; this can refer even to states for which7^0, such as 

4£>l/2. 

We have seen in §76 that there is a relation between the displacement of an 

energy level of an atom in an electric field and its mean electric dipole 

moment. A similar relation exists in the magnetic case. The potential energy 

of a system of charges is given, in classical theory, by — p . H, where p is the 

magnetic moment of the system. In the quantum theory, it is replaced by the 

corresponding, operator, so that the Hamiltonian of the system is 

H = Ho-p.n = Ho-pzH. 

Now, applying (11.16), with the field H as the parameter A, we find that the 

mean value of the magnetic moment is 

fz = -dAE/dH, (113.8) 

where AE is the displacement of the energy level for the given state of the 

atom. Substituting (113.6), we see that an atom in a state with a definite 

t The splitting is described by the general formulae (113.6) and 
anomalous Zeeman effect. This unfortunate name arose because 
electron was discovered, the effect described by (113.6) with g = 1 

t The arguments applied to the electric-field case in §76 are not 
The reason is that H is an axial vector and therefore changes sign 
containing It. Hence the states obtained from each other by this opt 
different fields, not in the same field. 

(113.7) is often called the 
, before the spin of the 

was regarded as normal, 
valid for a magnetic field 
on reflection in any plane 
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value Mj of the projection of the angular momentum on some direction z 

has a mean magnetic moment in that direction 

P-Z = — p-BgMj. (113.9) 

If the atom has neither spin nor orbital angular momentum (S = L = 0), 

the second term in (113.2) gives no displacement of the level, either in the 

first approximation or in any higher one (since the matrix elements of L 
and S vanish). Hence, in this case, the whole effect arises from the third 

term in (113.2), and in the first approximation of perturbation theory the 

displacement of the level is equal to the mean value 

Putting (H x ra)2 = H2ra2sin26, where 6 is the angle between ra and H, 

and averaging with respect to the directions of ra, we have sin2# = 1—cos2# 

= 2/3 (the wave function of a state with L = S = 0 is spherically sym¬ 

metrical, and so the averaging over directions is independent of that over 

distances ra)- Thus 

A E (113.11) 

The magnetic moment calculated from (113.8) is then proportional to the 

magnitude of the field (an atom with L = S — 0 has, of course, no magnetic 

moment in the absence of a field). Writing it in the form %H, we can regard 

the coefficient ^ as the magnetic susceptibility of the atom, given by Langevin's 

formula (P. Langevin 1905): 

X = — 
6 me2 ~w 

(113.12) 

It is negative, i.e. the atom is diamagnetic.f 
If J = 0, but A = L # U, the displacement linear with respect to the field 

again vanishes, but the quadratic effect from the perturbation —. H 

in the second approximation exceeds the effect (113.11).J This is because, 

according to the general formula (38.10), the correction to the eigenvalue 

of the energy in the second approximation is given by a sum of expressions 

whose denominators contain the differences between the unperturbed 

t The Thomas-Fermi i 
electrons from the nucleu 
n(r) converges, it does so 
given by experiment. 

t For S = L -Tt 0, the n, 
L,J± 1 are not in general 

-del cannot be used to calculate the mean square distance of the 
Although the integral J «ra dr with the Thomas-Fermi density 

o slowly, and therefore the results are quite different from those 

-diagonal matrix elements of Lz, Sz for the transitions S, L, J ->S, 
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energy levels, in this case the fine-structure intervals of the level, which 

are small quantities. We have remarked in §38 that the correction to the 

normal level in the second approximation is always negative. Hence the 

magnetic moment in the normal state is positive, i.e. an atom in the normal 

state with 7=0, L = S#0is paramagnetic. 

In strong magnetic fields, where ^o H is comparable with or greater than 

the intervals in the fine structure, the splitting of the levels differs from 

that predicted by formulae (113.6), (113.7); this phenomenon is called the 

Paschen-Back effect. 

The calculation of the energy of the splitting is very simple in the case 

where the Zeeman splitting is large in comparison with the intervals in the 

fine structure but still, of course, small compared with the distances between 

the different multiplets (when it may be shown that we can, as before, neglect 

the third term of the Hamiltonian (113.2) in comparison with the second). 

In other words, the energy in the magnetic field considerably exceeds the 

spin-orbit interaction.-}- Hence we can neglect this interaction in the first 

approximation. The projections ML and Ms of the orbital angular momen¬ 

tum and spin are then conserved, as well as the projection of the total angular 

momentum, so that the splitting is given by the formula 

AE = mH{ML + 2 Ms). (113.13) 

The multiplet splitting is superposed on the splitting in the magnetic 

field. It is determined by the mean value of the operator AL . S (72.4) with 

respect to the state with the given ML, Ms (we are considering the multi¬ 

plet splitting due to the spin-orbit interaction). For a given value of one of 

the angular momentum components, the mean values of the other two are 

zero. Hence L . S = ML Ms, so that the energy of the levels is given in 

the next approximation by the formula 

A E = hbH{Ml + 2Ms) + AMlMs. (113.14) 

The calculation of the Zeeman effect in the general case of any type of 

coupling (not LS) is not possible. We can say only that the splitting (in a 

weak field) is linear with respect to the field and proportional to the projection 

Mj of the total angular momentum, i.e. it has the form 

= H-sgnjHMj, (113.15) 

where the gnJ are some coefficients characterizing the term in question; n 

denotes the assembly of all the quantum numbers, except J, which charac¬ 

terize the term. Though these coefficients cannot be calculated separately, it 

is possible to obtain a formula, useful in applications, which gives their sum 

taken over all possible states of the atom with the given electron configuration 
and total angular momentum. 

f For intermediate cases, where the effect of the magnetic field is comparable 
orbit interaction the splitting cannot be calculated in a general form; the calcul 
is given in Problem 1 

■ ith the sDin- 
ionforS = A 
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By definition, 

gnjMj = (nJMj\Lt + 2St\nJMjy 

The quantities^sLjMj, whereaslj is the Lande factor (113.7) corresponding 

to LS coupling, are the diagonal matrix elements 

EsljMj = (SLJMj\Lz + 2Sz\SLJMj}, 

calculated with a different complete set of wave functions. The functions in 

each set are obtained from the other set by a linear unitary transformation. 

But this transformation leaves unchanged the sum of the diagonal matrix 

elements (§12). Hence we conclude that 

^ gnjMj = JC gsLjMj, 

or, since gnj and gsLj do not depend on M, 

Xgnj = Xgsu. (113.16) 
” S,L 

The summation is taken over all states with the given value of J which are 

possible for the given electron configuration. This is the required relation. 

PROBLEMS 

Problem 1. Determine the splitting of a term with S = i by the Paschen-Back effect. 

Solution. The magnetic field and the spin-orbit interaction hSve to be taken into 
account simultaneously by perturbation theory, i.e. the perturbation operator ist 

fi = At ■ & + mj(Lz + 2$z)H. 

As the initial wave functions for the zero-order approximation, we take functions correspond¬ 
ing to states with definite values of L, S = £, Ml, Ms(L given; Ml = —L,... ,L\Ms = ± 11- 
In the perturbed states, only the sum M=Mj = Ml + Ms is conserved (V commutes with jz), 
so that we can ascribe definite values of M to the components of the split term. 

The values M = ±(L + i) can occur in only one way each: with |MlMs) = |L4> and 
| — L, —1>. Hence the corrections to the energy of the states with these M are simply equal 
to the diagonal matrix elements (MiMs\ V\Mi,Ms', with the indicated values of |Mz,M.s>. 
The remaining values of M can occur in two ways each: \M — 1, and |A/ + i, — i>. Here 
two different values of the energy correspond to each M; they are determined from the secular 
equation formed from the matrix elements for transitions between these two states. The 
matrix elements of L . S are calculated by directly multiplying the matrices 
and <Ms]S|M's>, and are 

(MlMs\L . S MlMs> = MlMs. 

<M + l -I|L. i> = <ji/. i|L. SI.1/+. 
!V[<L + .W+I><L-M + 1,>]. 

t We do not include in V the t( 
must be borne in mind, however, 
virtue of the properties of the Par 
the formula as written here. 

proportional to (L . S)s (the spin-spin interaction). It 
t, for a spin S = i, the expression (L . S)2 reduces by 
natrices (see §55) to L . §, and is therefore included in 
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In the absence of a magnetic field, the term is a doublet, the distance between the com¬ 
ponents being « = A(L + i); see (72.6). We take the lower of these levels as the origin of 
energy. Then the final formulae for the levels in the magnetic field are 

E = e±MB//(L+l)for.V = ±(L + \), 

E- = ± ^'[IU2 (22.+ 1)], 

For 1 we have 

E- = e + ^/M/ 2(/.+ \)i{2L+ 1), E- = . 2/.-(2/. + 1), 

in accordance with formulae (113.6), (113.7) (in which we must put S = £, J — L±l). 
For hbF7/£§> 1 we have 

E±-hBH(M± 3)+l«±2ZTT- 

in accordance with (113.14). 

Problem 2. Determine the Zeeman splitting for the terms of a diatomic molecule in 

Solution. The magnetic moment arising from the motion of the nuclei is very small in 
comparison with the magnetic moment of the electrons. Hence the perturbation due to the 
magnetic field can be written for the molecule as for a system of electrons, i.e. in the form 
used previously: V = /ibH . (L + 2S), where L, S are the electron orbital and spin angular 
momenta. 

Averaging the perturbation with respect to the electron state, we have in case a 

Mfi//nz(.\ + 2Z) = ^nHnz{2D.- A). 

The mean value of nz with respect to the rotation of the molecule is the d:agonal matrix 
element 

<JM\nz\JU> = D-MJU+l), 

where M = Mj\ the matrix element is calculated from the reduced matrix element given by 
(87.4) with J and D in place of K and A. Thus the required splitting is 

Problem 3. The same as Problem 2, but for case b. 

Solution. The diagonal matrix elements <AAT]\ V\AKJ) which determine the required 
splitting could be calculated from the general rules given in §87. However, it is simpler and 
more comprehensible to perform the calculation as follows. Averaging the perturbation 
operator with respect to the orbital and electron states, we obtain 

^BH(.\nz + 2St) 

(the spin operator is unaffected by this averaging). Next, we average with respect to rotation 
of the molecule; the mean value of nz is given by formula (87.4), and so we have 

HbH[[A*iK{K+ l)}/^ + 2&]. 

Lastly, we average with respect to the spin wave function; after the whole averaging, the mean 
values of the vectors must be directed parallel to the total angular momentum T, which is the 
only conserved vector. Hence we have (cf. (113.5)) 

hbH r A8 t 
/(/+1)LK(K+1) 

- J v 2S . J j.V/ 
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(M = Mj), or finally 
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+ [./(./-\)-K(K- 1)-, S(S- 1 )]|tf.W. 

Problem 4. A diamagnetic atom is in an external magnetic field Determine the strength 
of the induced magnetic field at the centre of the atom. 

Solution. For S = L = 0 the Hamiltonian contains no perturbation linear in the field, 
and so the wave function of the atom involves no correction of the first order with respect 
to the magnetic field. The change j' in the electron current in the atom induced by the 
external magnetic field is due (again in the first approximation with respect to H) only to the 
addition of the term (|e|/»ic)A to the electron velocity operator. We therefore havef 

j = -p(e°-mc)k = -p(e2 2mOHxr, (1) 

where p is the electron density in the atom. The magnetic field produced at the centre of the 
atom by this additional current is 

cf. (121.8). Substituting (1) and averaging in the integrand over the directions of r, we obtain 

e- Pe 
H|nd =-H -dF 

3 me2 J r 

(2) 

where ^e(0) is the potential of the field at the centre of the atom due to its electron envelope 
In the Thomas-Fermi model ^e(O) = — 1 ■S0Zinme3/tii (see (70.8)), so that 

H|nlj-0-60(r2/^r)224'3H 

= —3-2x 10-SZ4/3H, 

§114. Spin in a variable magnetic field 

Let us consider an electrically neutral particle having a magnetic moment, 

and situated in a magnetic field which is uniform but varies with time. 

We may have in mind either an elementary particle (a neutron) or a complex 

one (an atom). The magnetic field is supposed so weak that the magnetic 

energy of the particle in the field is small compared with the intervals between 

its energy levels. Then we can consider the motion of the particle as a whole, 

its internal state being given. 

Let s be the operator of the “intrinsic” angular momentum of the particle— 

the spin of an elementary particle, or the total angular momentum J for an 

atom. The magnetic moment operator can be represented in the form 
(111.1). The Hamiltonian for the motion of a neutral particle as a whole can 

be written 

/?= -G*/*)S.H; U14-1) 

t This expression 
atom round the direc 

sponds to the Larmor precession of the electron envelope of the 
af the external magnetic field; see Fields, §45. 
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here we write out only the part of the Hamiltonian that depends on the spin. 

In a uniform field, this operator does not contain the coordinates ex¬ 

plicitly}-. Hence the wave function of the particle falls into a product of a 

coordinate and a spin function. Of these, the former is simply the wave 

function of free motion; in what follows, we shall be interested only in the 

spin part. We shall show that the problem of a particle with any angular 

momentum s can be reduced to the simpler problem of the motion of a 

particle of spin £ (E. Majorana). To do this, it is sufficient to use the method 

which we have already employed in §57. That is, instead of one particle of 

spin s, we can formally introduce a system of 2s “particles” of spin £. The 

operator s is then represented as a sum E sa of the spin operators of these 

“particles”, and the wave function as a product of 2sspinors of rank one. The 

Hamiltonian (114.1) then falls into the sum of 2s independent Hamiltonians: 

H = S Ha, Ha= -ids)H . Sa, (114.2) 

so that the motion of each of the 2s “particles” is determined independently of 

the others. When this has been done, we need only reintroduce the com¬ 

ponents of an arbitrary symmetrical spinor of rank 2s in place of the products 

of components of 2s spinors of rank one. 

PROBLEMS 

Problem 1. Determine the spin wave function for a neutral particle of spin 4, in a uni¬ 
form magnetic field which is constant in direction but varies in absolute magnitude 
according to an arbitrary law H = H(t). 

Solution. The wave function is a spinor 4‘v satisfying the wave equation 

ihtpct-2pH.3^ (1) 

Taking the direction of the field as the z-axis, we can write this equation in spinor com¬ 
ponents: 

Ih ('4,' et = ih c>02/tV = 

4,1 = Cie(w/A)Jtfdit 4,2 = Hal. 

The constants c,, c, must be determined from the initial conditions and from the 
tion condition | ^‘p-r | 4‘~l1 = 1 

Problem 2. The same as Problem 1, but for a uniform magnetic field constant in absolute 
magnitude, whose direction rotates uniformly, with angular velocity u, around the z-axis and 
at an angle 6 to it. 

Solution. The magnetic field has the components 

H, = H sin 0 cos wt, Hv = H sin 8 sin wt, H, = H cos 9. 

f These arguments 

magnetic field, which 
as a function of time, 

in also be applied to the case where any particle (charged or not) 
magnetic field, if its motion can be regarded as quasi-classical. The 

ries as the particle moves along its path, can then be regarded simply 
' we can apply the same equations to the variation of the spin wave 
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and from (1) we obtain the equations 

§115 

0> = iwh[F cos P + sin B), 

.i2 = iWfd-V"' sin 0-02 cos 6), 

where wh = nH//z. The substitution 01 = e-»<wi0i_ 02 = fi*u<02 converts these equa¬ 
tions into linear equations with constant coefficients, whose solution gives 

0i = f-fc,i/2(flfini/2 + f2f-in. 2)_ 

02 = sin BI ---finr2-C±-e-inU2\ 
Lfi+w+2w«cose n-tu-2w„cose J' 

n = x'[(w+2ojh cos 0)2+Wsin2fi], 

§115. The current density in a magnetic field 

We shall now derive the quantum-mechanical expression for the current 

density when a charged particle moves in a magnetic field. 

We start from the formula] 

hH = -(1/c) Jj.SAdF; (115.1) 

this determines the change in the Hamilton’s function of charges distributed 

in space when the vector potential is varied.]; In quantum mechanics this 

formula must be applied to the mean value of the Hamiltonian of the charged 

particle: 

fl= |Y*[{p-eAlcfl2m-^ls)U . s]T dV. (115.2) 

Effecting the variation and bearing in mind that SH = curl SA, we find 

hfi-. : JVF*|^—(p.SA+SA.p)+—jA.SaJydV—(fj./s)JcurlSA.Y*S'FdF, 

The term in p . SA is transformed by integration by parts: 

(115.3) 

J .SAT dV = - ihjT* V(SA .T) dV 

= ih J SA.TyT* dF 

t In this section, j denotes the electric current density, i.e. the particle flux density multi¬ 
plied by the particle charge e. 

J Lagrange’s function for a charge in a magnetic field contains a term ev . A/c, or, if the 
charge is distributed in space, (1/c) J j . A dV. 

The change in the Lagrange’s function when A is varied is therefore 

SL = (1/c) Jj.SAdF. 

An infinitely small change in Hamilton’s function is, however, equal to the change in 
Lagrange’s function, taken with the opposite sign (see Mechanics, §40). 
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(the integral over an infinitely distant surface vanishing in the usual way). 

The integration by parts is also used in the last term in (115.3), together 

with the well-known formula of vector analysis 

a. curlb = —div(axb)+b. curia. 

The integral of the div term vanishes, so that we have 

| Y*sT. curlSA dV = j 8A. curl(T*sT) dV. 

The final result is 

_ ieh C e2 P 
S/?=-I 8A.(TVT*—T*VT) dV+— A.SAYY* dV— 

2 mcj mc2J 

-faIs) | SA. curl(Y*sY) dV. 

Comparing this expression with (115.1), we find the following expression 

for the current density: 

ipk p2 
j = —[(V't'*)V-vV*VY]-—A't'*'¥ + fals)ccurlQ¥*s'¥). (115.4) 

2m me 

We emphasize that, though this expression contains the vector potential 

explicitly, it is nevertheless one-valued, as it should be. This is easily seen 

by direct calculation, recalling that the transformation (111.8) of the vector 

potential must be accompanied by the transformation (111.9) of the wave 

function. 

It is also easy to verify that the current (115.4) and the charge density 

p = e|T|2 satisfy, as they should, the continuity equation 

dp/dt + divj = 0. 

The last term in (115.4) gives the contribution of the magnetic moment of 

the particle to the current density. It is c curl m, where 

m = fals)xV*sT = 'FVF (115.5) 

is the spatial density of the magnetic moment. 

The expression (115.4) is the mean value of the current. It may be 

regarded as a diagonal matrix element of the current density operator j. 

This operator is most simply written in the second quantization form, with 

T and T* replaced by operators 4' and (and, according to the general 

rule, with T+ on the left of T in each term). The non-diagonal matrix 
elements of this operator can be determined also: 

jnm = ^[(VT„*)Tm-TM*VTm]-^AT„*Tm + 
Zm mc 

+(hh)c curipfn *sTm) (115.6) 



CHAPTER XVI 

NUCLEAR STRUCTURE 

§116. Isotopic invariance 

There is as yet no complete theory of nuclear forces—that is, the forces which 

act between nuclear particles or nucleons and hold them together in the nucleus 

of an atom. In consequence, to describe nuclear forces it is still necessary to 

rely ori experiment to a much greater extent than would be needed if a con¬ 

sistent theory were available. 

The two types of particle which are nucleons differ mainly in their electrical 

properties, the proton (p) having a positive charge, while the neutron (n) is 

neutral. They have the same spin and their masses are almost equal (1836-1 

and 1838-6 electron masses respectively). This similarity is no accident. 

Despite the difference in electrical properties, the proton and the neutron are 

very similar particles, and this similarity is of fundamental importance. 

It is found that, apart from the relatively weak electric forces, the forces 

of interaction between two protons are very similar to those between two 

neutrons. This is called the charge symmetry of nuclear forces.f 

In so far as this symmetry is maintained we can, in particular, say that 

systems of two protons (pp) and two neutrons (nn) have states yhose properties 

are the same. Here, of course, it is important that protons and neutrons obey 

the same statistics (namely Fermi statistics) and so only states with the same 

symmetry of the wave functions ip{ri> ci; r2, 02) are permissible for the pp 

and nn systems, namely those antisymmetrical with respect to a simultaneous 

interchange of the coordinates and spins of the particles. 

Charge symmetry is, however, only one of the manifestations of a still more 

far-reaching physical similarity between protons and neutrons, known as 

isotopic invariance.\ This leads to the existence of an analogy not only between 

pp and nn systems (obtained from one other by interchanging all protons 

and neutrons), but also between these and the pn system, w-hich consists of 

different particles. There cannot be a complete analogy here, of course, 

since the possible states of the pn system, in which the particles are non¬ 

identical, are certainly not restricted to those with antisymmetrical wave 

functions. It is found, however, that among the possible states of the pn 

system there are some whose properties are almost exactly the same as 

t It appears, in particular, in the similarity of the properties (binding energy, energy 
spectrum, etc.) of what are called mirror nuclei, i.e. those which differ in that the numbers of 
protons and neutrons are interchanged. 

I Also called isobaric invariance in the literature. 
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those of systems of two identical nucleonsf; these states are, of course, 

described by antisymmetrical wave functions (the remaining states of the 

pn system are described by symmetrical wave functions and do not occur in 

the pp and nn systems). 

Isotopic invariance, like charge symmetry, is valid only if electromagnetic 

interactions are neglected. Another reason why isotopic invariance is only 

approximately true is the slight mass difference between the neutron and the 

proton; if there were exact symmetry between neutrons and protons, their 

masses would of course be identical also.* 

A convenient formalism may be used to describe the isotopic invariance. 

It follows naturally from the fact that isotopic invariance is equivalent to 

the possibility of classifying the states of a system of nucleons with respect 

to the symmetry of its coordinate-spin wave functions i/i, independent of the 

types of nucleons concerned. The required formalism must therefore enable 

us to define for the description of the states of the system a new quantum 

number which uniquely determines the symmetry of the functions i/i. A 

similar situation has already been encountered in connection with the pro¬ 

perties of a system of particles with spin i. We have seen in §63 that, if the 

total spin S of such a system is specified, then the symmetry of its coordinate 

wave function <£ is uniquely determined, regardless of which of the two possible 

values ( + |) is taken by the component cr of the spin of each particle. 

It is therefore reasonable that, for a formal description of isotopic in¬ 

variance, the neutron and the proton should be regarded as two different 

“charge states” of one particle, the nucleon, differing in the value of the 

component of a new vector t, whose formal properties are analogous to those 

of the vector of spin i. This new quantity, which is usually called the 

isotopic spin or i>ospin,|| is a vector in “isotopic space” £, -q, £ (which, of 

course, is not related in any way to real space). 

The component of the isotopic spin of a nucleon along the £-axis can take 

only the two values tj = + b. The value +1 is arbitrarily assigned to the 

proton and — | to the neutron.ff The isotopic spins of several nucleons add 

to give the total isotopic spin of the system in accordance with the same 

rules as for the addition of ordinary spins. The ^-component of the total 

isotopic spin of the system is equal to the sum of the values of t? for the 

component particles. For a nucleus in which the number of protons (i.e. the 

atomic number) is Z, the number of neutrons N and the mass number 

A = Z+N we have 

Tc= Xtc=1(Z-N) = Z-IA, (116.1) 

i-e- gives the total charge of the system if the number of nucleons is fixed. 

Ting of neutrons and t This was shown from an analysis of experimental data on the scatte 
protons by protons (G. Breit, E. U. Condon and R. D. Present 1936). 

t In reality this mass difference between the neutron and the proton is probably also electro- 
magnetic in origin. 

. First used by VV. Heisenberg (1932), and applied to the description of isotopic invariance 
by B. Cassen and E. U. Condon (1936). 
tt The opposite assignment is also found in the literature. 
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It is therefore clear that there is a strict conservation of the quantity T$, 

which simply expresses the conservation of charge. 

The absolute magnitude T of the isotopic spin of the system determines 

the symmetry of the “charge part” u of the wave function of the system, just 

as the total spin S' determines the symmetry of the spin wave function. It 

therefore determines also the symmetry of the coordinate-spin (i.e. the 

ordinary) wrave function ip, since the total wave function of a system of 

nucleons (i.e. the product tpw) must have a definite symmetry; as for all 

fermions, it must be antisymmetrical with respect to simultaneous inter¬ 

change of the coordinates, spins and “charge variables” r. of the particles. 

The existence of a definite symmetry of the wave functions <p of any system of 

nucleons is therefore expressed, in this treatment, by the conservation of the 

quantity T. 

We can say, in other words, that isotopic invariance signifies the invariance 

of the properties of the system with respect to rotations in isotopic space. 

States differing only in the value of Tj (with T and the remaining quantum 

numbers having given values) have identical properties. In particular, charge 

symmetry—the invariance of the properties of the system with respect to the 

replacement of neutrons by protons and vice versa, being a particular case 

of isotopic invariance, is described as invariance with respect to a simultan¬ 

eous change of sign of all the tj, i.e. with respect to rotation in isotopic 

space through an angle of 180° about an axis lying in the ^-plane. 

It may be noted that the obvious violation of isotopic invariance by the 

Coulomb interaction yis also formally evident from this treatment. The 

Coulomb interaction depends on the charge, i.e. on the ^-components of 

the isotopic spin, which are not invariant with respect to rotations in 

space. ' 

. Let us consider, for example, a system of two nucleons. Its total isotopic 

spin can take the values T = 1 and T = 0. For T = 1, the possible values 

of the component are 1, 0, — 1. According to (116.1), the corresponding 

charge values are 2, 1,0, i.e. a system with T = 1 may be pp, pn or nn. The 

charge part u> of the wave function with T = 1 is symmetrical (just as a 

symmetrical spin function corresponds to a spin 5=1; cf. §62). Hence 

states with antisymmetrical ordinary wave functions ip correspond to the 

value T = 1. For I = 0 we can only have !T£ = 0, and the corresponding 

function u> is antisymmetrical; this therefore relates to states of the pn 

system with symmetrical wave functions \p. 

The isotopic spin corresponds to an operator x which acts on the charge 

variable tj in the wave function, just as the spin operator s acts on the spin 

variable a. By virtue of the complete formal analogy' between the two, 

the operators f{, ■?,,, f { are given by the same Pauli matrices (55.7) as the oper¬ 

ators sx, sv, sz. 
Here we may note some combinations of these operators which have a 

simple and evident meaning. The sum 
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is an operator which, acting on a neutron wave function, converts it into a 

proton wave function, and acting on a proton wave function gives zero. 

Similarly, the operator 

/0 0 

^“Hl 0 

converts a proton 

operator 

leaves a proton wave function unchanged and annihilates a neutron; on 

multiplication by e, it may be called the nucleon charge operator. 

We shall also show that the operator P of the interchange of two particles 

may be expressed in terms of the operators xi, X2 of their isotopic spins. 

By definition, the result of the action of the interchange operator on the wave 

function \6(ri, ci; r?, <72) of the system of two particles consists in interchang¬ 

ing their coordinates and spins, i.e. interchanging the variables ri, and 

r2. do- The eigenvalues of this operator are ± 1, and occur when it acts on a 

symmetrical or antisymmetrical function if/: 

P'l’sym = ^symi P<pznt = — v&ant- (116.2) 

We have seen above that the functions i/rSyra and <pa.nt correspond to charge 

functions u>t with values of the total isotopic spin 7=0 and T = 1. Hence, 

in order to put the operator P in a form in which it acts on charge variables, 

it must have the properties 

Pwo=w0,Pwl= -wi. (116.3) 

These conditions are satisfied by the operator 1 — T2, as is easily seen by 

noting that oj? is the eigenfunction of the operator T2 corresponding to the 

eigenvalue T(T+ 1). Finally, writing T = Ti + x2and using the fact that 

and x2 have the same definite values t(t+1) = £, we find the required ex¬ 

pression! 

p= l_f2= (116.4) 

For the matrix elements of different physical quantities in a system of 

nucleons there are certain selection rules for the isotopic spin (L.A. Radicati 

1952). Let F be some quantity (of any tensor rank) having the property of 
additivity, in the sense that its value for the system is equal to the sum of its 

values for the individual nucleons. We write the operator of such a quantity 

where the summations 

/=E/p+2/„, 

ver all protons and all neutrons in the system. 

+ An operator of this form derived 
let in §62, Problems 

is of the particles has already been 
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This expression can be written in the identical form 

m+n)fv+m-rc)fn 

= &<Jp+fn) + '%Jp-fn) fC, (H6.5) 

where the summation in each term is over all nucleons (both protons and 

neutrons). The first term in (116.5) is a scalar; the second is the ^-component 

of a vector in isotopic space. The same selection rules therefore apply to them, 

with respect to the isotopic spin, as to scalars and vectors in ordinary space 

with respect to the orbital angular momentum (see §29): the isotopic scalar 

allows only transitions without change of T; the ^-component of the isotopic 

vector has matrix elements only for transitions in which AT = 0 or ±1, 

and in addition transitions with AT = 0 are forbidden between states with 

T? = 0, i.e. systems w'ith the same number of neutrons and protons; the 

latter rule follows from the fact that the matrix element of a transition with 

AT = 0 is proportional to T( (see (29.7)). 

For example, for the dipole moment of the nucleus the quantities /„ are 

the products er, and fn = 0. The first term in (116.5) is then 

ieSr = {e/lm) Lmr, 

is therefore proportional to the radius \ ector of the centre of mass, and can 

be made to vanish by a suitable choice of the origin. Thus the dipole moment 

of the nucleus reduces to the ^-component of the isotopic vector. 

§117, Nuclear forces 

The principal characteristic of the specifically nuclear forces w'hich act 

between nucleons is their short range of action: they decrease exponentially 

at distances of the order of 10-13 cm. 

In the non-relativistic limit we can say that nuclear forces are independent 

of the velocities of the nucleons and have a potential; the velocities of the 

nucleons in the nucleus are about one-quarter of the velocity of light (see 

below). The potential energy U of the interaction of two nucleons depends 

not only on the distance r between them but also quite strongly on their spins.f 

The precise dependence on r could, of course, be established only by a 

consistent theory of nuclear forces. The nature of the spin dependence, 

however, can be found from simple considerations based on the properties of 

spin operators. 
We have at our disposal only three vectors on which the interaction energy 

U can depend: the unit vector n in the direction of the radius vector between 

the two nucleons, and their spins si and s?. According to the general proper¬ 

ties of an operator of spin any function of it reduces to a linear function 

(§55). It must also be taken into account that the product n.s is not a true 

scalar but a pseudoscalar (since n is a polar vector and s an axial vector). 

t In this respect the interaction of 
electrons, for which the spin—spin inter 

s differs considerably from the interaction of 
purely relativistic and is small (in atoms). 
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Thus it is evident that only two independent scalar quantities linear in each 

of the spins can be constructed from the three vectors n, Si, s2, namely 

S1.S2 and (n.Si) (n.s2).f 

Consequently, the operator of the interaction of two nucleons, as regards 

its dependence on the spins, can be written as the sum of three independent 

terms: 

U ora = Ufr)+ C2(r)(i1.i2)+ L;3(r)[3(ii.n)(s2.n)-i1.s2], (117.1) 

of which two depend on the spins and one does not. The third term is here 

written in a form which gives zero on averaging over the directions of n. 

The forces described by this term are usually called tensor forces. 

In (117.1) we have used the suffix ord (for “ordinary”) in order to emphasize 

the fact that this operator does not affect the charge state of the nucleons. 

There is another possible interaction which converts a proton into a neutron 

and vice versa. The operator of this “exchange” interaction differs in form 

from (117.1) by the presence of the particle interchange operator (116.4): 

Cex ch= {Udr)+ U5(r)(s1.%2) + C6(r)[3(s1.n)(s2.n)-i1.s2]}A (117.2) 

The total interaction operator is the sum 

t7=f/ord + tW (117.3) 

Thus the interaction of two nucleons is described by six different functions 

of the distance between them. All these terms are in general of the same 

order of magnitude.]; 

The spin operators appearing in (117.1) and (117.2) can be expressed in 

terms of the total-spin operator S. By squaring the equations S = §1 + §2 

and S.n = §i.n + s2.n and using the results §x = s2 = f, (§i.n)2 = (s2.n)2 

= ] (see (55.10)), we find 

Si-S* = «§2-f), (si.n)(i2.n) = *[(S.n)*-i]. (117.4) 

The operator S2 commutes with the operator S, and so the interactions 

described by the first two terms in (117.1) and (117.2) conserve the total 

spin vector of the system. The tensor interaction contains the operator 

(S.n)2, which commutes with the square §2 but not with the vector S itself. 

In consequence, only the magnitude of the total spin is conserved, not its 

direction. 

The total spin 5 of a system of two nucleons can take the values 0 and 1, 

as can the total isotopic spin T. Hence all possible states of this system fall 

into four groups with various pairs of values of 5 and T. For states in each 

t Here it is assumed that the nuclear forces are invariant under spatial inversion, i.e. that 
they cannot include pseudoscalar quantities. There are at present no experimental results to 
disprove this assumption. 

t It may also be mentioned that the interaction dependent on the velocities of the nucleons, 
in an approximation linear with respect to these velocities, is described by an operator of the 
form [ Md + ^(r)P]L . S, where L = r X p is the orbital angular momentum of the relative 
motion of the nucleons, p the linear momentum of this motion, and S = Sl + Sa; this operator 

S . n are excluded by the require- contains 
:s of ir 

. Terms of the for 
and under ti 
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of these groups there is an interaction operator of the form A(r) (for 5=0) 

or A{r) + B{r) [(S.n)2-§] (for 5 = 1), to which the general operator (117.3) 

reduces in these cases (see Problem l).f 

For given values of 5 and T the states of the system are classified with 

respect to the values of the total angular momentum J and the parity. As 

we know, the values T = 0 and T = 1 correspond to the states with sym¬ 

metrical and antisymmetrical wave functions i/i respectively. Since, on the 

other hand, the value of 5 determines the symmetry of the wave function 

with respect to the spin variables (symmetrical for 5 = 1 and antisymmetrical 

for 5 = 0), it is clear that, if the two numbers 5 and T are specified, the 

symmetry of the wave function with respect to the space variables (i.e. the 

parity of the state) is also determined. Evidently the states of the system with 

isotopic spin T = 0 can only be even triplets (5 = 1) or odd singlets (5 = 0), 

while those with isotopic spin T = 1 are odd triplets or even singlets. 

Since the spin, as a vector, is not conserved, the orbital angular momentum 

also need not in general be conserved; only the sum J = L + S is conserved. 

Nevertheless, the magnitude L may be conserved simply because specified 

values of J, S and the parity (or J, S and T) may be compatible with only 

one particular value of L (the parity of a system of two particles, it will be 

remembered, is (—1)L). For example, an odd state with 5 = 1, J = 1 can 

only have L = 1, i.e. it is 3Pi- In other cases two different values of L may 

correspond to given values of 7, 5 and the parity, so that L is not conserved. 

For example, in an odd state with 5 = 1, J = 2 we can have L = 1 or 

L = 3, i.e. it is a superposition zPi + ^F2. 

Thus we arrive at the following possible states of a system of two nucleons 

(the signs + indicating the parity): 

for T= 1: 3Po-,3Pi-,{3P2+3F2)~,3F3-,... ; 

i50+,1D2+,1G4+,...; 

for T = 0: (35x + 3fl,)+3D2+, {3D3 + 3G3)+,...; 

iPr.iFs-,.... 

Nuclear forces are not in general additive. This means that the interaction 

in a system of more than two nucleons does not reduce to a sum of inter¬ 

actions between each pair of particles. It seems, however, that ternary and 

higher interactions are relatively unimportant in comparison wdth binary 

interactions, and so, in discussing the properties of complex nuclei, we can 

to a considerable extent take as basis the properties of binary interactions. 

Experimental results concerning nuclei show' that, as the number A of 

t The experimental results concerning the properties of the deuteron show that for T — 0, 
5 = 1 the nucleon interaction involves a strong attraction with a deep "potential well” (the 
presence of tensor forces makes it difficult to formulate this fact in terms of properties of the 
functions A(r) and B(r)); in addition, it follows from the sign of the observed quadrupole 
moment of the deuteron that in this state the coefficient B(r) in the tensor forces is negative. 
From nucleon scattering results it follows that for T = 1,5 = 0 there is also an attraction, 
but one which is weaker and, in particular, does not lead to the formation of a stable system 
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particles increases, the system of nucleons begins to behave like a macro¬ 

scopic “nuclear matter”, whose volume and energy increase in proportion to 

A (apart from effects due to the Coulomb interaction of protons and the 

existence of a free surface of the nucleus). The property of nuclear forces 

which gives rise to this phenomenon is called saturation. 

The existence of this property imposes certain restrictions on the functions 

Ui, ... ,£/« which determine the binary interactions of nucleons. Let us 

suppose that all the particles are concentrated in a volume whose dimensions 

are of the order of the radius of action of nuclear forces. Then every pair of 

particles interact. If there is a configuration of certain nucleons (and an 

orientation of their spins) for which attractive forces act between every 

pair, then the potential energy of such a system is negative and proportional 

to A2; the kinetic energy is positive and proportional to A5/3, a smaller 

power of A.f It is clear that under such conditions a sufficiently large 

number of nucleons will in fact be concentrated in a small volume independ¬ 

ent of A, i.e. will not form nuclear matter. The condition for saturation of 

nuclear forces must therefore be expressed as the conditions for the absence 

of configurations leading to a negative interaction energy proportional to 

A2 (see Problem 2). 

The proportionality between the volume of nuclear matter and the number 

of particles is expressed by a relation of the form 

R = roAU3, (117.5) 

which connects the radius R of the nucleus and the number A of particles 

in it. Experimental results (on the scattering of electrons by nuclei) lead to 

the value ro = IT x 10~13 cm. 

We may determine the limiting momentum of nucleons in nuclear matter 

(cf. §70). The volume of phase space corresponding to particles in unit 

volume of physical space and with momenta p ^po is ‘brpyZ. Dividing by 

(Inti)3, we obtain the number of “cells” in each of which two protons and 

two neutrons can be simultaneously. Putting the number of protons equal 

to the number of neutrons, we obtain 4(47r/3)(/>o/27i7i)3 = A/V, where V is 

the volume of the nucleus. Substitution of (117.5) gives 

p0 = {2>n2AI2V)ll3h = (9^)i/3^/2ro 

= 1-4 x 10-14 g.cm/sec. 

The corresponding energy pyimv, where mv is the nucleon mass, is ~ 40 

MeV, and the velocity po/mp v 

PROBLEMS 

Problem 1. Find the operators of the interaction of two nucleor 
values of 5 and T. 

with definite 

t The density n at which the particles are 
to their number A, and the kinetic energy of e 
The total kinetic energy is therefore ~ A.A1'3. 

uncentrated in a given volume is proportional 
ach particle is proportional to n2'3 (cf. (70.1)). 
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Solution. The required operators Cst are obtained from the general expression (117.1) 
-(117.3), using (116.3) and (117.4): 

Vm = t-’i — | Uz +L\— l Us, 

Uoi = U1 — IU2— Ut+fL's, 

h":c = L! 4* 1 £ '2 + h‘4 4* 1 C.5+ 

+«U3+Le)[3(§.n)2-2], 

t/11 = Ui + iU2-Ui-iUs + 

+KE/3-C/,)[3(S-n)S-2]. 

PROBLEM 2. Find the conditions for the saturation of nuclear forces, assuming tensor 
forces absent. The radii of action of forces of all other types are supposed equal. 

Solution. Let us consider some extreme cases (between which lie all other possible 
cases) for the state of a system of A nucleons, and write down the conditions for the inter¬ 
action energy of an “average” pair of nucleons in this system to be positive. 

Let the total spin and the isotopic spin of the nucleus have the greatest possible values: 
Sane — Tnnc = iA (when all the particles in the system are protons with their spins parallel). 
Then for each pair of nucleons we have S = T — 1, and the condition is 

> 0. (1) 

Next, let Tnuc = iA, SnUc = 0. Then for each pair of nucleons T = 1, and the mean value 
of sz for an individual nucleon is zero. The latter result means that the nucleon can have 
ij = i and Sz = —i with equal probability; under these conditions the probabilities that a 
pair of nucleons are in states with S = 0 or 1 are respectively i and | (being proportional to 
the number 2S + 1 of possible values of Sz). The condition for the mean energy of the pair 
to be positive is therefore 

iC/0, + ft/11>0. (2) 

Similarly, a discussion of the state with Tanc = 0, Sane — iA gives the condition 

it/l0+it/n>0. (3) 

In a state with Tanc = Snuc = 0, the probability for a pair of nucleonic have S = T = 1 
is j . J, that for T = 1, S = 0 is i . i, and so on. Hence we find the condition 

~L11+-^L'10+ UD1)+^Um > 0. (4) 

Finally, let the system consist of iA protons and iA neutrons, with the spins of all the 
protons in one direction and the spins of all the neutrons in the other direction. An individual 
nucleon can with equal probability be p or n, i.e. have t£ = ^ or tj = — the probability 
for a pair of nucleons to have T = 0 is J. Here one of the pair of nucleons is p and the other 
n, and hence = 0. This value of St can occur with equal probability from states with 
S = 0 and S = 1. Consequently the probabilities for the pair to be in the states with T — 0, 
S = 0 and T = 0, S = 1 are each i . i = i- The probability of the state with T = 1, 
S = 0 is the same, and the remaining f relates to the state with T = S = 1. Thus we have 
the condition 

i(^o+t'o,+ L10)+|Ln>0. (S) 

The inequalities (l)-(5) form the required set of conditions for the saturation of nuclear 
forces. 

§118. The shell model 

Many properties of nuclei can be well described by means of the shell 
model, which is basically similar to the structure of the electron shells of an 
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atom. In this model each nucleon in the nucleus is regarded as moving in 

a self-consistent field due to all the other nucleons; owing to the small range 

of action of nuclear forces, this field decreases rapidly outside the volume 

bounded by the “surface” of the nucleus. Accordingly the state of the nucleus 

as a whole is described by specifying the states of the individual nucleons. 

The self-consistent field is spherically symmetrical, and the centre of 

symmetry is, of course, the centre of mass of the nucleus. The following 

difficulty arises here, however. In the self-consistent field method, the wave 

function of the system is constructed as the product (or the appropriately 

symmetrized sum of the products) of the wave functions of the individual 

particles. Such a function, however, does not keep the centre of mass fixed: 

although the mean velocity of the centre of mass calculated from this function 

is zero, it gives a finite probability of non-zero values of the velocity,f 

The difficulty can be avoided by first eliminating the motion of the centre 

of mass in calculating any physical quantity by means of the wave functions 

/(ri,..., Ta) of the self-consistent field method. Let/(ri,pi) be some physical 

quantity, a function of the coordinates and momenta of the nucleons. Then, 

in calculating its matrix elements by means of the functions /, we must, 

without changing /(r t), alter the arguments of the function/as follows: 

ti ->r4—R, pi ->pj—P/A, (118.1) 

where R is the radius vector of the centre of mass of the nucleus, A the 

number of particles in it, P the momentum of its motion as a whole; the 

second change in (1I8.I) corresponds to subtracting the velocity V of the 

centre of mass from the velocities Vi of the nucleons, the momentum P 

being related to V by P = AmpV (S. Gartenhaus and C. Schwartz 1957). 

For example, the dipole moment operator of the nucleus is d = eZrv, 

where the summation is over all protons in the nucleus. To calculate the 

matrix elements in the self-consistent field method, this operator must be 

replaced by eS(rp — R). The coordinates of the centre of mass of the nucleus 

are 
1 

R ■ —(Srp+ £r„), 

where the summation is over all protons and neutrons. Since the number of 

protons in the nucleus is Z, the dipole moment operator must finally be 

changed thus: 
Z Z 

e£r„-*e(l- —)Srp—e— 2rn. (118.2) 

The protons appear here with an “effective charge” e(\-Z/A) and the 

neutrons with a “charge” -eZjA. It may be noted that the relative order of 

magnitude of the resulting correction terms in the calculation of the dipole 
moment is seen from (118.2) to be of the order of unity. The corrections in 

t For electrons m an atom this difficulty did not arise, because the centre of mas 
in position with the fixed heavy nucleus, and \vas therefore necessarily at rest. 



484 Nuclear Structure §118 

the calculation of the magnetic and higher electric multipole moments are 

easily found to be of relative order IjA. 

In the non-relativistic approximation the interaction of a nucleon with the 

self-consistent field is independent of the spin of the nucleon: such a depend¬ 

ence can be given only by a term proportional to s.n, where n is a unit 

vector in the direction of the radius vector r of the nucleon, and this product 

is a pseudoscalar, not a true scalar. 

A dependence of the nucleon energy on the spin appears, however, when 

relativistic terms depending on the velocity of the particle are taken into 

account. The largest of these is the term linear in the velocity. From the 

three vectors s, n and v a true scalar n x v.s can be formed. The spin-orbit 

coupling operator of the nucleon in the nucleus is therefore 

fi:=-fr)nxv.s, (118.3) 

where 4>{r) is some function of r\ see also the third footnote to §117. Since 

mpr x v is the orbital angular momentum hi of the particle, the expression 

(118.3) can also be written as 

Psl=-/(r)l.s, (H8.4) 

where / = h<f>lrmp. It should be emphasized that this interaction is of the 

first order in vjc, whereas the spin-orbit coupling of an electron in an atom 

is a second-order effect (§72). This difference is due to t'.e fact that nuclear 

forces depend on the spin even in the non-relativistic approximation, whereas 

the non-relativistic interaction of electrons (Coulomb forces) is not spin- 

dependent. 

The energy of the spin-orbit interaction is mainly concentrated near the 

surface of the nucleus, i.e. the function f(r) decreases inside the nucleus. 

This is because, in infinite nuclear matter, there would be no such interaction 

at all, as is clear from the fact that, the system being homogeneous, there is 

no preferred direction in it which could be that of the vector n. 

The interaction (118.4) brings about a splitting of the nucleon level with 

orbital angular momentum l into two levels with angular momenta/ = l±h 

Since 

l.s = *Ifor/=l+i 

= -*(1+1) for/= 
(118.5) 

(according to formula (31.3)), the amount of this splitting is 

A E = Ei-i — £j+i 

(118 6) 
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Experiment shows that the level with j = /+J (the vectors 1 and s parallel) 

is below the level withy = l—i", this means that/(r) > 0. 

The spin-orbit coupling of a nucleon in the nucleus is relatively weak in 

comparison with its interaction in the self-consistent field. It is, nevertheless, 

in general large compared with the energy of the direct interaction of two 

nucleons in the nucleus, on account of the more rapid decrease of the latter 

with increasing atomic weight. 

This relation between the energies of the various interactions has the 

result that the classification of the nuclear levels must be of the jj coupling 

type: the spins and orbital angular momenta of the various nucleons are 

added to give the total angular momenta j = 1 + s, which are definite 

quantities, since the relation between 1 and s is not affected by the direct 

interaction between the particles (M. Goppert-Mayer 1949; O. Haxel, 

J. H. D. Jensen and H. E. Suess 1949)f. The vectors j of the individual 

nucleons are then added to give the total angular momentum J of the nucleus 

(usually called simply the nuclear spin, as if the nucleus were an elementary 

particle). In this respect the classification of nuclear levels differs essentially 

from that of atomic levels: in the electron shells of the atom, the relativistic 

spin-orbit coupling is in general small in comparison with the direct electric 

and exchange interactions, and so the level classification is usually based 

on LS coupling. 

The state of each nucleon in a nucleus, however, is described by its angular 

momentum j and its parity. Although the vectors 1 and s are not separately 

conserved, the absolute magnitude of the orbital angular momentum of the 

nucleon is nevertheless definite. For the angular momentum j can arise 

either from a state with l = j — £ or from one with l = /+£. For a given 

(half-integral) j, these two states have different parities (— 1)*, and so, if 

j and the parity are specified, the quantum number / is determined also. 

The states of nucleons with given / and j are customarily numbered (in 

order of increasing energy) by the “principal quantum number” n, which 

takes integral values starting from l.J The various states are denoted by the 

symbols l$t, lpj, \pit etc., where the figure before the letter is the principal 

quantum number, the letters s, p, d,... indicate as usual the value of /, and the 

suffix is the value of j. Not more than 2j + 1 neutrons and the same number 

of protons can simultaneously be in a state with given values of n, l and j. 

The states of the nucleus as a whole (in a given configuration) are 

customarily described by a figure giving the value of J and the sign + or — 

indicating the parity of the state (the latter being determined in the shell 

model by the parity of the algebraic sum of the values of / for all the nucleons). 

From an analysis of experimental results concerning the properties of 

nuclei it is possible to derive a number of regularities in the positions of the 

nuclear levels. First of all, it is found that the energy of the nucleon increases 

with the orbital angular momentum l. This rule arises because, when / 
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increases, so does the centrifugal energy of the particle, and its binding 

energy is therefore reduced. 

Next, for a given value of l the level with j = l + \ (i.e. that which corres¬ 

ponds to parallel vectors 1 and s) lies below the level with j = l—\. This 

rule has already been mentioned in connection with the properties of the 

spin-orbit coupling of the nucleon in the nucleus. 

The following rule relates to the isotopic spin of nuclei. The component 

Tj of the isotopic spin is known to be determined by the atomic weight and 

atomic number of the nucleus (see 116.1)). For a given value of T{, the 

absolute magnitude of the isotopic spin can take any value such that 

T | |. Usually, the ground state of the nucleus has the smallest of these 

possible values of the isotopic spin, i.e. 

Ter=\Tt\=h{N-Z). (118.7) 

This rule is due to a property of the neutron-proton interaction, namely that 

in the np system the state with isotopic spin T = 0 (the deuteron state) has a 

greater binding energy than the state with T = 1; see the fourth footnote to 

§117. 

We can also formulate certain rules relating to the spins of the ground 

states of nuclei. These rules determine the way in which the angular momenta 

j of the individual nucleons add to give the total spin of the nucleus. They 

represent the tendency of protons or neutrons in like states in the nucleus 

to “pair off” with opposite angular momenta; the binding energy of such 

pp and nn pairs is of the order of 1 or 2 MeV. " 

This phenomenon has, in particular, the result that, if the nucleus contains 

even numbers of both protons and neutrons (an even-even nucleus), then 

the angular momenta of all the nucleons balance in pairs, so that the total 

angular momentum of the nucleus is zero. 

If the nucleus contains an odd number of protons or neutrons, however, 

with all nucleons outside closed shells being in like states, the total angular 

momentum of the nucleus is usually equal to that of one nucleon, as if a 

single nucleon were left over after the pairing of all possible pairs of protons 

and of neutrons (the total angular momenta of complete shells being 

necessarily zero). 

For odd-odd nuclei (Z odd and N odd) there is no sufficiently general 

rule to determine the spin of the ground state. 

A discussion of the actual manner in which the shells are filled in nuclei 

would require a detailed analysis of the available experimental results, and is 

outside the scope of this book. Here we shall add only some general remarks. 

In studying the properties of atoms we have seen that their electron states 

can be divided into groups such that the binding energy of the electron 

decreases as each group is completed and the next is begun. A similar 
situation occurs for nuclei, the nucleon states being distributed among the 
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following groups: 
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Nucleons 

1*1/2 

lp3/2. lpi/2 

1^5*2* l<^3/2, 2*1/2 

l/?/2, 2p3/2, 1/5/2, 2pi/2, 1^9/2 

2^5/2, 1^7/2, 17*11/2, 2^3/2, 3*1/2 

2/7/2, 17*9/2, 1*13/2, 2/5/2, 3/>3/2, 3/>i/2 

For each group the total number of proton or neutron vacancies is shown. 

According to these numbers the occupation of a group is completed when the 

total number Z of protons or N of neutrons in the nucleus is equal to one of 

the numbers 

2, 8, 20, 50, 82, 126. 

These are commonly called magic numbers.f 

The “doubly magic” nuclei, in which both Z and N are magic numbers, 

are particularly stable. In comparison with adjacent nuclei they have an 

unusually small affinity for a further nucleon, and their first excited states are 

unusually high.J 

The various states in each of the groups (118.8) are listed in approximate 

order of successive occupation in the series of nuclei. In reality, however, 

considerable irregularities are observed in the occupation process. Moreover, 

it must be borne in mind that, in heavy nuclei not close to the magic numbers, 

the distances between the various levels may be comparable with the 

“pairing energy”, and the concept of individual states of components of a 

pair is then itself largely meaningless. 

We may make some comments regarding the calculation of the magnetic 

moment of the nucleus in the shell model. By this we mean, of course, the 

magnetic moment averaged with respect to the motion of the particles in the 

nucleus. This mean magnetic moment pi, is evidently in the direction of the 

nuclear spin J, which is the only preferred direction in the nucleus; its 

operator is therefore 

£ = (118.9) 

where /io is the nuclear magneton and g the gyromagnetic factor. The 

eigenvalue of the projection of this moment is Jtz = /*ogMj. Usually 

(cf. (111.1)) the magnetic moment ^ of the nucleus is taken to be simply 

the maximum value of its projection, i.e. /* = ^ogJ. In this notation 

£ = IJ. (118.10) 
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The magnetic moment of the nucleus is composed of the magnetic moments 

of the nucleons outside closed shells, since the moments of nucleons in 

completed shells cancel out. Each nucleon produces in the nucleus a magnetic 

moment which consists of tvo parts: a spin part and (in the case of the 

proton) an orbital part, i.e. is represented by the sum £*S + £zi. (Here and 

henceforward we omit the factor po, assuming, as is usual, that magnetic 

moments are measured in units of the nuclear magneton.) The spin and 

orbital gyromagnetic factors aregi = l,£s = 5-585 for the proton andgi = 0, 

gs = —3-826 for the neutron. 

After averaging w'ith respect to the motion of the nucleon in the nucleus, 

its magnetic moment becomes proportional to j; writing it in the form gjj, 

w-e have 

= +Usi-gs)(^-s). 

Multiplying both sides of this equation by j = i + s and taking eigenvalues, 

we obtain 

gaU+1) =i(gi+gs)j(j+1 )+ttgi-gsW+1 )-s(s+1)], 

and, puttingf = \,j ='l±\. 

gs-gl r ■ , , 
gi =gi±^-ff°rJ = l±h (118.11) 

With the above values of the gyromagnetic factors, this gives for the magnetic 

moment of the proton fj.p = g]j 

( 2-29 \ 

^ = \ ~ 7+T/'?' = 

Up = j+2-29 for j = l+\. 

(118.12) 

and for that of the neutron 

_ 1-91 . 

Pn — — 1-91 

for; = l-i, 

for ./=/+* 
(118.13) 

(T. Schmidt 1937). 
If there is only one nucleon outside the closed shells, formulae (118.12) 

and (118.13) give directly the magnetic moment of the nucleus. For two 

nucleons, the addition of their magnetic moments is also elementary "(see 

Problem 1). When the number of nucleons exceeds two, the averaging of the 

magnetic moment must be effected by means of the wave function of the 
system, constructed in the appropriate manner from the wave functions of 
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the individual nucleons. If the nucleon configuration and the state of the 

nucleus as a whole are given, the wave function can be constructed uniquely 

in cases where only one state of the system with the given values of J and T 

can correspond to the given configuration (see, for example, Problem 3); 

otherwise, the state of the nucleus is a mixture of several independent 

states (with the same J and T), and in general the coefficients in the linear 

combination which gives the wave function of the nucleus remain unknown.f 

Finally, we may mention that the existence of spin-orbit coupling of 

nucleons in the nucleus leads to the appearance of a certain magnetic moment 

of the protons in the nucleus, additional to (118.9) (M. Goppert-Mayer and 

J. H. D. Jensen 1952). The reason is that, when the interaction operator 

depends explicitly on the velocity of the particle, the case where an external 

field is present is obtained by replacing the momentum operator p by p — e\/c. 

Carrying out this replacement in (118.3) and using the expression (111.7) 

for the vector potential, we find that the Hamiltonian of the proton contains 

an additional term 

4>{t)-nx A.s =f(r)——r x (H x r).s 
cmP 2ch 

This term is equivalent to the appearance of an additional magnetic moment 

whose operator is 

Fadd = - —/(r)rx(sxr) 

-r2/(r){s-(l.n)n}. (118.14) 

PROBLEMS 

Problem 1. Determine the magnetic moment of a system of two nucleons (with total 
angular momentum J = ji + ja), expressing it in terms of the magnetic moments m and /xa 
of the two nucleons. 

Solution. Similarly to the derivation of formula (118.11) we obtain 

Qi —/j)(ji +y-2 + 1) 

AJ+1) 

Problem 2. Find the possible states of a system of three nucleons with angular momenta 
7 = 3/2 (and the same principal quantum numbers). 

Solution. We proceed as in §67 when finding the possible states of a system of equivalent 
electrons. Each nucleon can be in one of eight states with the following pairs of values 
of (mi, r{): 

(3/2, 1/2), (1/2, 1/2), (-1/2, 1 '2), ( — 3 2. 1/2), 
(3/2. -1/2), (1/2, -1/2), (-1,2, -1 2), (-3 2, -1.2). 

t Note, however, that the ‘■single-part.cle” calculation of nuclear magnetic moments is in 
practice fa.rlv inaccurate. The pairs of values (118.12) and (118.13) are upper and lower 
limits rather than exact values of the moments. 



490 Nuclear Structure §118 

Combining these states in groups of three different ones, we find the following pairs of 
values of (Mj, 2"!;).for the svstem of three nucleons: 

(7/2, 1/2), 2(5/2, 1/2), (3/2, 3/2), 4(3/2, 1,2). (1/2, 3,2), 5(1'2, 1'2). 
(The number before the parenthesis indicates the number of such states; states with negative 
values of Mj and Tt; need not be written out.) These correspond to states of the system with 
the following values of (J,T): 

(7/2, 1/2), (5/2, 1,2), (3 2, 3/2), (3'2, 1/2), (1/2, 1 2). 

Problem 3. Determine the magnetic moment of the ground state of a configuration of 
two neutrons and one proton in £3/2 states (with the same n), taking account of isotopic 

Solution. The ground state of such a configuration has J = 3/2, and from the rule 
given in the text its isotopic spin has the minimum possible value T = |7{| = J. 

Let us determine the wave function of the system corresponding to the greatest possible 
value Mj = 3/2. This value can occur (when Pauli’s principle for two like nucleons is applied) 
for the following sets of values of mj for the nucleons p,n,n respectively: 

(3/2, 3/2, -3/2), (3/2, 1/2, -1/2), (1/2, 3,2, -1/2), (-1/2, 3/2, 1/2). 

Hence the required wave function ifrri is a linear combination of the form 

where [...] denotes the normalized antisymmetrized product (i.e. a determinant of the form 
(61.5)) of the wave functions of the individual nucleons. 

The function (1) must vanish under the action of the operators 

3nd A = ]> A"’; 

see §67, Problem. The operators ril) convert the proton function of the fth nucleon to the 
neutron function, and the latter to zero. It is therefore easily seen that the operator T- reduces 
the first term in (1) to a determinant with two identical rows, i.e. to zero, while the deter¬ 
minants in the three remaining terms become equal; thus we have the condition 
b + c + d = 0. 

Next, for a single nucleon with j = 3/2 and various values of mj we have, according to 
(27.12), 

;+p2 = 0, = V3^/2. }+<fr~1/2 = 2^1/2, Ju.p-312 = V3^-'«. 

Hence we see that the action of the operator 3+ on the function (1) gives 

^ 3(Q+fc-r)[^„2^;22^j;2]+ 

+ 2(c - d)[4,2 j2,,d';|l/.E 2J; 

the change in sign of some terms is due to interchanging the rows of the determinant. The 
conditions for this expression to vanish are 

Q + fc — c = 0, c-d= 0. 

Together with the normalization condition for the function (1), these relations give 

c = 3,y'15, b = —2,\ 15, r = d=l/v'15. 

Since the mean value of the magnetic moment component of the proton (or neutron) in 
a state with given mj is y.pm,;j (or M„m,!j), we find that the mean value of the angular momen- 

f The nucleus Li; has this configuration (outside the closed shell (ls1/2)a). 
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turn of the system calculated by means of the wave function (1) is 

9 + 1 , 
f! = —fXp + —(jMp + i/‘r) + 

1 + 1 
+ yr(-3 Mp + yMn) = —(I3/ip + 2/i„). 

From formulae (118.12), (118.13) it follows that, for a nucleon in the p3,., state, pm = —1-91 
and Up = 3-79. Thus p. = 3 03. 

Problem 4. Determine the magnetic moment of a nucleus in which all nucleons outside 
closed shells are in like states and the number of protons is equal to the number of neutrons. 

Solution. Since, for N = 2, the component Tt^ of the isotopic spin is zero, diagonal 
matrix elements occur only for the isotopic-scalar part of the operator 

F=2i?J-. + ]>/rjp; 

see the end of §116. Separating this part in accordance with formula (116.5), we find that 

Ugn +^p)J ■ 

The total mean magnetic moment of the nucleus is therefore \(gn +gp)J- 

Problem 5. Calculate the additional magnetic moment of a nucleon with angular momen¬ 
tum ), expressing it in terms of the spin-orbit splitting (118.6) (M. Goppert-Mayer and 
J. H. D. Jensen 1952). 

Solution. The averaging of the angular part of the operator (118.14) (the expression in 
braces in that formula, which we denote by o) is effected by means of the formula derived 
in §29, Problem. The result is 

o = s —(s.n)n 

, (5.i)i-i(s.i)-j/(/+i)s 

(2/-1X2/+3) ' W 

After complete averaging with respect to the motion of the nucleon, the mean value of a 

can only be in the direction of j, i.e. o = a), whence a = o-J,j2. Taking the component of 

the vector (2) in the direction of j (noting that the operator j commutes with 1.3), and taking 
eigenvalues of the quantities l.s, l2 etc., we easily find the following expression for the addi¬ 
tional magnetic moment of the nucleon (in units of the nuclear magneton): 

_ mpi?2 2)-cl 

ld = +/(r) HZ 40-1-1) 
(3) 

where mv is the nucleon mass and R the radius of the nucleus. In the averaging of r2/, the 
factor r2 is replaced by R2 owing to the rapid decrease of/(r) inside the nucleus. The mean 

value/ in (31 can be expressed in terms of the spin-orbit splitting by means of (118.6). 

§119. Non-spherical nuclei 

A system of particles in a spherically symmetric field cannot have a 

rotational energy spectrum; in quantum mechanics, the concept of rotation 

has no meaning for such a system. This applies to the shell model of the 

nucleus with a spherically symmetric self-consistent field considered in 
§117. 

The division of the energy of the system into “internal” and “rotational” 
parts has no precise meaning in quantum mechanics. It can only be approxi- 
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mate and is possible where, for physical reasons, the consideration of the 

system as an assembly of particles, moving in a given field which is not spheri¬ 

cally symmetric, is a good approximation. The rotational structure of the 

levels is then a consequence of taking into account the possibility of rotating 

this field with respect to a fixed system of coordinates. Such a case occurred, 

for example, in molecules, whose electron terms can be determined as the 

energy' levels of a system of electrons moving in a given field of fixed nuclei. 

Experiment shows that the majority of nuclei in fact have no rotational 

structure. This means that the spherically symmetric self-consistent field 

is a good approximation for such nuclei, i.e. they are spherical in shape 

apart from quantum fluctuations. 

There exists also, however, a class of nuclei which have an energy spectrum 

of the rotational type; they lie approximately in the ranges of atomic weight 

150 < A < 190 and A > 220. This property means that the approximation 

of the spherically symmetric self-consistent field is entirely inapplicable to 

such nuclei, and for them the self-consistent field must in principle be sought 

without any initial assumptions regarding its symmetry, in order that the 

shape of the nucleus should also be “self-consistently” determined. Experi¬ 

ment shows that a correct model for nuclei of this type is given by a self- 

consistent field having an axis of symmetry and a plane of symmetry per¬ 

pendicular to it (i.e. having the symmetry of a spheroid). The concept of 

non-spherical nuclei has been most extensively developed in the work of 

A. Bohr and B. R. Mottelson (1952-3). 

It should be emphasized that we are concerned here with two qualitatively 

different classes of nuclei. This is seen, in particular, from the fact that 

nuclei are either spherical or else non-spherical with a “degree of deforma¬ 
tion” that is not small. 

The occurrence of non-sphericity is favoured by the presence of incomplete 

shells in the nucleus, and the phenomenon of nuclemi pairing also appears to 

be of considerable importance here. Closed shells, on the other hand, tend 

to give spherical nuclei. A characteristic example is the doubly magic nucleus 

•jj028Pb: owing to the marked completeness of its nucleon configuration, this 

nucleus (and also those adjoining it) is spherical, and this brings about 

a gap in the sequence of non-spherical heavy nuclei. 

The energy levels of a non-spherical nucleus consist of two parts: the levels 

of the “fixed” nucleus and the energy of its rotation as a whole. In even-even 

nuclei the intervals of the rotational structure of the levels are small in com¬ 

parison with the distances between the levels of the “fixed” nucleus. 

The classification of the levels of a non-spherical nucleus is in many ways 

similar to that for a diatomic molecule consisting of like atoms, since the 

symmetry of the field in which the particles (nucleons or electrons) move is 

the same in each case. We can therefore apply directly a number of the results 

obtained in Chapter XI.f 

f It must be emphasized that we are referring to the analogy with the classification of 
levels of the diatomic molecule, not of the symmetrical top. For a system of particles moving 
in an axially symmetric field, the concept of rotation about the field axis has no meaning, like 
that of rotation about any axis for a system in a centrally symmetric field. 
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Let us first consider the classification of states of the “fixed” nucleus. 

In a field with axial symmetry, only the component of the angular momentum 

along the axis of symmetry is conserved. Each state of the nucleus is there¬ 

fore described first of all by the value Q of the component of its total angular 

momentum,f which can be either integral or half-integral. The levels are 

described as even (g) or odd (u) according to the behaviour of the wave 

function when the coordinates of all the nucleons (with respect to the 

centre of the nucleus) change sign. 

In addition, for Q = 0 positive and negative states are distinguished, 

according to the behaviour of the wave function on reflection in a plane 

passing through the axis of the nucleus (see §78). 

The ground states of even-even non-spherical nuclei are 0 + (the zero 

indicating the value of Q), corresponding to zero angular momentum and the 

highest symmetry of the wave function. This is a result of the pairing of all 

the neutrons and protons. If the nucleus contains an odd number of protons 

or neutrons, however, we can consider the state of the “odd” nucleon in the 

self-consistent field of the even-even remainder of the nucleus. Here the 

value of Q is determined by the component u> of theangular momentum of this 

nucleon. Similarly, in an odd-odd nucleus the value of Q is obtained from the 

angular momentum components of the odd neutron and proton: 

Q = | Wp±Wf, \ . 

It should be emphasized at the same time that we cannot speak of definite 

values of the components of the orbital angular momentum and spin of the 

nucleon. The reason is that, although the spin-orbit coupling of the nucleon 

is small in comparison with the energy of its interaction with the self- 

consistent field of the remainder of the nucleus, it is not small compared 

with the distances between adjoining energy levels of the nucleon in that 

field, as it would have to be for perturbation theory to be applicable, so that 

the orbital angular momentum and the spin of the nucleon could, to a good 

approximation, be considered separately.J 

Let us now consider the rotational structure of a non-spherical nucleus. 

The intervals in this structure are small compared with the spin-orbit 

interaction of the nucleons in the nucleus. This corresponds to case a in 

the theory of diatomic molecules (§83). 

The total angular momentum J of a rotating nucleus is, of course, con¬ 

served. For given Q its magnitude J takes values from Q upwards: 

7= D, fi+1,12 + 2,...; (119.1) 

see (83.2). An additional restriction on the possible values of J occurs for 

t By definition. fl^O (just as the quantum numbei 
may be recalled that negative values of Cl for diatot 
was defined as the sum A + I, and X can be eithe: 
relative directions of the orbital angular momentum 

1 In spherical nuclei this was still possible, owing 
and angular momentum. 

A is positive for diatomic molecules) 
nic molecules could arise only because 
' positive or negative, depending on 
and the spin. 

■O the simultaneous conservation of pa 

It 
n 
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nuclei with Q = 0: in states 0? and 0u the number J takes only even values, 

and in states 0g and 0« only odd values (see §86). In particular, in the rota¬ 

tional levels of the ground term for even-even nuclei (0^) the number J 

takes the values 0, 2, 4, ... . 

The rotational energy of the nucleus is given by the formula 

ETOt = ^J(J+l), (119.2) 

where I is the moment of inertia of the nucleus (about an axis perpendicular 

to its axis of symmetry); this formula corresponds to the similar expression 

in the theory of diatomic molecules (the term depending on J in (83.6)). 

The lowest level corresponds to the least possible value of J, i.e. J = Cl. 

On account of (119.2) the rotational structure of the levels is described by 

certain interval rules which do not depend on the other characteristics of 

the level (for given Q). For instance, the components of the rotational 

structure of the ground term of an even-even nucleus (with J = 2, 4, 6, 8, ...) 

are at distances in the ratio 1:3-3:7:12... from the lowest level (J = 0). 

Formula (119.2), however, is insufficient for states with Cl = |, which 

can occur in nuclei with an odd number of nucleons. In this case there is a 

contribution to the energy, comparable with (119.2), due to the interaction 

of the odd nucleon with the centrifugal field of the rotating nucleus. Its 

dependence on J can be found as follows. 

It is known from mechanics (Mechanics, §39) that the energy of a particle 

in a rotating coordinate system contains an additional term equal to the 

product of the angular velocity of rotation and the angular momentum of the 

particle. The corresponding term in the Hamiltonian of the nucleus can be 

written in the form 2£K.<r, where b is some constant, K the angular momen¬ 

tum of the remainder of the nucleus (excluding the last nucleon), and a the 

angular momentum of that nucleon. Here the latter must be understood in a 

purely formal sense; in reality, the angular momentum vector of the nucleon 

does not exist in the axial field of the nucleus. This sense is that of an 

operator analogous to the operator of spin i, which gives transitions between 

states with values of the angular momentum component ± i, in accordance 

with the value Cl = Since K = J — a, the eigenvalues of this operator are 

26K.tr = b[J(J+l)-K(K+l)-i]. 

Adding for convenience the constant \b, which is independent of J, we find 

that this quantity equals + b(J + j) when J = K±\. 

This expression can be written (— l)-7-1 b{J + j) if we use the fact that the 
angular momentum K of the even-even remainder of the nucleus is even. 

t The specific property of the case Cl = i consists precisely in the existence of matrix 
elements of the energy perturbation for transitions between states differing only in the sign of 
the angular momentum component and therefore belonging to the same energy. This brings 
about a shift in energy even in the first approximation of perturbation theory. 

The phenomenon concerned is analogous to the A-doubling of the levels of a diatomic 
mnlprn e with Cl = t (§88). 
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Thus we have finally the following expression for the rotational energy' of 

the nucleus with fi = 

h'2 
Erot = —J{J+1)+( - iy-t/26(7+i) (119.3) 

(A. Bohr and B. R. Mottelson 1953). Note that, if the constant b is positive 

and sufficiently large, the level with J = 3/2 may lie below that with J = k, 

i.e. the normal order of rotational levels (where the lowest level corresponds 

to the smallest possible value of J) will be altered. 

The moment of inertia of a non-spherical nucleus cannot be calculated as 

that of a solid of given shape. Such a calculation would be possible only if 

the nucleons moving in the self-consistent field of the nucleus could be 

regarded as not directly interacting. In reality, the pairing effect leads to a 

reduction in the moment of inertia, in comparison with the value for a rigid 

body. 

The magnetic moment p of a non-spherical nucleus consists of the magnetic 

moment of the “fixed” nucleus and that due to the rotation of the nucleus. 

The former (after averaging over the motion of the nucleons in the nucleus) 

is along the axis of the nucleus; denoting its value by p', and the unit vector 

along the axis of the nucleus by n, we can write it in the form p'n. The mag¬ 

netic moment due to the rotation is (after the same averaging) along the 

vector J-fin, the total angular momentum of the nucleus minus that of the 

nucleons in the “fixed nucleus”.f Thus 

p = p'n+£r(J-fin). (119.4) 

Here gr is the gyromagnetic factor for the rotation of the nucleus. Since the 

contribution to the magnetic moment in rotation comes only from the protons, 

we have 

gr = IPl(IP + I«), (119.5) 

where /„ and Iv are the neutron and proton parts of the moment of inertia 

of the nucleus; for a system of protons only, gr = 1 simply. The ratio 

(119.5) is in general not the same as the ratio ZjA of the number of protons 

to the total mass of the nucleus. 

After averaging over the rotation of the nucleus, the magnetic moment 

is in the direction of the conserved vector J: 

p. = pJ/7 = (p'-fi£r)n+£rJ. 

As usual, we multiply both sides of this equation by J and take eigenvalues. 
In the ground state of the nucleus fi = J, and so 

M = (fi'+^r)7/(7+1). (119.6) 

f This formulation can be used only if (see Problem 2) 
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PROBLEMS 

Problem 1. Express the quadrupole moment Q of a rotating nucleus in terms of the 
quadrupole moment Q0 relative to axes fixed to the nucleus (A. Bohr 1951). 

Solution. The operator of the quadrupole moment tensor of a rotating nucleus is given 
in terms of Qo by 

Qik= 

this is a symmetrical tensor with zero trace, formed from the components of the unit vector 
n along the axis of the nucleus, and Qiz = Qo. The averaging with respect to the rotational 
state of the nucleus is effected similarly to the solution in §29, Problem (with the difference 
that rtiJi — D, not zero), and leads to an expression of the form (75.2) with 

For the ground state of a nucleus with Q = J we obtain 

Q= Qc—---. 
V (2J+2)(J+\) 

As J increases, the ratio QIQo tends to 1, but only slowly. 

Problem 2. Determine the magnetic moment in the ground state of a nucleus with 
n = i. 

Solution. In this case the magnetic moment operator can be written by means of the 
operator o introduced in the text, in the form 

p. = 2M'3+frK,K = ]-a. 

The subsequent calculation is similar to that in the text. If the value J = § corresponds to 
the ground level of the nucleus (and K = J—\ = 0), we have y = y ; if in the ground state 
J = 3/2 (and K = J+i = 2), then y = (9gr-3/)/5. 

Problem 3. Determine the energies of the first few levels of the rotational structure of 
the ground state of an even-even nucleus having ellipsoidal symmetry. 

Solution. The ground state of an even-even nucleus corresponds tosfhe most symmetrical 
wave function of the “fixed” nucleus, i.e. the function whose symmetry corresponds to the 
representation A of the group D%. There are therefore altogether i-7 + 1 (for even J) or 
§(J—1) (for odd J) different levelsfor a given value of J. For J — 2 they are given by formula 
(7) in §103, Problem 3, and for J = 3 by formula (8) in §103, Problem 4. 

§120. Isotopic shift 

The specific properties of the nucleus (finite mass, dimensions, spin) 

which distinguish it from a fixed point centre of a Coulomb field have a 

certain influence on the electron energy levels of the atom. 

One such effect is called the isotopic shift of levels, that is, a change in the 

energy of a level from one isotope of an element to another. In practice, 

of course, what is of interest is not the change in energy of one level but the 

change in the distance between two levels observed as a spectral line. For 

this reason we must in practice consider not the energy of the entire electron 

envelope of the atom but only the part due to the electron involved in the 

transition in question. 
In light atoms the isotopic shift is due mainly to the finite mass of the 

nucleus. When the motion of the nucleus is taken into account a term 
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appears in the Hamiltonian, where M is the mass of the nucleus and the pi 

are the momenta of the electrons.! The isotopic shift due to this effect is 

therefore given by the mean value 

(120.1) 

calculated from the wave function of the relevant state of the atom (Mi and 

M2 being the masses of the nuclei of the isotopes). 

In heavy atoms the main contribution to the isotopic shift comes from the 

finite size of the nucleus. This effect is in practice appreciable only for the 

levels of an outer electron in the s state, since the wave function of the s state 

(unlike those of states with / / 0) does not vanish as r -> 0, and so the 

probability of finding the electron “within the nucleus” is comparatively 

large. We shall calculate the isotopic shift for this case.}; 

Let <f>(r) be the true electrostatic potential of the field of the nucleus, as 

opposed to the potential Ze/r of the Coulomb field of a point charge Ze. 

Then the change in the electron energy in comparison with its value in a 

purely Coulomb field Ze/r is given by the integral 

A£ = -ej{</>-Zejr)t2{r)dV, (120.2) 

where 1p(r) is the electron wave function; in the r state this function is 

spherically symmetric and real. Although the integration here is formally 

extended to all space, in practice the difference </>—Ze/r in the integrand is 

zero except within the nucleus. The wave function of the s state tends to a 

constant limit as r -> 0 (see §32), and this constant value is practically reached 

even outside the nucleus. We can therefore take </r outside the integral and 

replace 1fi(r) by its value at r = 0, calculated for the Coulomb field of a point 

charge. 

For a further transformation of the integral we use the identity /\r2 = 6 
and write (120.2) as 

A E = Ze/r)/\r2.dV 

= -H2(0) \r2L(t~Zelr)dV-, 

in transforming the volume integral we have used the fact that the resulting 

t In the centre-of-mass system of the atom, the sum of the momenta of the nucleus and the 
electrons is zero: pnuc + Sp, = 0. Their total kinetic energy is therefore 

t The calculation given below does not take accoun 
the electron near the nucleus, and is valid only if the 

af relativistic effects in the 
>ndition Ze*lhc<£l holds. 
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integral over an infinitely remote surface is zero. But A(l/*') = — 47r8(r), 

and rz8(r) = 0 for all r. According to the electrostatic Poisson’s equation, 

A4> = — 4~p, and in this case p is the density of the electric charge distribu¬ 

tion in the nucleus. The final result is 

AE = |^2(0)Ze^ (120.3) 
where 

is the proton mean square radius of the nucleus; for a uniform distribution 

of protons in the nucleus, r2 = 3A2/5, where R is the geometrical radius of 

the nucleus. The isotopic shift of the level is given by the difference of the 

expressions (120.3) for the two isotopes. 

In §71 an estimate has been given of i//(0), and it was shown to depend on 

the atomic number (assumed large) as \/Z. Hence the splitting (120.3) is 

proportional to R2Z2. 

§121. Hyperfine structure of atomic levels 

Another effect in atoms due to the properties of the nucleus is the splitting 

of atomic energy levels as a result of the interaction of electrons with the 

spin of the nucleus. This is called the hyperfine structure of the levels. On 

account of the weakness of this interaction the intervals in the hyperfine 

structure are very small, even in comparison with those in the fine structure. 

Hence the hyperfine structure must be considered separately for each com¬ 

ponent of the fine structure. 

The spin of the nucleus will be denoted in this section (in accordance with 

the notation usual in atomic spectroscopy) by i, the notation J being retained 

for the total angular momentum of the electron envelope of the atom. The 

total angular momentum of the atom (including the nucleus) is denoted 

by F = J + i. Each component of the hyperfine structure is described by a 

definite value of this angular momentum. According to the general rules for 

addition of angular momenta, the quantum number F takes the values 

F=J+i,J+i-1.\J-i\, (121.1) 

so that each level with given J is split into 2i +1 components if i < J, or 

2/+1 iff > J. 

Since the mean distances r between the electrons in the atom are large 

compared with the radius R of the nucleus, an important part in the hyperfine 

splitting is played by the interaction of the electrons with the lowest-order 

multipole moments of the nucleus. These are the magnetic dipole and electric 

quadrupole moments; the mean dipole moment is zero (see §75). 
The magnetic moment of the nucleus is of the order of ~ eRv,nuCjc, 

where t)nuc are the velocities of the nucleons in the nucleus. The energy of 
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its interaction with the magnetic moment of the electron (^ei ~ efijmc) is of 

the order of 

/-‘■nuclei Rvnuc 

r ~ me2 r3 
(121.2) 

The quadrupole moment O ~ eR2; the energy of interaction of the field 

which it produces with the charge on the electron is of the order of 

eQlr3~e2R2jr3. (121.3) 

Comparison of (121.2) and (121.3) shows that the magnetic interaction (and 

therefore the resulting splitting of the levels) is (vnuc/c) (hjmcR) ~ 15 times 

greater than the quadrupole interaction; although the ratio vnuc/c is 

relatively small, the ratio h/mcR is large. 

The operator of the magnetic interaction of the electrons with the nucleus 

is of the form 

Pu=ai.] (121.4) 

(similarly to the spin-orbit interaction of the electrons (72.4)). The depend¬ 

ence of the resulting splitting of the levels on F is therefore given by 

^F(F+1); (121.5) 

cf. (72.5). 

The operator of the quadrupole interaction of the electrons with the nucleus 

is constructed from the operator Qik of the quadrupole moment tensor of 

the nucleus and the components of the angular momentum vector J of the 

electrons. It is proportional to the scalar QikfiJk formed from these operators, 

i.e. has the form 

b[uik+ikH-%i{i+ l)$ik]jijk', (121.6) 

here we have used the fact that Qik is given in terms of the nuclear spin 

operator by a formula of the type (75.2). On calculating the eigenvalues of 

the operator (121.6) (in a manner entirely similar to the calculations in §84, 

Problem 1), we find that the dependence of the quadrupole hyperfine splitting 

of the levels on the quantum number F is given by the expression 

\bF2{F+1)2 + &F{F+1)[1 - 27(7+1) - 2i(i +1)]. (121.7) 

The magnetic hyperfine splitting effect is especially noticeable for levels 

due to an outer electron in the r state, owing to the comparatively high 

probability that such an electron will be near the nucleus. 

Let us calculate the hyperfine splitting for an atom containing one outer s 

electron (E. Fermi 1930). This electron is described bv the spherically 

symmetric wave function <p{r) of its motion in the self-consistent field of the 
other electrons and the nucleus.f 

t The following calculation assumes that the condition Ze’IHc<£ 1 is satisfied (cf. the second 
footnote to §120). 
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We shall seek the operator of the interaction with the nucleus as the operator 

- /i.H of the energy of the magnetic moment fi = p.iji of the nucleus in the 

magnetic field H created (at the origin) by the electron. According to a 

well-known formula of electrodynamics, this field is 

H = I|5L|idF, (121.8) 

where J is the operator of the current density due to the moving electron spin, 

and r = nr the radius vector from the centre to the element dF.f According 

to (115.4), 

j = - 2/j.bc curl (02s) 

o d<£2(r) _ 
= - 2fLBc - n x s, 

dr 

where is the Bohr magneton. Writing dF = r2 drdo and carrying out the 

integration, we find 

(n x s) do 

= -2M£02(o)^§. 

The interaction operator is, finally, 

Vu= -fi.H = ^WB02(O)i . 6. (121.9) 
3t 

If the total angular momentum of the atom J — S = the hyperfine 

splitting leads to the appearance of a doublet (F — i± |); according to 

(121.5) and (121.9) we find for the distance between the two levels 

Et+i - Et-t = (87r/3f)WB(2t' + 1)02(O). (121.10) 

Since the value of 0(0) is proportional to yJZ (see §71), the magnitude of 

this splitting is proportional to the atomic number. 

PROBLEMS 
Problem 1. Calculate the hyperfine splitting (due to magnetic interaction) for an ?tom 

containing (outside closed shells) one electron with orbital angular momentum« (E. ermi 
1930). 

t See Fields, (43.7). In that formula, the vector R is in the opposite direction, from dV 
to the centre (the point at which the field is observed). 
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Solution. The vector potential and the magnetic field strength due 
moment ft of the nucleus are 

A = H 3n(fi.n)-fi 
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the magnetic 

(div A = 0). Using these expressions, we can write the interaction operator in the form 

MA.£ + !i^H.§ = ^?.[l + 3(s.n)n-s]. 

After averaging over a state with a given value of j, the expression in the brackets is in the 
direction of j. We can therefore write 

Pi; = + 3(s.n)(n.j) - s-j]^/^ j+l). 

The mean value of mnic has been calculated in §29, Problem. Using this and taking eigen¬ 
values, we find 

Wi-r, j + 2/(/+l)s.j-6(s.l)(j.ln-/ 
i JL J (21 ~ l)(2/ + 3) J IAJ ’ 

whence, after a simple calculation, we have finally 

fiBfi /(/+J)F(F+ 1)r-T5 

«■ JU+1) ^ ; 

where F = j -l-i, andj = l±\. The averaging of r~3 is with respect to the radial part of the 
electron wave function. 

Problem 2. Determine the Zeeman splitting of the components of the hyperfine structure 
of an atomic level (S. A. Goudsmit and R. F. Bacher 1930). 

Solution. In formula (113.4) (the field being assumed so weak that the splitting which 
it causes is small in comparison with the hyperfine structure intervals), the averaging must 
be effected not only with respect to the electron state but also with respect to the directions 
of the nuclear spin. From the first averaging we get AE = nBgjJiH, with the same gj 
(113.7). The second averaging gives, analogously to (113.5), 

7z = (J . F)Mf/F2. 

Thus we have finally 

&E = jj-BgF HMf, gF 
F(F+\)+J(J+\)-i(i+\) 

‘ 2 F(F+ 1) 

§122. Hyperfine structure of molecular levels 

The hyperfine structure of the energy levels of molecules is similar to that 
of the atomic levels. 

In the great majority of molecules the total electron spin is zero. The main 

source of the hyperfine splitting of the levels is then the quadrupole inter¬ 

action of the nuclei and the electrons; here, of course, only those nuclei 

participate in the interaction whose spin i is neither 0 nor J, since otherwise 
their quadrupole moment is zero. 

On account of the comparative slowness of the motion of the nuclei in the 
molecule, the averaging of the quadrupole interaction operator with respect 
to the state of the molecule is effected in two stages: first we must average 
with respect to the electron state for fixed nuclei, and then with respect to 
the rotation of the molecule. 
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Let us first consider the diatomic molecule. The first averaging gives an 

interaction of each nucleus with the electrons that is expressed by an operator 

proportional to the scalar Qiknink formed from the operator of the quad¬ 

ruple moment tensor of the nucleus and the unit vector n along the axis of 

the molecule—the only quantity which determines the orientation of the 

molecule with respect to the direction of the nuclear spin. Since Qu = 0, 

this operator can be written in the form 

biiik{ntnk-$tk)\ (122.1) 

for a given value of the component i£ of the nuclear spin along the axis of the 

molecule, this quantity is f>[i£2 — + !)]• 

When the operator (122.1) is averaged with respect to the rotation of the 

molecule, it is expressed in terms of the operator R of the conserved rotational 

angular momentum. The averaging of the product is effected by means 

of the formula derived in §29, Problem (with the vector K in place of 1), 

and the result is 

- (iF-ll(122.2) 

The eigenvalues of this operator are found in the same w'ay as for (121.6). 

For a polyatomic molecule we obtain in general, instead of (122.1), an 

operator of the form 

bitUik, (122.3) 

where bik is a tensor with zero trace which is a certain characteristic of the 

electron state of the molecule. After averaging with respect to the rotation of 

the molecule, this tensor is given in terms of the total rotational angular 

momentum J by a formula of the type 

bit = b[jtjk+jkJi-p(J+1)5,*]. (122.4) 

The coefficient b can in principle be expressed in terms of the components 

of the tensor buc relative to the principal axes of inertia of the molecule 

£,7j,£; since these axes are fixed in the molecule, the components bg etc. 

are a property of the molecule and unaffected by the averaging. Let us con¬ 

sider the scalar bikJtJk. A calculation using (122.4) gives 

bM = bJ(J+l)[*J(J+l)-l]; (122.5) 

the method is similar to that used in §29, Problem. Expanding the tensor 

product in components along the axes we obtain 

bM = bccJj+b„Jf + buJf, (122.6) 

where we have used the fact that the mean values of the products JgJc etc. 
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are zero.f The mean values of the squares J\ etc. are found, in principle, 

from the wave functions of the corresponding rotational states of the top. 

In particular, for a symmetrical top we have simply 

j] = *2; Jf, Jf= i[J(J+1)-**]. 

If the spins of the nuclei are £, the quadrupole interaction is absent. In 

this case one of the main sources of hyperfine splitting is the direct magnetic 

interaction between the nuclear magnetic moments. The operator of the 

interaction of two magnetic moments pi = piii/ii, p.2 = pzhlh is given by 

MM2 
7—[ii.i2-3(i1.n)(i2.n)]. 
t!t2r3 

To calculate the splitting energy, this must be averaged with respect to the 

state of the molecule, as described above. 

When the molecule contains heavy atoms, comparable contributions to the 

hyperfine splitting are given by the direct interaction and by the indirect 

interaction of the nuclear moments through the electron envelope. Formally, 

this interaction is an effect in the second approximation of perturbation 

theory with respect to the interaction of the nuclear spin with the electrons. 

By means of the results of §121 we easily find that the ratio of this effect to 

the direct interaction of the nuclear moments is of the order (Ze2/hc)2, and is 

comparable with unity for large Z. 

Finally, some contribution to the hyperfine splitting of molecular levels 

comes from the interaction of the nuclear magnetic moment with the rotation 

of the molecule. The rotating molecule, being a moving system of charges, 

creates a certain magnetic field, which may be calculated, using the formulae 

of electrodynamics, from the given current density j = pSl x r, where p is 

the charge density (of electrons and nuclei) in the molecule at rest, and £2 its 

angular velocity of rotation. The magnitude of the level splitting is found as 

the energy of the magnetic moment of the nucleus in this field; the com¬ 

ponents of the angular velocity of the molecule must be expressed in terms 

of those of its angular momentum (cf. §103). 

f For in a representation where the matrix of one component of J say) is diagonal, the 
matrices of the products have non-zero elements only when the quantum number k 
changes by 1, whereas the wave functions of stationary states of an asymmetrical top include 
functions i/ijk with values of k differing by an even number (see §103). 



CHAPTER XVII 

ELASTIC COLLISIONS 

§123. The general theory of scattering 

In classical mechanics, collisions of two particles are entirely determined 

by their velocities and impact parameter (the distance at which they would 

pass if they did not interact). In quantum mechanics the very wording of the 

problem must be changed, since in motion with definite velocities the concept 

of the path is meaningless, and therefore so is the impact parameter. The 

purpose of the theory is here only to calculate the probability that, as a result 

of the collision, the particles will deviate (or, as we say, be scattered) through 

any given angle. We are speaking here of what are called elastic collisions, 

in which the particles, or the internal state of the colliding particles if these 

are complex, are left unchanged. 

The problem of an elastic collision, like any problem of two bodies, amounts 

to a problem of the scattering of a single particle, with the reduced mass, in 

the field U(r) of a fixed centre of force.f This simplification is effected by 

changing to a system of coordinates in which the centre of mass of the two 

particles is at rest. The scattering angle in this system we denote by 8. 

It is simply related to the angles and S-2 giving the deviations of the two 

particles in the laboratory system of coordinates, in which the second particle 

(say) was at rest before the collision: 

tan S'* = m2 sin 0/(mi +mz cos 8), $2 = %(n—8), (123.1) 

where m\, m2 are the masses of the particles (see Mechanics, §17). In par¬ 

ticular, if the masses of the two particles are the same (mi = m2), we have 

simply 

= «*-*(«-»); (123.2) 

the sum&1+&!= \tt, i.e. the particles diverge at right angles. 

In this chapter we shall always use (unless the contrary is specifically 

stated) a system of coordinates in which the centre of mass is at rest, and m 

will denote the reduced mass of the colliding particles. 

A free particle moving in the positive direction of the z-axis is described 

by a plane wave, which we take in the form 1p = elkz, i.e. we normalize so that 

the current density in the wave is equal to the particle velocity v. The 

scattered particles are described, at a great distance from the scattering 

t Here we neglect the spin-orbit interaction of the particles (if they have spin). By assuming 
the field to be centrally symmetric, we exclude from consideration also processes such as the 
scattering of electrons by molecules. 
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centre, by an outgoing spherical wave of the form f(6)eikTlr, where f(8) is 

some function of the scattering angle 8 (the angle between the 2--axis and the 

direction of the scattered particle). This function is called the scattering 

amplitude. Thus the exact wave function, which is a solution of Schrodinger’s 

equation with potential energy L\r), must have at large distances the asymp¬ 

totic form 
4> X e^+f(8)dkrjr. (123.3) 

The probability per unit time that the scattered particle will pass through 

a surface element dS = r2do (where do is an element of solid angle) is 

(v/r2) |/[2 dS = v\f\2 do.f Its ratio to the current density in the incident 

wave is 

do = |/(e)P do. (123.4) 

This quantity has the dimensions of area, and is called the effective cross- 

section, or simply the cross-section, for scattering into the solid angle do. 

If we put do = 277 sin 6 d8, we obtain for the cross-section 

do = 2tt sin 8\f{6)\2 d8 (123.5) 

for scattering through angles in the range from 6 to 6+dd. 

A solution of Schrodinger’s equation for scattering in a central field U(r) 

must evidently be axially symmetric about the ar-axis, the direction of the 

incident particles. Any such solution can be represented as a superposition 

of wave functions of the continuous spectrum, corresponding to motion, in 

the field concerned, of particles with given energy hzk2/2m and orbital 

angular momenta having various magnitudes l and zero ar-components; 

these functions are independent of the azimuthal angle <f> round the ar-axis, 

i.e. they are axially symmetric. Thus the required wave function has the 

form 

<£ = £AiPi{cos 8)Rkl(r), (123.6) 

where the Ai are constants and the Rki are radial functions satisfying the 

equation 

LA 
rz dr ('ir'H*2- 

l(l±1) 
J-2 

- o. (123.7) 

The coefficients At must be chosen so that at large distances the function 

(123.6) has the asymptotic form (123.3). We shall show that this implies that 

Ai (123.8) 

t It is supposed that the incident beam of particles is defined 
effects) but finite diaphragm, as happens in actual experiments 
fore no interference between the two terms of the expression 
|^|s is taken at points where there is no incident wave. 

by a wide (to avoid diffraction 
on scattering. There is there- 
(123.3); the squared modulus 
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where the Si are the phase shifts of the functions R^i- This will also solve 

the problem of expressing the scattering amplitude in terms of these phases. 

The asymptotic form of the function R/d is given by (33.20): 

Rkl ~ - sin (kr — U-n + Si) 
r 

= i{( - i)l exp[i(*r + Si)] - f exp[ - i(kr + Si)]. 

Substituting this and (123.8) in (123.6), we obtain the asymptotic expression 

for the wave function in the form 

<£ * -i-y(2/+l)A(cos 0)[(-l)I+1e-‘fcr + Sie‘*r], (123.9) 
2ikr fzi 

with the notation 

Si = exp(2i'Sj). (123.10) 

The expansion of the plane wave (34.2), with the same transformation, is 

eikz ~ _I_y (21+ l)Pj(cos ^)[( — IV 
2ikr iZq 

We see that, in the difference tp — eikz, all terms containing the factors e~ikr 

disappear, as they should. For the coefficient of eikrfr in this difference, i.e. 

the scattering amplitude, we obtain 

m=^-2(2/+1)[S'_1]p'(cose)- (123-n) 
/-0 

The formula solves the problem of expressing the scattering amplitude in 

terms of the Si (H. Faxen and J. Holtsmark I927).f 

If we integrate dir over all angles, we obtain the total scattering cross- 

section a, which is the ratio of the total probability (per unit time) that 

the particle will be scattered to the probability current density in the incident 

t The problem of recovering the form of the scattering potential from the phases h 
(assumed known) is of fundamental interest. This has been solved by I. M. Gel’fand, B. M. 
Levitan and V. A. Marchenko. It is found that, to determine £/(r), it is in principle sufficient 
to know S0(k) as a function of the wave number throughout the range from k = 0 to k = <x>, 
together with the coefficients an in the asymptotic expressions (for r -»co) R„e*&(on/r)e_K"r 
(k„ = ^0-m\En\)fh) of the wave functions of states corresponding to the discrete (negative) 
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wave. Substituting (123.11) in the integral 
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s=2rr f |/(0)|2 sin 8 d0. 

and recalling that the Legendre polynomials with different l are orthogonal, 

while 

J P,2(cos 8) sin 8 d8 = 2/(2/+1), 

we have for the total cross-section 

4tt “ 

a=^Z(2/+1)sin2S'- (123-12) 
1-0 

Each of the terms in this sum is a partial cross-section ai for the scattering 

of particles with given orbital angular momentum /. It may be noted that the 

maximum possible value of this cross-section is 

oj.max = (4t7-//s2)(2/+1). (123.13) 

Comparing this with formula (34.5), we see that tbe number of particles 

scattered with angular momentum / may be four times the number of such 

particles in the incident flux. This is a purely quantum effect due to inter¬ 

ference between the scattered and unscattered particles. 

It will be useful later to employ also the partial scattering amplitudes 

fi, which we define as the coefficients in the expansion 

f(8) = 2 (2l+])ftPi(cos8). (123.14) 

According to (123.11) these are related to the phases 8; by 

<12315> 

and the partial cross-sections are 

ai= 4rr(2/+l)|/,|2. (123.16) 

PROBLEM 
Express the scattering amplitude in terms of the phase shifts in the two-dimensional. 

L - U(p), p = + The particle flux is in the ^-direction 
SoLUTtON. In the two-dimensional case, the wave function far from the scatter 

position of a plane wave and an outgoing cylindrical wave: 

e. The field 

is a super- 

0 =«'*'• +/«M«'*7v'(-'P)- (•) 
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Here, (p is the angle between the e-axis and the direction of scattering,/(<p) the scattering amplitude, 
which in the two-dimensional case has the dimensions of square root of length. The factor 
— i = exp( —jitt) under the root sign is included in order to simplify the subsequent formulae. The 
scattering cross-section per unit length in the jv-directton is 

do =|/|2 d0. 

This has the dimensions of length. 
The wave function is to be expanded in terms of functions having a definite jy-component m of 

the angular momentum, in the form Qm(p)e'm*. At large distances from the scatterer, the radial 
functions differ from those found in §34, Problem, for free motion only by a phase shift: 

QJp) * i"J{2lnkp)in[kp - !* (m - i) + «.], 

with Srr, = 6_m. Repeating the arguments of §123 and using the plane wave expansion from §34, 
Problem, we find that the function having the asymptotic form (1) is given by the series 

ip = f. 

and the scattering amplitude is 

Integration gives the total cross-section 

(2) 

o = I I/I2dtp = X where = a_m = (4/A:) sin2 dn. 

It is easily seen that 

im/(O) = V(/t/87t)0, (3) 

which is the optical theorem for the two-dimensional case; see (125.9). 

§124. An investigation of the general formula 

The formulae which we have obtained are in principle applicable to 

scattering in any field U(r) which vanishes at infinity. The use of these 

formulae involves only an examination of the properties of the phases 8j 

which appear in them. 

To estimate the order of magnitude of the phases 8, for large values of /, 

we use the fact that the motion is quasi-classical for large l (see §49). Hence 

the phase of the wave function is determined by the integral 

r it,, (z+*)2 2mZJ(rn J,, J Vr™— 
where r0 is a zero of the expression under the radical (r > r„ being the classi¬ 

cally accessible region of motion). Subtracting from this the phase 
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of the wave function of free motion, and letting r -» co, we obtain, by 

definition, the quantity St. For large values of l, the value of r0 also becomes 

large; U(r) is therefore small throughout the range of integration, and we 

have approximately 

8i=- JW) (iz4-i} 

In order of magnitude this integral (if convergent) is 

St ~ mU{r0)rolk&. (124.2) 

The order of magnitude of r0 is r0 ~ Ijk. 

If t/(r) vanishes at infinity at 1 /rn with n > 1, the integral (124.1) converges, 

and the phases 8, are finite. On the other hand, for n ^ 1 the integral 

diverges, so that the phases 8, are infinite. This holds for any l, since the 

convergence or divergence of the integral (124.1) depends on the behaviour 

of U(r) for large r, while at large distances (where the field U(r) is weak) 

the radial motion is quasi-classical for all l. We shall show below how the 

formulae (123.11), (123.12) are to be interpreted when 8* is infinite. 

Let us first consider the convergence of the series (123.12) which gives the 

total scattering cross-section. For large /, the phases 8* < 1, as is seen from 

(124.1) if we take into account the fact that U(r) decreases more rapidly 

than 1/r. Hence we can put sin28j « Si2, and so the sum of the high terms 

in the series (123.12) will be of the order of £ ISi2. From the well-known 

integral test for the convergence of series, we conclude that the series in 

question converges if the integral J lSi2dl does so. Substituting here (124.2) 

and replacing l by kr0, we obtain the integral 

J U2(roW dro- 

If U(r) decreases at infinity as 1/r" with n > 2, this integral converges, 

and the total cross-section is finite. If, on the other hand, the field U(r) 

decreases not more rapidly than 1/r2, the total cross-section appears to be 

infinite. The physical reason for this is that, when the field falls off only 

slowly with distance, the probability of scattering through small angles 

becomes extremely large. In this connection we may recall that, in classical 

mechanics, in any field which vanishes only as r -*■ oo, a particle passing 

at any finite impact parameter p, however large, always undergoes a deviation 

through some angle which, though small, is not zero; hence the total 

scattering cross-section is infinite for any law of decrease of U(r).f In 

quantum mechanics, this argument is invalid, since we can speak of scat¬ 

tering through a certain angle only if this angle is large compared with the 

indeterminacy in the direction of motion of the particle. If the impact 
parameter is known to within Ap, an indeterminacy hjAp is caused in the 

f This is seen from the divergence of the integral J 2-rp dp which gives the total cross- 
section in classical mechanics. 
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transverse component of momentum, i.e. an indeterminacy in 

the angle. 

In view of the important part played by small-angle scattering when U{r) 

decreases only slowly, the question naturally arises whether the scattering 

amplitude f(6) diverges for 0=0, even when U(r) decreases more rapidly 

than 1/r2. Putting 0 = 0 in (123.11), we obtain for the high terms in the sum 

an expression proportional to^lhArguing as in the previous case, our 

search for the criterion of the convergence of the sum leads us to the integral 

00 

J U(r0)r02drz, 

which diverges for U(r) ~ 1 jrn with n ^ 3. Thus the scattering amplitude 

becomes infinite at 0 = 0 for fields which decrease not more rapidly than 

l/r3- 
Finally, let us consider the case where the phase 8 f itself is infinite, as hap¬ 

pens when U(r) ~ 1/r" with w < 1. It is evident from the results obtained 

above that, when the field decreases so slowly, both the total cross-section 

and the scattering amplitude for 0 = 0 will be infinite. There remains, 

however, the problem of calculating /(0) for 0^0. First of all, we notice 

that the formula! 

2(2/+1)Pj(cos0) = 4S(l-cos0) (124.3) 

J-0 

holds. In other words, the sum vanishes for all 0^0. Hence, in the 

expression (123.11) for the scattering amplitude, we caii omit unity in the 

square brackets in each term of the sum when 0 # 0, leaving 

m = -4- y (2/+ l)Pf(cos 6)e2iSi. (124.4) 
2ik *—• 

i-o 

If we multiply the right-hand side of the equation by the constant factor 

e~Ziic, the cross-section will be unchanged, since it is determined by the 

squared modulus |/(0)|2, while the phase of the complex function /(0) 

is changed only by an unimportant constant. On the other hand, the diver¬ 

gent integral of U(r) cancels in the difference Bt — 80 of expressions such as 

+ This formula is the expansion of the delta function in Legendre polynomials, and can be 
immediately verified by multiplying both sides by sin 8 Pifcos 8) and integrating over ft 
Here the integral 

J Six) dx 

function 8(jc) is taken to be 
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(124.1), and a finite quantity remains. Thus, to calculate the scattering 

amplitude in the case considered, we can use the formula 

1 “ 
m = — 2 (124.5) 

§125. The unitarity condition for scattering 

The scattering amplitude in an arbitrary (not necessarily central) field 

satisfies certain relations which follow from general physical requirements. 

The asymptotic form of the wave function at large distances for elastic 

scattering in an arbitrary field is 

1 
X + (125.1) 

This expression differs from (123.3) in that the scattering amplitude depends 

on the directions of two unit vectors, one (n) in the direction of incidence of 

the particles and the other (n') along the direction of scattering, and not only 

on the angle between them. 

Any linear combination of functions of the form (125.1) with different 

directions of incidence n also represents a possible scattering process. 

Multiplying the functions (125.1) by an arbitrary coefficient F(n) and inte¬ 

grating over all directions n (solid angle element do), we can write such a linear 

combination as the integral 

J F(ny***' do + — J F(n)/(n,n') do. (125.2) 

Since the distance r is arbitrarily large, the factor eikrn-n' in the first integral 

is a rapidly oscillating function of the direction of the variable vector n. 

The value of the integral is therefore determined mainly by the regions near 

those values of n for which the exponent has an extremum (n = ± n'). In 

each of these regions the factor F(n) « F( ± n') can be taken outside the 

integral, and the integration then givesf 

e-tkr etkr etkr (• 
2iriF( — n')-2irt‘F(n')-+- /(n.n')F(n) do. 

hr hr r J 

This expression can be written in a concise operator form, omitting the 
common factor 2nijk\ 

e~*kr gikr 
—F(—n')-—SF(ri), (125.3) 
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o = l+2ikf (125.4) 

and / is the integral operator defined by 

jfF(n') = ^|^n’n'^do- (125.5) 

The operator S is called the scattering operator, the scattering matrix, or simply 

the S-matrix; it was first used by W. Heisenberg (1943). 

The first term in (125.3) represents a wave going in to the centre, and the 

second a wave going out from the centre. The conservation of the number of 

particles in elastic scattering is expressed by the equality of the total fluxes 

of particles in the ingoing and outgoing waves. In other words, these two 

waves must have the same normalization. To achieve this, the scattering 

operator must be unitary (§12), i.e. we must have 

SS+ = 1, (125.6) 

or, substituting (125.4) and carrying out the multiplication, 

/-/+ = 2ikff+. (125.7) 

Finally, using the definition (125.5), we can write the unitarity condition for 

scattering in the form 

f(n,a') - /*(n',n) = — j*/(n,n")/*(n',n") do". (125.8) 

For n = n' the integral on the right-hand side of the equation is just 

the total scattering cross-section a = J |/(n,n")|2 do". The difference 

on the left-hand side of the equation reduces in this case to the imaginary' 

part of the amplitude/(n,n). Thus we obtain the following general relation 

between the total elastic scattering cross-section and the imaginary part of 

the amplitude of scattering through an angle zero: 

im/(n,n) = *a/4rr. (125.9) 

This is called the optical theorem for scattering. 

Another general property of the scattering amplitude can be derived from 

the requirement of symmetry with respect to time reversal. In quantum 

mechanics this symmetry is expressed by the fact that, if a function ip describes 

any possible state, then the complex conjugate function </<* also corresponds 

to a possible state (§18). Hence the wave function 

eihr e-m 
—F*( —n')-$*F*( n'), 

which is the complex conjugate ot (125.3), also describes some possible 
scattering, process. We define a new arbitrary function by putting 
— S*F*(n') = d>( — n'). Using the unitarity of the operator S, we then have 
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F*(n') = -(£*)-!$(-n') = — ■?<!>( —n'); 
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using the operator P of inversion of the coordinates, which changes the sign 

of the vectors n and n', we can write 

F*( — n') = PF*{ n') = ~P§PtD(n'). 

Thus we obtain the time-reversed wave function in the form 

g-lkr etkr ^ 
-<D(-n')-PSPO(n'). 

This must be essentially the same as the original wave function (125.3). 

Comparison shows that this implies the condition 

PSP = S\ (125.10) 

then the two functions differ only in the notation for the arbitrary function. 

The corresponding relation for the scattering amplitude is found by 

changing from the operator equation (125.10) to a matrix equation. Trans¬ 

position interchanges the initial and final vectors n and n', while inversion 

changes their sign. Hence we have 

S(n.n') = S(-n', —n), (125.11) 

or, what is the same thing, 

/(n,n')=/(-n',-n). (125T2) 

This relation (called the reciprocity theorem) expresses the obvious result that 

the amplitudes are the same for two scattering processes such that each is the 

time reversal of the other. Time reversal interchanges the initial and final 

states and reverses the direction of motion of the particles in those states. 

For scattering in a central field, the general relations obtained above can be 

simplified. In this case the amplitude /(n,n') depends only on the angle 6 

between n and n'. The equation (125.12) therefore becomes an identity. 

The unitary condition (125.8) becomes 

(125.13) 

where y, y are the angles between n, n' and some direction n" fixed in space. 

If we use the expansion (123.14) for f (8), the addition theorem (c.10) for 

spherical harmonics gives from (125.13) the following relation for the partial 
amplitudes: 

im/, = Al/ll*. (125.14) 
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This formula can also be derived directly from the expression (123.15), 

according to which |likfi + 112 = 1. The optical theorem (125.9) is also easily 

deduced directly from formulae (123.11) and (123.12) for the case of scatter¬ 

ing in a central field. 

Rewriting (125.14) as im(l///) = - k, we see that the amplitude ft must 

have the form 

fi = lKgi-ik), (125.15) 

wheregi = gi{k) is a real quantity; it is related to the phase 8* by 

gl = k cot Bt. (125.16) 

We shall several times make use of this formula for the amplitude. 

Let us examine (for scattering in a central field) the relation between the 

scattering operator defined above and the quantities which appear in the 

theory given in §123. 

Since the orbital angular momentum is conserved in a central field, the 

scattering operator commutes with the angular momentum operator. In 

other words, the S matrix is diagonal in the / representation, and since the 

operator »§ is unitary its eigenvalues must have unit modulus, i.e. must be of 

the form e2iii with real 8*. It is easy to see that these quantities are the same 

as the phase shifts of the wave functions, so that the eigenvalues of the S- 

matrix are the quantities Si defined in (123.10). The eigenvalues of the 

operator / = (S-\)/2ik are the partial amplitudes (123.15). For, if we take 

Pi(cos 8) as the function F(n) (so that F( — n) = Pi( — cos 8) — ( —1 )lPi 

(cos 8)), the wave function (125.3) must be the solution of Schrodinger’s 

equation represented by a term in the sum (123.9). Thus §Pi(cos 8) = 

SiPi{cos 8). " 

For a plane wave incident along the 2-axis, the function F(n) in (125.3) is 

the delta function F = 48(1 — cos 8), where 8 is the angle between n and the 

2-axis, the delta function is defined as indicated in the second footnote to §124, 

and the coefficient of it is so chosen as to give simply f(8) on substitution on 

the right-hand side of the definition (125.5); 8 is now the angle between n' 

and the 2-axis. Writing the delta function in the form (124.3): 

F = 48(1 — cos 6) = f (2Z+ l)Pj(cos0), (125.17) 

i-o 

and applying the operator / to it, we find that the scattering amplitude has the 

form (123.14), as it should. 
Finally, we may add the following remark. Mathematically, the unitary 

condition (125.8) signifies that not every specified function/ (n,n') can be the 

scattering amplitude in some field. In particular, not every function f(8) can 

be the scattering amplitude in some central field. From (125.13), a certain 

relation must hold between its real and imaginary parts. If we write 
f(8) = | / \ eia, then, when the modulus [/1 is given for all angles, (125.13) 

gives an integral equation from which the unknown phase a(8) can in principle 
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be determined. In other words, from a scattering cross-section (i.e. | /|2) 

known for all angles we can in principle recover the amplitude. This process 

is, however, not completely unique and determines the amplitude only to 

within the alternative 

m - -/*(*). (125.18) 

which leaves the equation (125.13) unchanged (and of course does not alter 

the cross-section J f |2; the transformation (125.18) is equivalent to a simul¬ 

taneous change of sign of all the phases Sj in (123.11)). This non-uniqueness 

is, however, removed if the scattering amplitude is regarded as a function of 

energy as well as angle. We shall see below (§§128, 129) that the analytical 

properties of the amplitude as a function of energy are not invariant under 

the transformation (125.18). 

§126. Born’s formula 

The scattering cross-section can be calculated in a general form in a very 

important case, namely that where the scattering field may be regarded as a 

perturbation.f It has been shown in §45 that this is possible when either of 

the two conditions 

| Uj ffijma2 (126.1) 

and 

| U\ < hvja = (h2lma2)ka (126.2) 

holds, a being the range of action of the field U{r) and U the order of magni¬ 

tude of the field in the range where it is significant. When the first condition 

is satisfied, the approximation is valid for all velocities; the second condition 

shows that it is always applicable for sufficiently fast particles. 

In accordance with §45, we seek the wave function in the form tp — 

^r«o)q_^(i)) where corresponds to an incident particle having 

wave vector k = p//z. From formula (45.3) we then have 

m r dV' 
<P(x, y, z) = I U(x', y, z')e«k.r'+kK> (126.3) 

Taking the origin at the scattering centre, we introduce the radius vector 

R0 from the origin to the point where the value of is required, and 

denote by n' a unit vector along R0. Let the radius vector of a volume 

element dV' be r'; then R = R0—r'. At large distances from the centre, 

R0 P r > s0 that 

R = |Ro-r'| a R0-r’ . n'. 

Substituting this in (126.3), we have the following asymptotic expression for 

t In the general theory derived in §123 this approximation corresponds to the case where all 
the phases St are small; it is also necessary that these phases can be calculated from Schrodin- 
ger’s equation with the potential energy regarded as a perturbation (see Problem 4). 
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m eikR° r 

(where k' = An' is the wave vector of the particle after scattering). Compar¬ 

ing this with the scattering amplitude given by formula (123.3), we find for 

the latter the expression 

t—is\ar*'iV' (,26-4> 

where we have renamed the variable of integration and introduced the vector 

q = k'-k, (126.5) 

whose absolute magnitude is 

?= 2*sin£0, (126.6) 

6 being the angle between k and k', i.e. the scattering angle. 

Finally, squaring the modulus of the scattering amplitude, we have the 

following expression for the cross-section for scattering into the solid angle 

element do: 

(>26-7> 

We see that the scattering with a momentum change hq is determined by the 

squared modulus of the corresponding Fourier component of the field U. 

Formula (126.7) was first obtained by M. Born (1926). In the theory of 

collisions, the approximation considered here is often called the Born approxi¬ 

mation. 

It may be noted that, in this approximation, the relation 

/(k,k')=/*(k',k) (126.8) 

holds between the amplitudes of the direct and inverse scattering processes, 

i.e. processes differing by the interchange of the initial and final momenta, 

without the change of sign such as occurs in time reversal. Thus another 

symmetry property, in addition to the reciprocity theorem (125.12), appears 

in scattering. This property is closely reiated to the smallness of the scatter¬ 

ing amplitudes in perturbation theory, and follows immediately from the 

unitarity condition (125.8) if we neglect the integral term quadratic in f.\ 

Formula (126.7) can also be obtained by another method (which, however, 

does not determine the phase of the scattering amplitude). We can start 

from the general formula (43.1), according to which the transition probability 

+ Hence it is clear that this property no longer holds in even the second approximation of 
perturbation theory. This will be proved directly in §130; cf. (130.13). 
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between states of the continuous spectrum is given by the expression 
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= {2rrlh)\Ufi\2 h{Ef-Ei)dvf. 

In the case under consideration, we have to apply this formula to a transition 

from the state of the incident particle with momentum p to the state of the 

particle, with momentum p', scattered into the element of solid angle do'. 

As the interval of states dvf we can take dzp' l(2rrh)z. Substituting for the 

difference of the final and initial energies 

Ef—Ei = (p'2-p2)/2m, 

we obtain 

dwp.p = (W/ZOI t/pg2§(*>'2 -p2) d*p'l{2nhf. (126.9) 

The wave functions of the incident and scattered particles are plane waves. 

Since we have taken as the interval of states dv/ an element of p/lnh space, the 

final wave function must be normalized by the delta function of p/lnh: 

C(i/Wp'.r. (126.10) 

We normJuze the initial wave function to unit current density: 

4>v = V(mlP¥tm-r- (126.11) 

Then (126.9) will have the dimensions of area, and is the differential scattering 

cross-section. 

The presence of the delta function in formula (126.9) means that/)' = p, 

i.e. the absolute magnitude of the momentum is unchanged, as it should 

be in elastic scattering. We can remove the delta function by changing to 

spherical coordinates in momentum space (i.e. by replacing d3/)' by p'zdp' 

do' = Jp'd(p'2)do'|) and integrating over p'2. The integration amounts to 

replacing/)' by p in the integrand, and we obtain 

da = [mpl^h^l Jifip*UifijflV\sdo\ 

Substituting the functions (126.10), (126.11), we reach once more the final 

expression (126.7). 

In the form (126.7), this formula is applicable to scattering in a field 

U(x, y, z) which is any function of the coordinates, and not only a function of 

r. In the case of a central field U(r), however, this formula can be further 
transformed. In the integral 

| f7(r)e-‘q-rdr 

we use spherical space coordinates r, &, with the polar axis in the direction 
of the vector q, denoting the polar angle by & to distinguish it from the 
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scattering angle 6. The integration over & and</> can be effected, and we obtain 

Jlf U(r)etQT sin& d$d</>d> dr. 

Substituting this expression in (126.4), we obtain the following formula 

for the scattering amplitude in a centrally symmetric field: 

2m 

& 
fv( (126.12) 

For 0 = 0 (i.e. q = 0), the integral diverges when U(r) decreases at infinity 

not more rapidly than 1/r3 (in acordance with the general results of §124). 

We may call attention to the following interesting fact. The momentum p 

of the particle and the scattering angle 6 enter (126.12) only through q. Thus, 

in the Born approximation, the scattering cross-section depends on p and 6 

only in the combination p sin bS. 

Returning to the case of arbitrary fields U{x, y, z), let us consider the 

limiting cases of small velocities (ka 1) and large velocities (ka > 1). For 

small velocities, we can put e_,qr « 1 in (126.4), so that 

(12613) 
while if V = U(r), 

f=-^ju(r)r*dr. (126.14) 

o 

Here the scattering is isotropic and independent of the velocity, in accord¬ 

ance with the general results of §132. 

In the opposite limiting case of high velocities, the scattering is markedly 

anisotropic and mainly forward in a narrow cone of angle A8 ~ 1 jka; since 

outside this cone the quantity q is large, the factor e~*q-r is a rapidly oscillating 

function, and the integral of its product with the slowly varying function 

V is almost zero. 

The law of decrease for large q is not universal and depends on the specific 

form of the field. If the field U(r) has a singularity at r = 0 or at any 

other real value of r, the integral (126.12) is mainly determined by the range 

near the singular point, and the cross-section decreases according to a power 

law. The same applies to the case where the function U(r) has no singularity 

but is not an even function; here the region near r = 0 is the most important 

in the integral. If U{r) is an even function of r, however, the integration may 
be formally extended to negative values of r, i.e. taken along the whole of the 
real axis of the variable r, after which (if U(r) has no singularity on the real 
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axis) the path of integration may be moved into the complex plane until it 

meets the nearest complex singularity. Then, for large q, the integral will 

decrease exponentially. It should be borne in mind, however, that the Born 

approximation is in general inadequate to calculate this exponentially small 

quantity (see also §131). 

Although the value of the differential scattering cross-section within the 

cone M ~ 1 jka does not depend greatly on the velocity, the total scattering 

cross-section (assuming that the integral J do does converge) decreases at high 

energies owing to the decreasing angle of the cone, in proportion to the solid 

angle of the cone, i.e. as (A$)2 ~ \Jkzaz, or inversely as the energy. 

In many physical applications of collision theory the quantity which 

describes the scattering is the integral 

otr = J"(l-cos0)dc, (126.15) 

often called the transport cross-section. Arguments similar to those given above 

show that at high velocities this quantity is inversely proportional to the square 

of the energy. 

PROBLEMS 

Problem 1. Determine, in the Bom approximation, the scattering cross-section for a 
spherical potential well: U = — Uc for r < a, U = 0 for r > a. 

Solution. The calculation of the integral in (126.12) gives 

d0 = (singa~ga c05g°)2 dg 
° V ** / (?*)' 

The integration over all angles (which is conveniently effected by using the variable 
q = 2k sin %8 and replacing do by 2nq dqjk2) gives the total scattering cross-section 

2ir/mUoa2\z r 1 sin4Aa sin2IkaTi 

° “ *2\ h* ) L1- (2*fl)2 + (2ka)* ~ (2fea)4 J" 

In the limiting cases this formula gives 

l(maz / mUoQz \2 

9 \ A* ) 

2wmt/oa2\2 

kA h* ) 

for ka 1, 

for ka > 1. 

Problem 2. The same as Problem 1, but in a field U = t7oe-rVo’. 
Solution. The calculation is conveniently effected from formula (126.7), taking the 

direction of q along one of the coordinate axes. The result is 

d0 = w(^l)V^, 
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The condition for these formulae to be applicable is given by the inequalities (126.1), (126.2) 
with U0 in place of U. The formula for do is also inapplicable if the exponent is large in 
absolute magnitude.t 

Problem 3. The same as Problem 1, but in a field U = (a/r)e_r'“. 

Solution. The calculation of the integral in (126.12) gives 

do = 4 as(-)-. 

The condition for these formulae to be applicable is found from (126.1) and (126.2) with 
a/a instead of U: ama/h2 1 or a/ hv 1. 

Problem 4. Determine the phases Si for scattering in a centrally symmetric field for the 
case corresponding to the Bom approximation. 

Solution. For the radial wave function x = rR for motion in the field U(r), and for the 
function x(0) for free motion, we have the equations (see (32.10)) 

r /(/+1) 2m -I o. 

Multiplying the first equation by x(0). the second by x, and subtracting, followed by integra¬ 
tion with respect to r (using the boundary condition x = 0 at r = 0), we obtain 

X'(rk(0,(r)-X(rk<0,'(r) = ^ J Cfa® dr. 

Regarding U as a perturbation, we can put on the right-hand side. For r-*co the 
asymptotic expressions (33.12), (33.20) can be used on the left-hand side, while in the integral 
we substitute the exact expression (33.10). The result is 

sing, -^ J U(r)[JMI2(kr)fr dr. 

This formula could also be derived by a direct expansion of the Bom scattering amplitude 
(126.4) in Legendre polynomials in accordance with (123.11) (for small 8i). 

Problem 5. Determine in the Born approximation the total scattering cross-section in a 
field U = a/(r2 + flI)n'! with rr>2, for fast particles (kai> 1). 

Solution. We shall see that in this case the partial amplitudes with large angular 
momenta / are predominant in this scattering. The cross-section may therefore be calculated 
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The phases Si with large / are calculated from (124.1): 

521 

Si — f -*_ 
h°- J (r2 + a2)" 2(*2_/2 >2)112 

By the substitutior 
and the result is 

= (a* + /2/As)/f, the integral is brought to the familiar Euler form. 

2*2(o2*2+i2yn-1) 2 r(i«) 
(2) 

The integral (1) is determined by the range /~ ak$> 1, and this justifies the assumption made. 
A calculation of the integral gives the result 

"2 piK-m2/ mg y 
«-21 r(l«) J (3) 

According to (126.2), the condition for the Born approximation to be valid in this case is 
malh*kan-1<g 1. Note the dependence o~k~z, which is in accordance with the general 
statement made above. 

Problem 6. Determine in the Born approximation the scattering amplitude in the two- 
dimensional case of a field U = U(x, a-) with the particle flux incident along the 2-axis. 

Solution. Using the second footnote to §45 and the kno- ,i asymptotic expression of the 
Hankel function 

we find for the correction to the we 
y-axis) the expression 

function at large distances R0 from the field axis (the 

* ' 
~ yl«o‘ ' 

where the scattering amplitude is 

n*) = -Kqkk'*’*\V(p)e ,qPd2p’ 

with p = (x,z) the two-dimensional radius vector, d2p = d.\d.;, and <j> ihe scattering angle in the 
xi -plane. In the two-dimensional case, the scattering amplitude has the dimensions of square root 
of length, and the scattering cross-section do = |/|2d$ those of length. 

§127. The quasi-classical case 

Let us investigate the manner in which the passage occurs from the 

quantum-mechanical theory of scattering to the limit of the classical theory. 

Omitting from consideration a scattering angle 6 of zero, we can write 

the scattering amplitude given by the exact theory in the form (124.4): 

fid) = (1/2^1 (2/+l)jP,(c0s (127.1) 

We know that the quasi-classical wave functions are characterized by having 
large phases. It is therefore natural to suppose that large phases S, 
correspond to the passage to the limit of the classical theory of scattering. 
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The value of the sum (127.1) is mainly determined by the terms with large l. 

Hence we can replace P, (cos 8) by the asymptotic expression (49.7), which 

we write in the form 

P;(COS 8) X---M(!+l/2)«+IIr/4_ e-W+l./2)fi-to/41. 

V(2ir/sin0) 

Substituting this expression in (127.1), we obtain 

f(e) = - "V /-f£rt2iHi+l/2W-"/41_€«2i|+(I+l/2)fi+>r/4]t 
2irs\n6 '' 

(127.2) 

The exponential factors, regarded as functions of /, are rapidly oscillating 

functions, since their phases are large. The majority of the terms in the 

sum in (127.2) therefore cancel. The sum is mainly determined by the range 

of values of / near that for which one of the exponents has an extremum, 

i.e. near the root of the equation 

2 dS,/d/±<? = 0. (127.3) 

In this region there are a large number of terms in the series for which the 

exponential factors have almost the same value (since the exponents vary 

slowly near the extremum), and which therefore will not cancel. 

The phases 8i in the quasi-classical case can be written (see §124) as the 

limit to which the difference between the phase 

x/{2m[E-U(r)]-h-(l+Wlrz} dr 

of the quasi-classical wave function in the field U(r) and the phase 

kr-\lTT 
(see §33) of the wave function of free motion tends as r -*■ oo. Thus 

8/ = J {j-V[2rn(E- U)-hZ(l+im-k} dr+H/+})-*r0. (127.4) 

This expression is to be substituted in equation (127.3). In finding the 

derivative of the integral, it must be remembered that the limit of integration 

r0 also depends on /; the term k dr0/d/ arising from this, however, cancels 

with the derivative of the term — kr0 in 5,. 
h(l+%) is the angular momentum of the particle. In classical mechanics, 

it can be written in the form mpv, where p is the impact parameter, and v 

is the velocity of the particle at infinity. We make this substitution; equation 

(127.3) then takes the final form 
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r mvp dr 
---= Urt^f-6). (127.5) 

J r\/[2m(E-U)-{mvplrf] T K 

In a repulsive field this equation has a root (for p) only for a minus sign in 

front of 6 on the right-hand side, and in an attractive field only for a plus 

sign. 

Equation (127.5) is exactly the same as the classical equation which deter¬ 

mines the scattering angle from the impact parameter (see Mechanics, §18). 

It is easy to see that the classical expression for the cross-section is in fact 

obtained. 

To prove this, we expand the exponent in (127.2) in powers of/' = l — lo(6), 

where Zo(8) is determined by equations (127.3)—(127.5). We shall take in 

particular the first term in (127.2), and accordingly the lower sign in (127.3) 

(repulsion). According to (127.3), 

[d28j/d/2]I=f0 = idfl/d/o. 

and so 

Z[2§i - (/+ *)0 - iir] «i[2S,§ - (Z0 + *)0 - H + Md0/d/o)/'2. 

The summation over Z in (127.2) is now replaced by integration over /' near 

the point /' = 0. Regarding l' as a complex variable, we take the path of 

integration near this point in the direction of steepest decrease of the ex¬ 

ponent, i.e. at an angle of Jtt or - Jt- to the real axis, according to the sign of 

dfl/d/o. In other words, we put /' = $ exp(± JtV) and integrate over real 

values of £; owing to the rapid convergence of the integral, it can be extended 

from — co to oo: 

J exp(-K2|d0/d/o|)d£ = (2w|dZo/d0|)»/2. 

The result is 

/(S) " K^|T~P + (127.6) 

Hence 

da = | /12 . 277 sin 6 d© 

= 277(/o/*2)|d/o/d0|d0, (127.7) 

and with the impact parameter p = Ipjk we arrive at the classical formula 
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do = 2irp dp. 

Thus the conditions for classical scattering through a given angle 6 are 

that the value of / for which (127.3) holds should be large, and that 8; should 

also be large for this value of l.f This latter condition has a simple inter¬ 

pretation. If we can speak of classical scattering through an angle 6 when 

the particle is incident at an impact parameter p, it is necessary that the 

quantum-mechanical indeterminacies of these two quantities should be 

relatively small: Ap < p, A0 < 8. The indeterminacy in the scattering 

angle is of the order of magnitude AS ~ Apjp, where/) is the momentum of 

the particle and Ap is the indeterminacy in its transverse component. Since 

A/> ~ Jj/Ap > hjp, we have AS > hjpp, and thus 

8 > hjpmv. (127.8) 

Replacing the angular momentum mpv by hi, we obtain 81 > 1, which is 

the same as 8j > 1 (since 8; ~ 18, as we see from (127.3)). 

The classical angle of deviation of the particle can be estimated as the 

ratio of the transverse momentum increment Ap during the “collision time” 

r ~ pjv and the original momentum mv. The force acting on the particle at a 

distance p is F = — dU{p)fdp\ hence A/> ~ Fpjv, so that 6 ~ Fpjmv2. This 

estimate is strictly valid only if 8 <g 1, but it can be applied to give an order 

of magnitude even if 8 ~ 1. Substitution in (127.8) gives the condition for 

quasi-classical scattering in the form 

|F|p2 > hv. (127.9) 

This inequality must hold for all values of p such that | U(p)\ <, E. 

If the field U(r) decreases more rapidly than 1 jr, the condition (127.9) 

always ceases to be satisfied for sufficiently large p. Small 8, however, 

correspond to large p; thus scattering through sufficiently small angles is 

never classical. If, on the other hand, the field decreases less rapidly than 

1/r, the scattering through small angles is classical; whether the scattering 

through large angles is classical in this case depends on the behaviour of the 

field at small distances. 

For a Coulomb field, V = a/r, the condition (127.9) is satisfied if a > hv. 

This is the opposite condition to that for which the Coulomb field can be 

regarded as a perturbation. We shall see, however, that the quantum theory of 

scattering in a Coulomb field leads to a result which, as it happens, is always 

in agreement with the classical result. 

t The relation between B and p given by (127.S) may not be one-to-one; more than one 
value of p may correspond to the same value of 6. In such a case, the amplitude/(0) is given 
by the sum of (127.6) with the appropriate values of /0. At extrema of 0(p) the derivative 
dp/df? and therefore the classical differential cross-section do/do become infinite; near such 
an angle, the classical approximation is of course invalid (see Problem 2). 
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PROBLEMS 

Problem 1. Find the total cross-section for quasi-classical scattering in a field which has 
the form U = ajr” (« > 2) at sufficiently large distances. 

Solution. Bearing in mind that the phases 8/ with large l are the most important, we 
calculate them from (124.1): 

Si = 
dr 

mxkn~2 r(j)r(jn-j) 
2 T(Jn) ’ 

see §126, Problem S, for the calculation of the integral. 
Replacing the summation in (123.12) by an integration, we write 

4rr C 
a =— I 21 sins8; dl. 

We substitute 8/ = u and integrate by parts with respect to u, reducing the integral to a 
gamma function. The result is 

For n — 3, the indeterminacy can be resolved to give o = 2-n^ajhv. 
The chief condition for the applicability of this result is that l P 1 for 8i ~ 1; this gives 

the inequality 

m*k”-2lh2 p 1. 

A further condition arises from the requirement that the field U(r) should have the form in 
question from distances 

r—//*—(wiot/ft **)!/<"-l) 

outwards (/ being obtained from 8| ~ 1), these distances playing the principal part in the 
integral (1). If this form is reached only at distances r p a, where a represents the charac¬ 
teristic dimensions of the field, we have the condition 

mafhikan~^ p 1, 

which places an upper limit on the permissible velocities. In this case, for sufficiently high 
velocities (malhskan~l <g 1), a ~ k~2 (cf. §126, Problem 5). 

Problem 2. Find the angular distribution of scattering near an extremum of the classical 
scattering angle 0(p) as a function of the impact parameter p = l/k. 

Solution. The presence of an extremum of 8(1) for some l = /„ implies, according to 
(127.3), that the phase 8| near this point has the form 

28; * 28|_ + 0O/' + Ja/'3, 

where 8„ = »(/„), /' = l = la- here we again take the particular case of the lower sign in (127.3). 
The consent a is negative and positive respectively for a maximum or minimum of the 
function tUl). tor the scattering amplitude we have instead of (127.6) 

l/(S)l = s^n J" J£Xp W~l‘6' + W3)} d/'. 
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where S' — S—B0. Expressing the integral in terms of the Airy function by means of (b.3), 
we finally have for the scattering cross-sectionf 

The differential cross-section dojis' decreases with increasing distance into the classically 
inaccessible region of scattering (S' > 0 for a < 0, or 8' < 0 for a > 0); on the other side of the 
point S' > 0, it oscillates between zero and a gradually decreasing amplitude. Its maximum 
value occurs for fi'a-113 = 102, where <J>3 — 0’90. 

Problem 3. Find the angular distribution of quasi-classical scattering at small angles, if 
the classical angle of deviation 8 is zero for some finite value of p = Ijk. 

Solution. The assumption of quasi-classical scattering means here that /„ 1 and 
SiB < 1. Then the values of l close to /0 are important in scattering. For small l' = l—l0 we 
have 

s,*slj+i pn- 

then, according to (127.3), 8 = 0 for /' = 0. This expression is to be substituted in (127.1), 
and Pi (cos 8) can be written in the form (49.6). The summation over l is again replaced by 
integration over l' near the point /' = 0:J 

/ = (h,'ik) exp (2i'S,) | J0(W) exp (ijW*) d/\ 

The integral is determined by the range I' ~ P_1/2. For angles 8 < VP, we can take the 
function J0(IS) outside the integral and use its value at l = The remaining integral is 
calculated as shown above. The result for the cross-section is It 

do = (irl0Vpki)M(l06) do 

A similar result is found for the cross-section for scattering at angles close to w if the clas¬ 
sical scattering angle tends to rr for some finite (non-zero) value of p. 

§128. Analytical properties of the scattering amplitude 

A number of important properties of the scattering amplitude can be 

established by considering it as a function of the energy E of the particle 

undergoing scattering, this energy being formally regarded as a complex 

variable. 

Let us consider the motion of a particle in a field U(r) which vanishes 

sufficiently rapidly at infinity (the necessary degree of rapidity will be specified 

later). To simplify the discussion we shall first suppose that the orbital 

angular momentum / of the particle is zero. We can write down the asymp¬ 
totic form of the wave function (the solution of Schrodinger’s equation with 

1 = 0 for any given value of E) as 

t This type of scattering occurs in the theory of the rainbow, and it is therefore called 
rainbow scattering. 

J Strictly speaking, the amplitude should include a term representing the contribution to 
small-angle scattering from impact parameters p-»co. This contribution, however, is in 
general small in comparison with that shown 

II This type of scattering is called luminescence, from its occurrence in the theory of certain 
meteorological, phenomena. 
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X = r* = A(E) exp(- —+ £(£) ^p(~(128.1) 

and regard £ as a complex variable, defining y/—Ezs being positive when E is 

real and negative. The wave function is assumed normalized by some definite 

condition, say tp(0) = 1. 

On the left half of the real axis (E < 0) the exponential factors in the two 

terms in (128.1) are real; one decreases and the other increases as r co. 

From the condition that y is real it follows that the functions A(E) and B(E) 

are real for E < 0, and from this in turn it follows that these functions have 

complex conjugate values at any two points lying symmetrically about the 

real axis: 

A(E*) = A*(E), B(E*) = B*{E). (128.2) 

On going from the left half to the right half of the real axis through the 

upper half-plane we obtain an asymptotic expression for the wave function 

for E > 0 in the form 

x = A(E)e^r+B{E)e^r, k = ^(ImE)^. (128.3) 

If a path through the lower half-plane is used, however, the result is 

x = A*(E)e-<Kr+B*(E)el*r. 

Since y must be a single-valued function of E, this means that 

A(E) = B*(E) for E > 0; (128.4) 

this relation also follows directly from the fact that y is real for E > 0. 

Nevertheless, because the root \/—E in (128.1) is not single-valued, the co¬ 

efficients A(E) and B(E) themselves are not single-valued. To avoid this, we 

cut the complex plane along the right half of the real axis. The cut makes 

\/-E single-valued, and so the functions A(E) and B(E) are uniquely 

determined. They have complex conjugate values on the upper and lower 

edges of the cut (in (128.3), A{E) and B(E) are taken on the upper edge). 

The complex plane cut in the manner described above will be called a 

physical sheet of the Riemann surface. According to our definition we have 

everywhere on this sheet 

re \/—E > 0. (128.5) 

In particular, on the upper edge of the cut \/ — E thus defined becomes 
-WE. f 

t In the rest of this section we shall be considering the properties of the ' 
on the physical sheet. Later, however, it will sometimes be necessary 
“non-physical" sheet of the Riemann surface (see §134). On this sheet 

ring amplitude 
nsider another 

re V —£ < 0. (128.3a) 

The passage from the right half of the axis to the non-physical sheet is made directlv down 
through the cut 
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In (128.3) the factors eikr and e~ikr, and so also the two terms in x, are 

quantities of the same order of magnitude; an asymptotic expression of the 

form (128.3) is therefore always legitimate. Everywhere else on the physical 

sheet the first term in (128.1) decreases exponentially, and the second term 

increases exponentially, as r -*■ co (because of (128.5)). Hence the two terms 

in (128.1) are of different orders of magnitude, and this expression may not 

be legitimate as the asymptotic form of the wave function: the small term 

compared with the large one may represent an unjustified exaggeration of 

accuracy. For the expression (128.1) to be legitimate the ratio of the small 

and large terms must not be less than the relative order of magnitude of the 

potential energy UjE, which is neglected in Schrodinger’s equation on going 

to the asymptotic region. In other words, the field U(r) must be such that 

/ 2V(2 m) \ 
U{r) decreases more rapidly than expl--—r re \/—Ej as r -*■ co. (128.6) 

When this condition is satisfied, for any re%/( — E) > 0, that is, if U(r) 

decreases more rapidly than 

f-cr (128.6a) 

with any positive constant c, the asymptotic expression of the form (128.1) 

is valid everywhere on the physical sheet. Being a solution of an equation 

with finite coefficients, it has no singularity with respect to E. This means 

that the functions A E) and B(E) are regular everywhere on the physical 

sheet except the point E = 0, which, being the point where the cut begins, 

is a branch point of these functions. 

The bound states of a particle in the field U(r) correspond to wave functions 

which vanish as r -*■ co. This means that the second term in (128.1) cannot 

appear, i.e. the discrete energy levels correspond to zeros of the function 

B(E). Since Schrodinger’s equation has only real eigenvalues, all the 

zeros of B(E) on the physical sheet are real (and lie on the left half of the real 

axis). 

The functions A(E) and B(E) for E >0 are directly related to the scattering 

amplitude in the field U(r): comparing (128.3) with the asymptotic expression 

for x written in the form (33.20), 

X = constant x [eWr+M —e-«*r+*o>], (128.7) 

we see that 

— A(E)jB(E) = **«•(». (128.8) 

The scattering amplitude with angular momentum l = 0 is, according to 

(123.15), 

1 ft (A \ 

f° = m£)VB + )' 
(128.9) 
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here A and B are taken on the upper edge of the cut. 

Considering now the scattering amplitude as a function of E over the whole 

physical sheet, we see that the discrete energy levels are simple poles of this 

func tion. If the field I’lr j satisfies the condition (128.6a), the above dis¬ 

cussion shows that the scattering amplitude has no other singular points.! 

Let us calculate the residue of the scattering amplitude at its pole for some 

discrete level E = £o < 0. To do so, we write down the equations satisfied 

by the function y and its derivative with respect to energy: 

x"+-r(£-C)x = 0, 
\ce) m 'ie 

Multiplying the first by oxjcE, the second bv y, subtracting, and integrating 

with respect to r, we obtain 

,h (h\ 2m f 
X cE J X (128.10) 

We apply this relation for E = Eq and r -> co. The integral on the right- 

hand side becomes unity for r -* co if the wave function of the bound state is 

normalized by the usual condition J y2 dr = 1. On the left-hand side we 

substitute y from (128.1), using the fact that, near the point E = Eo, 

A(E) x A(E0) = A0, B(E) ~ (£+!£b|)[dB/d£JE_*# = )S(£+|£b|). 

s - - 2_ /JL. 
A0H 2|£b| 

By means of these expressions we find that, near the point E = Eo, the prin¬ 

cipal term in the scattering amplitude (i.e. the amplitude for / = 0) has the 

form 

k2A<? 1 

2m £+|£o| 
(128.11) 

Thus the residue of the scattering amplitude at the discrete level is deter¬ 

mined by the coefficient Ao in the asymptotic expression 

X — Ao expj 
v/(2m|£0|) > 

(128.12) 

of the normalized wave lunction of the corresponding stationary state. 

Returning to the examination of the anah tical properties of the scattering 

amplitude, let us consider cases where the condition (128.6) is not satisfied. 

t Except the point E = 0, which is singular, because of the singularit 
previously mentioned The scattering amplitude, however remains finite 
In future we shall, for brevity, omit this qualification. 

of A(E) and B(£) 
as E->0 (see §132). 
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In such fields only the increasing term in (128.1) is the correct part of the 

asymptotic form of the solution of Schrodinger’s equation over the whole 

of the physical sheet. Accordingly, we can, as before, assert that the function 

B(E) has no singularity. 

The function A(E) under these conditions can be determined in the complex 

plane only as an analytical continuation of the function which is the coefficient 

in the asymptotic expression for x on the right half of the real axis, where the 

two terms in x are both legitimate. In general, however, such a continuation 

now gives different results according as it is carried out from the upper or the 

lower side of the cut. To obtain a single-valued function, we shall agree to 

define A[E) in the upper and lower half-planes as the analytical continuation 

from the upper and lower sides of the right half of the real axis respectively; 

the cut must then in general be extended to the whole of the real axis. The 

function thus defined has as before the property A(E*) = /!*(£), but in 

general is not real either on the right or on the left half of the real axis. It 

may also, in principle, possess singularities. 

We shall show', however, that there is nevertheless a class of fields for 

which the function A(E) has no singularity on the physical sheet, although 

the condition (128.6) is not satisfied. 

To do so, we regard ^ as a function of a complex variable r for a given 

(complex) value of E. Here we need only consider values of E in the upper 

half-plane, since the values of the function A(E) in the two half-planes are 

complex conjugates. For values of r such that Er2 is real and positive, the 

two terms in the wave function (128.1) are of the same order, i.e. we return 

to the situation which occurs when E > 0 and r is real, w'hen both terms in the 

asymptotic expression for x are legitimate for any field U(r) which tends to 

zero at infinity. We can therefore say that A(E) cannot have singular points 

for values of E such that U(r) -> 0 when r -* co along a line on which Er2 > 0. 

When E takes all values in the upper half-plane, the condition Er2 > 0 

selects the lower right quadrant in the complex r-plane. Thus w'e conclude 

that A(E) also has no singularity on the physical sheet when U(r) satisfies the 

condition! 

U(r) -* 0 when r -> co in the right half-plane (128.13) 

(L. D. Landau 1961). 

The conditions (128.6) and (128.13) cover a very wide class of fields. We 

can therefore say that the scattering amplitude usually has no singularity in 

the two half-planes. On the left half of the axis (w'hich is part of the physical 

sheet if not cut) the scattering amplitude has poles corresponding to the 

energies of the bound states; when the cut exists, there may be other singu¬ 

larities also. 

This happens, in particular, in fields of the form 

t Since f)(r) is real on the real axis V(r*) = thus the eomlition (128.13) is sattslied 
throughout the right half-plane if it is satisfied in rite lower right ipiailrant. 



§128 Analvticalproperties of the scattering amplitude 

U = constant x rne~r!a 

531 

(128.14) 

with any n. On the segment 0 < —E < h2/Sma2 of the left half of the axis, 

the condition (128.6) holds, and so there need not be a cut; the scattering 

amplitude has only poles corresponding to the bound states. On the remainder 

of the left half of the axis there may be redundant poles and other singu¬ 

larities-(S. T. Ma 1946). The appearance of these is due to the fact that the 

function (128.14) no longer tends to zero when r -> co along a line on which 

Er2 > 0, as soon as E moves below the left half of the axis (i.e. this line falls 

to the left of the imaginary axis in the complex r-plane). 

Next, let us consider the analytical properties of the scattering amplitude 

as |£| ->- co. When E -> + co along the real axis, the Born approximation is 

valid and the scattering amplitude tends to zero. According to the above 

discussion, this situation also occurs whefi E tends to infinity' in the complex 

plane along any line arg E = constant, if we consider complex values of r 

for which Er2 >0. If U -*■ 0 when r -*■ co along a line arg r = — £ arg E, 

and U{r) has no singular point on this line, then the condition for the Born 

approximation to be valid is satisfied and the scattering amplitude again tends 

to zero. When arg E takes all values from 0 to tt, arg r takes values from 

0 to — \rr. 

We therefore conclude that the scattering amplitude tends to zero at 

infinity in all directions in the E-plane if the function U(r) has no singular 

point in the right half-plane of r and tends to zero at infinity. 

Although we have have spoken throughout of scattering with angular 

momentum / = 0, all the above results are in fact valid for the partial scatter¬ 

ing amplitudes with any non-zero angular momentum. The only difference 

in the derivations is that, instead of the factors e±ikr in the asymptotic expres¬ 

sions for x, we should have to use the exact radial wave functions for free 

motion (33.16).f 

Some changes are needed in formulae (128.9) and (128.11) when 1^0. 

Instead of (128.7) we now have 

Xi = rRi = constant x {exp[i(kr— $/jt + Si)] — exp[—i(&r—$/jt + Sj)j}, (128.15) 

and for the partial amplitude fi (defined according to (123.15)) we obtain 

/!-ivrW(",)4+,> (l28•l6, 

The principal term in the scattering amplitude near the level E = E0 with 
angular momentum l is given by the formula 

t The limiting form (33.17) of these functions can be us 
.E-plane, where the two terms in * are of different orde 
limiting expressions would involve an error in x which is 
arises from neglecting U in Schrodinger’s equation. 

ed only for E> 0; in the rest of the 
rs of magnitude, the use of these 
in general greater than that which 
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/ * (2/ + l)/,Pz(cos 6) 

h2A02 1 
- (~1)1+1-2—--- j£.o| (2/+ l)P;(cos8) (128.17) 

instead of (128.11). 

§129. The dispersion relation 

In the previous section we have studied the analytical properties of the 

partial scattering amplitudes with given values of /, and have seen that these 

properties are complicated by the possible appearance of “redundant” 

singularities and non-regularity at infinity. The total amplitude, regarded as 

a function of energy for given values of the scattering angle, evidently has 

similar properties. The scattering amplitude for scattering angle zero forms 

an exception, however: as we shall now show, its analytical properties are 

considerably simpler. 

Writing Schrodinger’s equation for the wave function of the particle 

undergoing scattering as 

A0 + *®0 -(2mC//W% (129.1) 

we may formally regard it as a wave equation with a non-zero right-hand side, 

i.e. as the equation of retarded potentials well known in electrodynamics. 

The solution of this equation which describes the “emission” in some 

direction k' at large distances Rq from the centre has the form (see Fields, 

§66) 

0s 
1 «***• /* 2mZ7 

(129.2) 

In the present case this represents the wave function of the scattered particle, 

and the coefficient of etkR°/Ro gives the scattering amplitude /(#,£). In 

particular, putting k' = k (where k is the wave vector of the incident particle), 

we obtain the scattering amplitude for scattering angle zero: 

/(0,£) = f U4>e~ikz dV (129.3) 
2irh2 J 

(the z-axis being taken in the direction of k). This expression has, of course, 

only formal significance, since the integrand again involves the unknown wave 

function. However, it allows certain conclusions to be drawn concerning the 

analytical properties of the quantity f(0,E) as a function of the energy. E.f 

The function 0 in the integrand consists of two parts when r is large, the 

t It is assumed, of course, that the field U(r) decreases, as r-=o, sufficient^ rapidly for 
/(O,£■) to exist (when £>0); see §124 
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incident wave and the outgoing wave. The latter is proportional to eikr, so 

that the corresponding part of the integral contains eik^r~z) in the integrand. 

On the other hand, in the complex plane (going from the upper edge of the cut 

along the right half of the real axis) ik is replaced by -\>\-2mE)\h, and 

rt\/-E > 0 everywhere on the physical sheet. Since j- xr, re[i'A(j-— xr)] < 0, 

and the integral converges for any complex E. For the incident wave in ip, 

proportional to eikz, the exponential factors cancel in the corresponding part 

of the integral, so that this part also converges. 

The function ip in the integral (129.3) is uniquely defined for all complex 

E as the solution of Schrodinger’s equation which contains, in addition to the 

plane wave, only a part which is damped as r -» co. The whole of the con¬ 

vergent integral (129.2) is therefore uniquely determined also, and so its 

singularities can arise only through tp's becoming infinite. This occurs at 

discrete energy levels.f 

It is also easy to see that f(0,E) remains finite as \E\ -* co. For large 

\E\ the term in U can be neglected in Schrodinger’s equation (129.1), so that 

only the plane wave remains in •A ~~ eikz- Thus the integral (129.2) 

becomes 

/(O.co) =-UdV, 
l-nh* J 

which agrees, as it should, with the Born amplitude (126.4) for scattering 

through zero angle (q = 0); we denote it by /jg(0). 

Thus we conclude that the scattering amplitude for scattering angle zero is 

regular over the whole physical sheet (including infinity), except for the 

necessary poles on the left half of the real axis at the discrete energy levels.^ 

Let us consider the integral 

_L 
2trij E’-E 

(129.4) 

taken along the contour shown in Fig. 46, which consists of an infinitely 

distant circle and an indentation round the cut along the right half, of the 

t To avoid misunderstanding, we should emphasize that here we are discussing the 
complete wave function <fi of the system, normalized by the condition that the coefficient of 
the plane wave in its asymptotic expression should be equal to unity (cf. 123.3)). In the 
previous section we were considering the parts ijji of the wave function which correspond to 
definite values of l, and <fn was assumed to be normalized in some arbitrary manner. If we 
expand the complete function \ji in terms of the functions ipi, the latter will appear in i/i with 
coefficients proportional to 1 IB,. For example, the function (128.3) with / = 0 must appear 
in <P in the form 

■ ~[iA + B)e^r_2,B^nkr]. 

Hence <P becomes infinite at the zeros of the functions Bt{E), i.e. at the discre 
I The idea of the foregoing proof is due to L. D. Faddeev (1958) 

snergy levels. 
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Fig. 46 

real axis. The integral along the circle is zero, since /(0, co) — fs = 0. The 

integration along the two sides of the cut gives 

1 

ttJ e’-e 

here we have used the fact that, according to the definition adopted in §128, 

the physical scattering amplitude for real positive values of E is given on 

the upper side of the cut, and has the complex conjugate value on the lower 

side. 

According to Cauchy’s theorem, the integral (129.4) is equal to the sum of 

f(0,E) — /b and the residues Rn of the integrand at all the poles E' — En of 

the function f(0,E')/(E' — E), where En are the discrete energy levels. These 

residues ?r j determined by formula (128.17), and are 

dn &AonZ 

Rn = 'E^E’ dn= v (129.5) 

where ln is the angular momentum of the state with energy En. Thus we find 

1 r im/(0,£') dn 

mv -A+-J -PrF-dE'+ <129-6> 

This dispersion relation determines f(0,E) at any point on the physical sheet 

from the values of its imaginary part for E >0 (D. Y. Wong 1957, N. Khuri 

1957). 

When the point E tends to the upper side of the cut, the integral along the 

real axis in (129.6) must be taken by passing below the pole E' = E\ if this is 

done along an infinitesimal semicircle (Fig. 47), the corresponding part of the 

© 

Fic. 47 

integral gives i im f(0,E) on the right-hand side of (129.6), while the remain- 
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ing integral from 0 to co must be taken as a principal value. The result is 

re/(0,£) =fB + 

, 00 

w im f{0,E') 

E'-E 
dir+2 dn 

E-En' 
(129.7) 

which, for E > 0, determines the real part of the scattering amplitude for 

scattering through angle zero from its imaginary part. It may be recalled 

that the latter, according to (125.9), is directly related to the total scattering 

cross-section. 

§130. The scattering amplitude in the momentum representation 

The concept of the scattering amplitude involves only the directions of the 

initial and final momenta of the particle undergoing scattering. It can there¬ 

fore naturally be approached also by formulating the scattering problem in 

the momentum representation, where there is no question of the spatial 

distribution of the process. We shall now show how this may be done. 

First of all, let us transform to the momentum representation the original 

Schrodinger’s equation 

-A2 Aip(r) + [t/(r) — £]</i(r) = 0, (130.1) 
2m 

changing from coordinate to momentum wave functions, i.e. to the Fourier 

components 

fl(q) = J <£(r)e-'qr dV. (130.2) 

Conversely, 

<A(r) = / a(q)^-'d8?/(2w)8. (130.3) 

We multiply equation (130.1) by e~,q-r and integrate over dV. In the first 

term, a repeated integration by parts gives 

J e-’qrA<A(r)dF = J l/,(r)Ae-,q’r dV = -q2a(q). 

In the second term, substituting (130.3) for </i(r), we obtain 

J ^(r)</'(r)e~,q‘r dV = J J {7(r)e-’q*-a(q')eiq'- dV d*q'I{2tt)* 

= J A(q-q')a(q')d397(27r)3, 
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where U(q) is the Fourier component of the field C/(r):f 

§130 

t/(q) = j U{r)e-^AV. 

Thus Schrodinger’s equation in the momentum representation becomes 

® ~£)fl(q)+ J L’(q_q'Mq,)^i = °' (130'4) 

Note that this is an integral, not a differential, equation. 

The wave function describing the scattering of particles with momentum 

/zk has the form 

■Mr) = *>k'r + *k(r), (130.5) 

where Xk(r) is a function whose asymptotic form (as r ->oo) is that of an out¬ 

going spherical wave. Its Fourier component is 

Mq) = (27r)3S(q — k) + Xk(q)> (130.6) 

and substitution in (130.4) gives the following equation for the function 

Xk(q):t 

£(*2-?2)Xk(q) = E/(q-k)+ J U(q~q')xMdzq'j(2n)z. (130.7) 

This equation may conveniently be transformed by using instead of xk(q) 
another unknown function defined by 

Xk(q) = 
2m F(k, q) 

hz ?2_*z_i0' 
(130.8) 

This eliminates the singularity at qz = kz in the coefficients of equation 

(130.7), which becomes 

(13o„ 

The term z'0, which denotes the limit of zS as 8^+0, is included in the 

definition (130.8) in order to give a definite sense to the integral in (130.9), 

t For convenience of notation, we write q as an argument of the Fourier component instead 
of as a subscript 

1 According to the properties of the delta function, the product (q2 — A2) S(q — k) gives zero 
when multiplied by any function/(q) (not having a singularity at q = k) and integrated over 
dfy In this sense, (q2 — *a)S(q — k) =0. 
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since it establishes the manner of passage round the pole q'2 = kz (cf. §43). 

We shall show that this manner of passage in fact corresponds to the required 

asymptotic form of the function 

Xk(r) = 
F(k, q)e,q'r d 3q 

q2 — k2 — iO (2tt)3' 
(130.10) 

To do so, we write d39 = q2 dq doq and first integrate over doq, i.e. over 

the directions of the vector q relative to r. An integration of this type has 

already been effected in transforming the first term in (125.2); in the region 

of large r, the result is 

Iml-ni j* F(k, qn')eiQr — F(k, — qn')e-iQr q dq 

J q2 — k2 — iO (2n)3’ 

where n' = r/r, or 

Xk(r) = 
im f F(k, qri)eiQT q dq 

2-n2h2r J q2 — k2 — iO * 

The integrand has poles at the points q — k + iO and q = —k — iO-, the path 

of integration in the complex 9-plane passes respectively below and above 

these (Fig. 48a). The path can be moved slightly into the upper half-plane 

© - 

-^ ^ * -0- 
( a) ( b) 

Fig. 48 

and replaced by a straight line parallel to the real axis together with a closed 

loop round the pole q = k (Fig. 48b). The integral along the straight line 

tends to zero as r -» 00 (because the integrand contains the factor e~r im ?), and 

the integral round the loop is given by 2m times the residue of the integrand 

at the pole q — k. The final result is 

Xk(r) = ^^-F(kn, kn'), (130.11) 

where n is a unit vector in the direction of k. We have derived the required 

asymptotic form of the wave function, and the scattering amplitude is 

/(n, n') = -HL F(kn, kn'). (130.12) 

Thus the scattering amplitude is determined by the value at 9 = A of the 

function F(k, q) which satisfies the integral equation (130.9). 
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When perturbation theory is applicable, equation (130.9) is easily solved by 

iteration. In the first approximation, omitting the integral term, we have 

F(k,q) = - U(q — k). In the next approximation, we substitute this in the 

integral term; the scattering amplitude (130.12) is then found to be (with a 

slight change of notation) 

£/(k'-k")E/(k"-k) d3*") 

k2-k"2 +f-0 (27t)3J’ 
(130.13) 

with k = kn, k' = kri. The first term is the same as (126.4) in the first Born 

approximation; the second term shows the contribution of the second 

approximation to the scattering amplitude-f 

From (130.13) we have the result already mentioned in §126: even in the 

second approximation, the scattering amplitude does not have the symmetry 

property (126.8). At first sight it may seem that the integral term in (130.13) 

is also symmetrical with respect to interchange of the initial and final states. 

Actually, however, this symmetry does not exist, because the path of in¬ 

tegration and the direction of passage round the pole are altered when the 

complex conjugate expression is taken. 

§131. Scattering at high energies 
If the potential energy is not small compared with h2jma2 (a being as usual 

the range of action of the field), a situation can occur where the energy of the 

particles undergoing scattering is so large that 

\U\4:E~(h2lma2)(kaf, " (131.1) 

yet the condition 

\U\ z{h2lma2)ka = hvja (131.2) 

holds; here it is, of course, assumed that 

ka> 1. (131.3) 

In such a case we have scattering of fast particles to which the Born approxi¬ 

mation is not applicable; neither of the conditions (126.1) and (126.2) is 

satisfied. 

To examine this case, we can use the expression for the wave function in 

the form (45.9): 

ip = eikzF{r), F(r) = exp^ —t/dz^; (131.4) 

t This result can, of course, also be easily obtained without recourse to the momentum 
representation: the fact that the second-approximation formula differs from the first- 
approximation formula by the replacement of L'(k' —k) by the expression in the braces in 
(130.13) is evident from a comparison of (43.1) and (43.6). 
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for this to be applicable, the energy need only satisfy the condition | U\ E. 

In §45 it has been noted that this expression is valid only for z ka2, and so it 

cannot be immediately extended to distances where the asymptotic expression 

(123.3) holds. This is not necessary, however; to calculate the scattering 

amplitude, it is sufficient to know the wave function at distances z such that 

a 4. z ka2, and the integral in the exponent of F(r) can be extended to 

infinity: 

<P = e***S(p), (131.5) 

with the notation 

S(p) = exp[2i'S(p)], 8(p) = sbj Udz, (131.6) 

p being the radius vector in the xy-plane. 

The scattering of fast particles takes place mainly through small angles, 

and these will be considered here. The change in the momentum hq is 

relatively small (q k), and hence the vector q may be regarded as being 

perpendicular to the wave vector k of the incident particle, i.e. as lying in the 

xy-plane. The scattered wave is obtained by subtracting from (131.5) the 

incident wave eikz (the function (131.4) for z = — oo). The amplitude for 

scattering with wave vector k' = k + q is proportional to the corresponding 

Fourier component of the scattered wave:f 

/~J[5(p)-l]e-»-d2p 

(d2p = dx dy). The proportionality coefficient in this expression can then 

be derived by comparison with the limiting case of the Born approximation 

(see below). 

The calculation can also be made by a different method, which leads 

directly to a completely definite expression. For this, we use (129.2) and 

substitute. from (131.4). Since, according to (45.8), 

{2mjh2)UF = 2 ikdFIdz, 

we obtain for the scattering amplitude (the coefficient of eikR*IRo) 

, k r 8F J . . 
J 2-rriJ 8z * 

= = <x>)-F(z = - co)]e-*-d*dy. 

f This method of determining the scattering amplitude is analogous to the one used in the 
discussion of Fraunhofer diffraction {Fields, §61). Diffraction effects make formula (131.4) 
inapplicable for z> ka*. 
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Substituting the expression for F, we have finallyf 

(131.7) 

If the energy is so high that S~|U|a/fo 1, the Born approximation is 

valid: expanding 5— 1 « 2iS, we obtain from (131.7) 

f —-— I Ue “,q'p d 2p d z, 
1 2irH* J P 

in accordance with (126.4). 

Using the optical theorem (125.9), we can derive the total scattering cross- 

section from (131.7). The amplitude for scattering at zero angle is the value 

of/for q = 0. We thus have 

a = | 2 re (1 - S)d2p = J 4 sin2 8(p) d2p. (131.8) 

The integrand may be regarded as the scattering cross-section for particles 

with impact parameter in the range d2p.J 

Formula (131.7) does not presuppose that the field has central symmetry. 

It is instructive to see how this formula can be derived, for a centrally 

symmetric field, directly from the exact general formula (123.11). 

Under the conditions (131.1)—(131.3), the main role in the scattering is 

played by the partial amplitudes with large angular momenta l. The quasi- 

classical condition is therefore satisfied for the wave functions, and we can 

use formula (124.1) for §i. Putting there ro « l/k, r2 = z2 + l2lk2, we find 

_m_ ?-U(±dr_ = _m_ + /2/*2)]d* 

1 h2 J ‘s/ik2 — l2/r2) h2k J l W 
I Ik 0 

t In the two-dimensional case, the scattering amplitude in the field U(x,z) is determined, as in 
§123, Problem, by the analogous formula 

f=liJ-L\[s{x^i}emdx- (131'7a) 

The square |/|2 d<£ is the scattering cross-section per unit length along thejr-axis, and <t> is the angle 
of scattering in the x^-plane; cf. also §126, Problem 6. 

J In §152 a generalization of formulae (131.7) and (131.8) to the case 
system of particles will be given. 

of scattering by 
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in accordance with the value of 8(p) (131.6) when p = ljk.\ Next, for small 

angles (6 1) the Legendre polynomials with large l can be put in the form 

(49.6): 

Pi(cos 6)*M6l) 

Substituting this in (123.11) and changing from summation (over large l) to 

integration, we obtain 

= — J fie-**dtp, (131.9) 

where q and p are two-dimensional vectors with magnitudes q = k6, p = Ijk. 

Lastly, substituting for/* in the form (123.15) with 81 = 8(l/k), we return 

to (131.7). 

For scattering in a centrally symmetric field, formula (131.7), after the 

integration over the polar angle <j> in the yy-plane (d2p = p dp d<j>) has been 

carried out, becomes 

/ = -zTe J {exp[2*8(p)]-l}y0(?p)pdp. (131.10) 

It has already been mentioned in §126 that the Born approximation is not 

applicable to the scattering of fast particles through large angles if the cross- 

section is exponentially small. The method given here is also inapplicable 

under these conditions. Such cases are actually quasi-classical, and pertur¬ 

bation theory cannot be used. 

In accordance with the general rules of the quasi-classical approximation 

(cf.§§52, 53), the exponent in the exponential law of decrease of the scattering 

t The quasi-classical function 2is the change in the action, caused by the field U, 
when the particle traverses a classical path. For a fast particle, this path may be taken as a 
straight line, and 2 8(p) is then the difference of the classical action integrals 

jy d* - ]akAz * ~ik] uaz 
In this sense, the function 2S(p) here acts like the eikonal in geometrical optics. The approxi¬ 
mation in scattering theory is therefore often called the eikonal approximation. It must be 
emphasized, however, that the scattering amplitude does not reduce to its quasi-classical 
value, since the conditions 0/ S> 1, S( S> 1 are not in general satisfied. 
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cross-sections can be determined by considering “complex paths” in the 

classically inaccessible region of motion.^ 

In the classical scattering problem the relation between the angle of devia¬ 

tion 8 of the particle in a field U(r) and the impact parameter p is given by 

H^ + 0) ~ I rV(l-p2/r2-l//£)’ (131.11) 

where ro is the minimum distance from the centre, a root of the equation 

l-p2/r2-t//£ = 0; (131.12) 

see (127.5). The case of interest to us corresponds to the range of angles 

which cannot occur in the scattering of a classical particle.J \ These angles 

therefore correspond to complex solutions p(8) of equatiom(131.11)|(with 

corresponding complex values of ro). From the function p(8) thus found and 

the classical orbital angular momentum mvp of the particle we calculate the 

action 

S(8) = mv j p(6) d8, (131.13) 

where v is the velocity of the particle at infinity. The scattering amplitude is 

/~exp(-iimS(0)). (131.14) 

Equation (131.12) has in general more than one complex root. The value of ro 

in (131.11) must be taken as that root which gives the smallest positive 

imaginary part im S. In addition, if the function U(r) has complex singu¬ 

larities, they must also be considered as possible values of ro. '| 

The region r ~ ro is the most important in the integral (131.11). For large 

energies E, the term U/E under the radical can be omitted. Carrying out the 

integration, we then have 

p = rocos£0. (131.15) 

If ro is a singular point of the function U(r), it depends only on the pro¬ 

perties of the field, but not on p or E. Calculating 5 from (131.13), we find 

in this case that the scattering amplitude is 

/ ~ exp^— sin£0 imr0j. (131.16) 

t A discussion of the coefficient of the exponential is given by A. Z. Patashmskii, V. L. 
Pokrovskii and I. M. Khalatmkov, Soviet Physics JETP 18, 683, 1964. 

: The method described here is valid not only for large E but generally for all cases of 
exponentially small scattering. 

II It may be recalled (see §126) that, if U(r) has a singularity for real r, the decrease of the 
rrnss-section is not exponential. 
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If, however, ro has to be taken as a root of equation (131.12), the form of the 

exponent depends on the particular properties of the field. For example, 

with the function 
U = C/o*-<r/«>« 

(which has no singularity at a finite distance) we obtain from the equation 

C//E = 1 - P2lr2 w sin2£0 

the result 

r0 = iaxf log([£/Lr0] sin2£0). (131.17) 

Owing to the very slight dependence on 8, r0 may be regarded as constant in 

the integration in (131.13), and we find for the scattering amplitude the 

formula (131.16) with r0 given by (131.17). 

PROBLEMS 

Problem 1. Determine the total scattering cross-section for a spherical square potential 
well of radius a and depth U0 with the condition (131.1): U„ h2k~lm. 

Solution. We have 

J UAz = -2C70V(a2-p2). 

According to (131.7), the forward-scattering amplitude (q = 0) is 

= - ika2 j (e2Uz — 1 )jc cbr 

where v = Uf,a/hv is the “Bom parameter”. By means of the optical theorem (125.9), we 
hence find the total cross-section: 

In the limiting (Bom) case * < 1, this gives o = 2m2!v», in agreement with §126, Problem 1. 
In the opposite limiting case v 1, we have simply o = 2-na1, i.e. twice the geometrical 
cross-section. The latter result has a simple significance. For v 1, all particles with impact 
parameter P < a are scattered, i.e. are removed from the incident beam. In this sense the well 
behaves as an “absorbing” sphere; and, according to Babinet’s principle (see Fields, end of 
§61), the total cross-section is twice the “absorption" cross-section. 

Problem 2. The same as Problem 1, but for a field U = U» exp(-rs/a!). 
Solution. In this case 

J V de = a^/nUa exp ( - p2la2). 
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Substituting in (131.7) and making an obvious change of variable in the integral, we obtain 
for the scattering amplitude at zero angle 

/(0) = - iika2 j (e_1“ — 1) du/u, 

where again v = Uqallrv. Hence the total cross-section is 

o = 2mi2 j (1-cos u) du/u. 

For 1 the integrand is $u and the cross-section o = Jira’i/*, in accordance with the 
result of §126, Problem 2 (for ka > 1). For v f> 1, we write the integrand as (1 — e~Xu cos u)/u 
with a small parameter A, which afterwards is made to tend to zero. Integration by parts then 

j (1 -cos u) du/u a: log(vvV)- j log u sin u du 

= log^vM + C, 

where C is Euler’s constant Thus 

a = 2ira2 log (vx'ireC) for 1. 

Problem 3. Determine the cross-section for small-angle scattering of electrons in a 
magnetic field concentrated in a cylindrical region of radius a (Y. Aharonov and D. Bohm 
1959). 

Solution. Let the magnetic field be along the y-axis, which is also the axis of the cylin¬ 
drical region, and let the direction of incidence of the electrons be taken as the z-axis. Then 
the scattering is independent of the coordinate y, and we can consider a two-dimensional 
problem in the xz-plane. 

Outside the cylindrical region, the field H = 0, but the vector potential is not zero: 

A = (<t>/2n)Vtp, (1) 

where <f> is the polar angle in the xz-plane and <I> the magnetic flux; for, integrating over the 
area of a circle (with radius r > a) in this plane, we have 

J H dx dz = j A . dl = = <D. 

The potential (1) changes the phase of the electron wave function (plane wave); according to 
(111.9), we have 

ip = ettz exp (ie<t>^j2irhc). (2) 

This expression, however, is inapplicable in a narrow region along the half-axis z > 0, since 
the motion of the particles that have passed through the field region is perturbed by the field. 
This explains the apparent non-uniqueness of the function (2) when the angle if> increases by 
2ir as we pass round the origin. In reality, there is a cut (of finite width) near the half-axis 
z> 0, resulting from the invalidity of formula (2); on the two sides of the cut, <p has values 
differing by 2n, for example + it. 

For scattering at small angles 6 with a small momentum transfer q*ak8 (qa <1 1, M 1). 
distances x~ 1 lq S> a are important, and the width of the cut may be neglected. 
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Considering the region z t> |x|, we can also neglect the dependence of ip on* on either side 
of the z-axis, obtaining! 

ip = etkiF(x), F(x) = exp( -ie<t>l2hc), x >0, ) 

- exp(ieQ/2hc), x< 0. I ^ 

The “two-dimensional” scattering amplitude is calculated from formula (131.7a).I For 
q^O we have 

/ = |exP^ - dx + complex conjugate j. 

The integral is calculated by including a factor e~>z and then taking the limit X-*0. The 

Hence the scattering cross-section is 

do = |/|2d0 = ^sin2|?-. «/*»■ (4) 

For e<bjhc <t 1, we obtain 

d = f2(I>2 66 
° 2nkhw e? 

which corresponds to the case where perturbation theory is applicable. 
Note the periodic dependence of the cross-section (4) on the magnetic field strength, and 

the divergence of the total cross-section when B-*0, although the field is concentrated in a 
finite region of space. These are both specifically quantum effects. 

§132. The scattering of slow particles 

Let us consider the properties of elastic scattering in the limiting case 

where the velocities of the particles undergoing scattering are so small that 

their wavelength is large compared with the radius of action a of the field U(r) 

(i.e. ka ^ 1), and their energy is small compared with the field within that 

radius. The solution of this problem requires an elucidation of the limiting 

form of the dependence of the phases Sj on the wave number k when the 

latter is small. 

For r < a we can neglect only the term in kz in the exact Schrodinger’s 

equation (123.7): 

Ri'+lRt’lr-lil+ViRtlr* = 2mU(r)R^tfi. (132.1) 

In the range a r <$ ljk, on the other hand, we can also omit the term in 
U(r), leaving 

Ri"+2Ri'lr—l(l+l)Ri/r2 = 0. (132.2) 

f Formula (3), like (131.4), is not applicable for very large 2, when diffraction effects become 

J This formula (for q^O) can, as already mentioned, 
Schrodinger’s equation in the potential field. 

be derived without using 
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The general solution of this equation is 

Ri = cv*+ctlrt+K (132.3) 

The values of the constants and c% can in principle be determined only by 

solving equation (132.1) for a particular function U(r); they are, of course 

different for different l. At still greater distances, r ~ 1/&, the term in 

U(r) can be omitted from Schrodinger’s equation, but the term in k2 cannot 

be neglected, so that we have 

Ri’+-Ri+ = 0, (132.4) 

i.e. the equation of free motion. The solution of this equation is (see §33) 

+C2(-l)'- 

(2/+1)!! / d \*sinkr 

' d \'c< 

kzi +1 

(2/-1)!! 

(d \1 cos kr 
(132.5) 

The constant coefficients have been chosen so that, for kr 1, this solution 

becomes (132.3); this ensures the “joining” of the solution (132.3) in the 

region kr ^ 1 to the solution (132.5) in the region kr ~ 1. 

finally, for kr p 1 the solution (132.5) takes the asymptotic form (§33) 

^i(2/+l)!!- 
sin(/er—\l-n) 

rkl+1 

czki 

"(2/— 1)!!: 
-cos (kr-Urr). 

This expression can be put in the form 

sin(kr—^/tt+S,) 
Ri x constant x-, (132.6) 

where the phase Sl is given by the equation 

tanS, « 8, = C2/e2i+i/Cl(2/-l)!!(2/+l)!! (132.7) 

(since k is small, all the phases &i are small). 

According to (123.15) the partial scattering amplitudes are 

2 ik 

and so we conclude that in the limit of low energies 

(132.8) 

Thus all the partial amplitudes with 1^0 are small compared with the 
scattering amplitude with l — 0 (called s-zoave scattering). Neglecting them. 
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we obtain for the total amplitude 

f{B) * /o = So Ik = ala = -«, (132.9) 

so that do = a2 do, and the total cross-section is 

o = W. (132.10) 

At low velocities the scattering is isotropic, and the cross-section is inde¬ 

pendent of the particle energy.f The constant a is called the scattering 

length; it may be either positive or negative. 

In the above discussion it has been tacitly assumed that the field U(r) 

decreases at large distances (r §> a) sufficiently rapidly for the approximations 

made to be legitimate. It is easy to see how rapidly U(r) must in fact decrease. 

For large r, the second term in the function Rt (132.3) is small in comparison 

with the first. In order for the retention of this term to be nevertheless 

legitimate, the small terms ~C2/H+Ir2 retained in equation (132.2) must 

be large compared with the term URi ~ Uc\rl omitted in going from (132.1) 

to(132.2). Hence it follows that U(r) must decrease more rapidly than 1 /r2J+2 

if the result (132.8) is to be valid for the partial amplitude/;. In particular, 

the calculation of/o, and therefore the result (132.9) of isotropic scattering 

independent of energy, are valid only when U(r) decreases at large dist¬ 

ances more rapidly than 1/r3. 

If the field U{r) decreases exponentially at large distances, we can draw 

certain conclusions regarding the nature of the subsequent terms in the 

expansion of the amplitudes fi in powers of k. We have seen in §128 that in 

this case the amplitude /;, regarded as a function of the complex variable 

E, is real when E is real and negative.^ The same is therefore true of the 

functiongi(E) in the expression (125.15): 

fi = i Kgt-ik) 

{ik is real for E < 0). The function gi{E) is also real (by definition) when 

E > 0. Thus this function is real for all real E, and can therefore be expanded 

in integral powers of E, i.e. in even powers of k. The amplitude fi{k) itself, 

therefore, can be expanded in integral powers of ik; all terms with even 

powers of k are real, while those with odd powers of k are imaginary. Accord¬ 

ing to (132.8) the expression of fi(k) begins with the term ~S;/& ~&2J; 

accordingly, the expansion of gi(k) begins with a term proportional to k~21. 

When the field decreases at large distances according to a power law 

U « fr~n with n < 3, the result (132.9) that the amplitude is constant is, 
as already stated, invalid. 

f In the scattering of electrons by atoms, the length a with which 1 Ik must be compared (the 
condition ka < 1) is represented by the radius of the atom, which is several times the Bohr 
radius (several times tifor complex atoms. Owing to the large value of this radius the 
constancy of the effective cross-section actually applies here only up to energies of the order 
of fractions of an electron-volt; at greater electron energies there is a marked energy depen¬ 
dence of the cross-section (called the Ramsauer effect). 

I For small E, the condition (128.6) is satisfied even w vhen U decreases 
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Let us now consider the situations which occur for various values of n. 

For n ^ 1 and sufficiently small velocities, the condition 

P\U(p)\pkv (.132.11) 

is satisfied for practically all values of the impact parameter p, and so the 

scattering is described by the classical formulae (cf. the condition (127.9)). 

For 1 < n < 2 the inequality (132.11) is satisfied over a considerable 

range of fairly small values of p\ accordingly, the scattering is classical for 

angles which are not too small. There is also, however, a range of values of 

p for which 

p\U(p)I <? hv, (132.12) 

i.e. the condition for perturbation theory to be valid is satisfied (cf. (126.2)). 

For n >2 the inequality 

|C/| < hzjmrz (132.13) 

holds at large distances, and therefore the contribution to the scattering 

which arises from interaction at these distances can be calculated by means of 

perturbation theory (whereas at smaller distances the condition for perturba¬ 

tion theory to be applicable may not be satisfied).-}- Let ro be a value of r 

such that for r p r0 the inequality (132.13) holds, while r0 < 1/k. The 

contribution to the scattering amplitude from the region r p ro is, according 

to (126.12), given by the integral 

2mp T 

hz ) 
1 sin^r 2mfi r sin £ 

J df (132.14) 

For 2 < n < 3 this integral converges at the lower limit, and for low 

velocities (krQ 1) we can replace this limit by zero, so that the integral 

is proportional to g-(3~n>, i.e. a negative power of the velocity. This contri¬ 

bution to the amplitude is therefore in this case the main one, so that 

/~r<3-td, 2 < n < 3. (132.15) 

This determines the dependence of the scattering cross-section on the velocity 

of the particles and on the angle of scattering. 

For n = 3 the integral (132.14) diverges logarithmically at the lower limit. 

It is still the main part of the scattering amplitude, so that 

log(constant/5), n = 3. (132.16) 

For n > 3 the contribution from the region r p ro decreases as k 0. 
and the scattering is determined by the constant amplitude (132.9)). However, 

the contribution (132.14), despite its relative smallness, is still of some 

interest through being “anomalous”. The “normal” situation when U{r) 

t The scattering at low velocities is in this case nowhere quasi-classical, since the inequality 
(132.11) is incompatible with the simultaneous requirement that |t/(p)| £ E 
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decreases sufficiently rapidly is that f(k) can be expanded in integral powers 

of k, and all the real terms in the expansion are proportional to even powers 

of k. When the integral (132.14) is -'ntegrated several times by parts (lowering 

the power of £ in the denominator), we can separate from it a part containing 

even powers of k and leave an integral convergent as qr0 -> 0 and proportional 

to kn~3, which is not in general an even power.f 

PROBLEMS 

Problem 1. Determine the scattering cross-section for slow particles in a spherical square 
potential well of depth U0 and radius a. 

Solution. The wave number of the particle is assumed to satisfy the conditions ha <C 1 
and k < k, where x = \/(2mUo)lh. We are interested only in the phase So. Hence we put 
/ = 0 in equation (132.1), and obtain for the function x(’) = rR^r) the equation 

x"+K*X = 0 for r < a. 

The solution which vanishes at r = 0 (x/r must be finite at r = 0) is 

X = A sin «r (r < a). 

For r > a, the function x satisfies the equation x" + *2X = 0 (i-e. equation (132.4) with 
l — 0), whence 

X = B «in(*r+8o) (r > a). 

From the continuity of x'lx at r — a, we obtain the equation 

x cot xa = k cot(*a + S0) ss */(*fl + S„), 

from which we determine So- As a result, we have for the scattering amplitude! 

/= tanKC—. 

For xa 1 (i.e. Do <C tfijma2) this formula gives a = (4rra2/9)(<ca)4, in accordance with 
the result of the Born approximation (see §126, Problem 1). 

Problem 2. The same as Problem 1, but for scattering by a spherical “potential hump” 
of height U„. 

Solution. The solution is obtained from that of Problem 1 if we change the sign of U0 
(which means replacing k by ix), and obtain for the scattering amplitude 

In the limit xa 1 we have 

f = — o. a = 4m22. 

f If n is an odd integer 2p + \, then n 3 — 2p —2 is an even number. In this case also, 
however, the integral (132.14) has an “anomalous” part, which gives a contribution to the 
scattering amplitude proportional to q2p 2 log q. 

t This formula becomes inapplicable if the width and depth of the well are such that xa is 
close to an odd multiple of Jit. For such values of xa the discrete spectrum of negative energy 
levels includes one which is close to zero (see §33, Problem 1), and the scattering is described 
by formulae which we shall derive in the next section. 
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This corresponds to.scattering from an impenetrable sphere of radius a; we note that classical 
mechanics would give a result four times smaller (o — jra2). 

Problem 3. Determine the scattering cross-section for particles of low energy in a field 
U = a/r\ X >0, n > 3. 

Solution. Equation (132.1) with l = 0 is 

x'-rx/t" = 0, y = V (2mx)//i. 

By the substitutions 

X = WT. r = [2y;(n-2)x]2/i"-=i 

it can be brought to the form 

d2^> 1 d& / 1 \ 
-1+-V =0, 
d*2 xdx \ (n — 2)-x2 J 

i.e. Bessel’s equation of order i/(n—2), with imaginary argument ix. The solution which 
vanishes at r = 0 (i.e. x = oo) is, apart from a constant factor, 

Using the well-known formulae 

J„(x)KzPl2Pr(p+l) (z 1), 

we obtain for the function y at large distances (y <£ r 1 jk) the expression 
X = constant x (cjr + ca), and from the ratio c^Ci we find the scattering amplitude 

\n-2) r[(n — l)/(n —2)] 

Problem 4. Determine the scattering amplitude for slow particles in a field which 
decreases at large distances as U x jir~n with 2 <»? 3. 

SOLUTION. The principal term in the scattering amplitude is given by the expression 
(132.14), in which the lower limit in the integral can be replaced by zero. The calculation 
of the integral leads to the result 

and for n = 3 
P(n— 1) cos l-nn 

(1) 

(2) 

Expanding (1) in Legendre polynomials, we obtain the partial scattering amplitudes 
(defined in accordance with (123.14): 

v-v*p (3) 
fl 2/1- r(in)r(|«+i+/) 

Forn >3 the same formula (1) determines the "anomalous” part of the scattering amplitude. 
In the partial amplitudes the quantity (3) is always the principal part for values of l such 
that 21 >n — 3, and instead of (132.8) we then have/i~fcn-3. 

Problem 5. Determine the scattering amplitude for slow particles in a field U{r) = 
— U0 exp(—r/o), U0>0. 

Solution. After the change of variable 

V(2mU0)lh, 
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equation (132.1) for the function x = rR0 becomes 

d2X 
d*2 

0. 

551 

The general solution of this equation is 

X = AJo(x) + BNo(x), 

where J0 and Ar0 are the Bessel functions of the first and second kinds. The condition x = 0 
for r = 0 gives 

A/B = -N0(2KO)IJ0(2Ka). 

The region a < r < 1/k corresponds to x < 1 (it is assumed, of course, that ok exp( —1 jak) 
<i 1; here 

„ d2, , .2B, Br 
X ~ A + B- log hyx = A H-log Kay-, 

where y = ec = 1-78 ... (C is Euler’s constant). This expression corresponds to formula 
(132.3), and from the values of cy and c2 thus obtained we find the scattering amplitude 

/ = — a(^ + 2 log Kay\ 

In the limit ko < l,/= 2a3*2, in accordance with the Born approximation (126.14). For 
ko > 1 we have f = —2a log Kay. 

Problem 6. Determine, in the second approximation of perturbation theory, the scattering 
amplitude in the limit of low energies (I. Ya Pomeranchuk 1948). 

Solution. For k -*0 the integral in the second term of (130.13) becomes 

d3fe- = — J"J"(/(r)t/(r')elk"<'-r ) dV dV 

- -2.2JJifflpdFdF'; 

here we have used the formula 

Je'k'<r r>*2(2„)3 |r — r’| ’ 

see Fields, §51. Thus the scattering amplitude is 

For a central field, this formula gives 

/ = t>2 + U(r)U(r')r2 dr . r dr'. 

(1) 
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amplitude / is independent of the scattering angle tj>. The wave function can then be represented 
at all distances p P a by simply replacing e'l'l‘l-Jp by the exact solution of Schrodinger’s equation 
for free motion, which has the same asymptotic form; see the first footnote on page 161 and §126, 
Problem 6. Thus 

*=‘*+fy/(k«k)-iHl!'lkp). (I) 

Here we take small distances p 1/A, using the approximate expression for when x is small: 

Hi"(*) * -(2i/Jt)log(2i/yx), M < 1, 

where y = ec and C is Euler’s constant. The result is 

* *[1 +/V(2*/n)log(2.7y*)] -fyj(2kln) logp. 

This agrees, as it should, with the general solution of the equation 

h2 Id/ d^' 

2m p dp \ dp t 
1 = 0 

valid in the range \fk P p P a where the U(x) and E terms in Schrodinger’s equatic 

(2) 

negligible: 

^ *<i + c2logp. 

As in (132.3) and (132.9), the ratio of constants c, /r2 is given by the solution of Schrodinger’s equation 
with E = 0 in the range p ~ a. This ratio is real and independent of the energy. With the notation 

q/r2= -logr0, (3) 

having the dimensions of length, a compar 

/= - VW2A) 
log(2i/yAr0)’ 

of (2) and (3) gives 

c = 2n\f\2=(n2lk) 
l°g2(2 lykr0)+{n2' 

(4) 

We see that in the two-dimensional case, unlike the three-dimensional one, the cross-section increases 
with decreasing energy- 

For scattering by an infinitely high cylindrical potential barrier with radius a, the constant r0 in 
(3) is equal to a. 

§133. Resonance scattering at low energies 

Particular consideration must be given to the scattering of slow particles 

(ka <g 1) in an attractive field when the discrete spectrum of negative energy 

levels includes an s state whose energy is small compared with the value of the 

field U within its range of action a. We denote this level by e (e > 0). The 

energy E of the particle undergoing scattering, being small, is close to c, 

i.e. it is, as we say, almost in resonance with the level. This leads, as we shall 

see, to a considerable increase in the scattering cross-section. 

The existence of the shallow level can be taken into account in scattering 

theory by means of a formal method based on the following arguments. 

In the exact Schrodinger’s equation for the function x = rRo (with l = 0), 

x' + (2 m/*0[£-C/(r)]x = 0 
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in the “inner” region of the field (r < a) we can neglect E in comparison 

with U: 

x"— {2mlhz)U(r)x = 0, r ~ a. (133.1) 

In the “outer” region (r a), on the other hand, we can neglect U: 

x’ + {2mltf)Ex = 0, r>a. (133.2) 

The solution of equation (133.2) must be “joined” at some rx (such that 

1 jk |> r* > a) to the solution of equation (133.1) which satisfies the boundary 

condition x(0) = 0; the joining condition is that the ratio xlx should be 

continuous. This ratio does not depend on the normalization factor in the 

wave function. 

However, instead of considering the motion in the region r ~ a, we apply 

to the solution in the outer region a suitably chosen boundary condition on 

x'/x for small r; since the solution in the outer region varies only slowly 

as r -*■ 0, we can formally apply this condition at the point r = 0. The 

equation (133.1) for the region r ~a does not contain E\ the boundary 

condition which replaces it must therefore also be independent of the energy 

of the particle. In other words, it must be of the form 

[x7x]r-*o = -«, (133.3) 

where k is some constant. But, k being independent of E, the same condition 

(133.3) must also apply to the solution of Schrodinger’s equation for small 

negative energy E = — |e|, i.e. to the wave function of the corresponding 

stationary state of the particle. Fori? = — |e| we have from (133.2) 

x = ^0«-rV<2mlel,/ft, (133.4) 

where Aq is a constant, and substitution of this function in (133.3) shows that 

k is a positive quantity, 

* = V(2«|c|)/*. (133.5) 

Let us now apply the boundary condition (133.3) to the wave equation for 

free motion, 

x = constant x sin(£r +So), 

which is the exact general solution of equation (133.2) for E > 0. Thus we 

have for the required phase So 

COt So = — Kjk 

= -V(M IE). (133.6) 

Since the energy E is here restricted only by the condition ka <g 1, and need 
not be small compared with |e|, the phase S0 and the 5-wave scattering 
amplitude may not be small. 

The phases Sj with l > 0 and the corresponding partial amplitudes are 
again small. Hence we can again regard the total amplitude as being equal to 
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the s-wave scattering amplitude 

= l/£(cotS0—0, 

Substituting (133.6) we obtain 

/= -!/(« + *) 

and for the total scattering cross-section 

4* Ink2 1 

k2+*2 ~ m £+|e|' 

§133 

(133.7) 

(133.8) 

Thus the scattering is again isotropic, but the cross-section depends on the 

energy, and in the resonance region (E ~ |€|) is large compared with the 

squared range of action of the field a2 (since ka 4 1). The form of (133.8) is 

not affected by the details of the interaction of the particles at small distances, 

and depends only on the value of the resonance level.f 

The above formula is somewhat more general than the assumption made 

in its derivation. Let the function U(r) be slightly modified; this alters also 

the value of the constant k in the boundary condition (133.3), By an appro¬ 

priate change in U(r), k can be made to vanish, and then to become small and 

negative. This gives the same formulae (133.7) for the scattering amplitude 

and (133.8) for the cross-section. In the latter, however, the quantity 

jcj = h2K2/2m is now simply a constant characteristic of the field U(r), and 

not an energy level in that field. In such cases the field is said to have a 

virtual level, since, although there is no actual level close to zero, a slight 

change in the field would be sufficient to cause one to appear. 

In the analytical continuation of the function (133.7) in the complex plane 

of E, ik becomes — \/(— 2mE)jh on the left half of the real axis (see §128), and 

we see that the scattering amplitude has a pole at E = — |e|, in accordance 

with the general results of §128. On the other hand, the virtual level corres¬ 

ponds, as we should expect, to no singularity of the scattering amplitude on 

the physical sheet. (The scattering amplitude has a pole at E = — |e| on the 

non-physical sheet; see the first footnote to §128.) 
Formally, the expression (133.7) corresponds to the case where in the 

expression (125.15), 
1 

go(k) - ik ’ 

the first term in the expansion of the function £0(*) is negative and anomalously 

small. To refine the formula, we can take account of the second term in the 

expansion: 

t Formula (133.8) was first derived by E. Wigner (1933); the idea of the derivation given 
here is due to H A. Bethe and R. E. Peierls (1935). 
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/o 
1 

-K0+irokz-ik 
(133.9) 

(L. D. Landau and Ya. A. Smorodinskii 1944); it may be recalled that, 

when the field decreases sufficiently rapidly, the functions gi(k) can be ex¬ 

panded in even powers of k (see §132). In (133.9) we have denoted by — ko 

the value of go(0). in order to retain the notation K for the quantity (133.5), 

which is related to the energy level e. According to the above discussion, k 

is given by the value of — ik which makes the denominator in (133.9) equal to 

zero, i.e. by the root of the equation 

« = *o+to)iA (133.10) 

The correction term hrQk3 in the denominator in (133.9) is small compared 

with ko> since k is assumed small, but it is itself of “normal” order of magni¬ 

tude: the coefficient ro ~ a and is always positive (see Problem 1). It should 

be emphasized that the inclusion of this term is a legitimate refinement in 

the formula for the scattering amplitude when contributions from angular 

momenta l + 0 are neglected; it gives a correction to / of relative order ka, 

whereas the contribution from scattering with l = 1 is of relative order 

(ka)3. When k -»0, the amplitude/o h>-1/ko, i.e. l/«o is equal to the scattering 

length a defined in §132. The coefficient r0 in the formula 

g0(k) = k cot S0 

= -l/a+£ro*2 (133.11) 

is called the effective range of the interaction.^ 

For the cross-section we have, from (133.9), 

4tt 

(KO-lrok3)3+k2 

If we neglect the term in k4 in the denominator (though it may legitimately 

be included), this formula can be written (using (133.10)) in the form 

477-(l+r0K) 4-n-hzl+roK 

&+K* = m £+|ef 
(133.12) 

Let us return to the expression (133.4) for the wave function of the bound 

state in the “outer” region, and relate the normalization coefficient to the 

f The values of the constants 
interaction of two nucleons. For ; 
T = 0), a = 5-4 x 10-13 cm, r0 = 
|e| = 2-23 MeV, the ground stat 
parallel spins (isotopic state with 
values correspond to a virtual lev< 
latter values must apply also to a 
of the nn system in the j state an 

a and r0 may be mentioned for the important case of the 
neutron and a proton with parallel spins (isotopic state with 
1-7 X 10-*3 cm; these correspond to a true level with energy 

' of the deuteron. For a neutron and a proton with anti- 
T = 1), a = —24 X 10 ”13 cm, r0 = 2-7 xlO"13 cm; these 

1 with |e| = 0 067 MeV. Owing to isotopic invariance, the 
ystem of two neutrons with antiparallel spins; parallel spins 
prohibited by Pauli’s principle. 
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parameters defined above On calculating the residue of the function (133.9) 

at its pole E = t and comparing with (128.11), we find 

<133-13) 

The second term is a small correction to the first, since 1. 

Without this correction, A02 = 2k, i.e. 

X = V(2x)e->:r, <P 
X (133.14) 

corresponding to the normalization that would occur if (133.14) were valid 

in all space. 

We shall briefly discuss resonance in scattering with non-zero orbital 

angular momenta. The expansion of the function gi(k) begins with a term 

~ kr21; retaining the first two terms in the expansion, we write the partial 

scattering amplitude as 

fi= ~ 
1 

bE-i(-c + E) + ik' 
(133.15) 

w'here b and e are two constants, with b > 0 (see below). The case of resonance 

corresponds to an anomalously low value of the coefficient of E~l, i.e. an 

anomalously small e. However, since E is small, the term beE~l may still 

be large in comparison with k. 

If e < 0, the denominator in the expression (133.15) has a real root 

E % — |e|, so that e is a discrete energy level (with angular momentum /),f 

but in contrast to resonance in s-wave scattering the amplitude (133.15) is 

never large compared with a; the amplitude of resonance scattering with 

angular momentum /+1 is only of the same order of magnitude as that of 

non-resonance scattering with angular momentum l. 

If e > 0, however, the amplitude (133.15) becomes of the order of Ifk 

in the region E ~ €, i.e. large compared with a. The relative width of this 

region is small: AE/e ~ (ka)21^1. Thus in this case there is a sharp resonance. 

This type of resonance scattering occurs because a positive level with l A 0, 

though not a true discrete level, is quasi-discrete: owing to the presence 

of the centrifugal potential barrier, the probability that a particle of low 

energy will escape from this state to infinity is small, so that the “lifetime” 

of the state is long (see §134). This is the reason why resonance scattering 

with l 0 is different in nature from that in the 5 state, where there is no 

centrifugal barrier. The denominator in (133.15) with e > 0 vanishes when 

f For t <0, and E close to |c|, 

/i»(-i)*«MWS+l«l>- 

A comparison with (128.17) shows that b> O. 
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E = Eo — i-^r, where 

E0 * e, T = 1+1/2. (133.16) 
bh K ’ 

This pole of the scattering amplitude is, however, on the non-physical sheet. 

The small quantity T is the width of the quasi-discrete level (see §134). 

Finally, we may mention an interesting property of the phases hi which is 

easily derived from the above results. We shall regard the phases hi(E) as 

continuous functions of the energy, and not restrict them to the range from 

0 to tt (cf. the footnote following (33.20)). We shall show that the equation 

Si(0) —S,(oo) = nr, (133.17) 

then holds, where n is the number of discrete levels with angular momentum l 

in the attractive field U{r) (N. Levinson 1949). 

To prove this, we note that, in a field which satisfies the condition 

| U| h2/ma2, the Born approximation is valid at all energies, so that 8z(£) 1 

for all L, and 8j(oo) = 0, since for E -+ oo the scattering amplitude tends 

to zero, while Sj(0) = 0 in accordance with the general results of §132. In 

such a field there are no discrete levels (see §45), and so n — 0. We now 

consider the variation of the difference 8j(A) — 8*( oo), where A is some given 

small quantity, as the potential well U(r) gradually becomes deeper. As this 

occurs, the first, second etc. levels successively appear at the top of the well, 

and the phases §z(A) are increased by „ each time.f On reaching the given 

U(r) and then making Ah>-0, we obtain formula (133.17). 

PROBLEMS 

Problem 1. Express the effective interaction range r„ in terms of the wave function of the 
stationary state E = e in the “inner" region r~a (Ya. A. Smorodinskii 1948). 

Solution. Let xo be the wave function in the region r~a. normalized by the condition 
that y0-»l as r->-co. Then the square of the wave function can be written in all space in the 
form x2 = ^302(e-2Kr + Xo2 — 1); this expression becomes A02e~2Kr for kt f> 1 and ^402Xo2 for 
*r < 1. It must be normalized by the condition 

Jx2dr = ^(i- J(l-xo2)dr) = 1, 

and a comparison with (133.13) gives 

r0 = 2 J (l-Xo2) dr. 

From equation (133.1) with L'(r)<0, the solution of which 
Xo( fc) = 1 ■ Hence we always have r„ > 0 

follows that x0(r) < 

t In formula (133.6) this c< 
value of k, the quantity k cha 
When 1^=0, the same follow- 
E = A, t varies from e A 

rresponds to a change of S0 from 0 to 
iges from a negative value (— x k) 
from the formula k cot 8; = —bE~‘ 

o -e > A. 

/hen, for a gi 
i positive vali 
-«) when, fc 

t > k. 
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Problem 2. Determine the change in the phases 8i when the field U(r) is varied. 

Solution. Varying U{r) in Schrodingcr's equation 

-U = —xiW- 

Multiplying the first equation by 8xi, the second by xt> subtracting, and integrating with 
respect to r, we find 

[X'lSxi'-XT^X'llr- 
2m r 

Substituting on the left-hand side the asymptotic expressions 

X, = sin(fa—i/tr-S,). 

&XI = S(S|)cos(*r-*/7r + 5|) 

(the choice of the coefficient 1 in this expression determining the normalization used), we 
obtain 

From this formula we can draw certain conclusions regarding the sign of the phases 
Si, considered as continuous functions bf energy. To avoid the ambiguity in the definition 
of these functions (an additive multiple of v) we shall normalize them by the condition 
8,(00) = 0. 

Starting from U = 0, when all the Si are zero, and gradually increasing \ U\, we find that 
in a repulsive field (U >0) all the Si <0, and in an attractive field (U < 0) 8, >0. In a 
repulsive field 8i(0) = 0 and therefore, for small energies, the 8, are small; the scattering 
amplitude is therefore negative: / =» Sojk <0. In an attractive field the corresponding 
deduction that/ is positive can be made only if there are no discrete levels. Otherwise, when 
E is small, the phases 8, are close to mr, not to zero (see (133.17)), and no conclusion can be 
drawn concerning the sign of/. 

Problem 3. Find the scattering length a and the effective range of interaction r0 for a 
spherical square potential well of radius a and depth U„ containing a single discrete energy 
level near zero. 

Solution. We proceed as in §132, Problem 1, except that in the region within the well 
we do not neglect the particle energy E = /i2&2/2m in comparison with t/0. The equation to 
determine the phase &„ is found to be 

k cot (&Q + ak) = K cot aK, K = | ^{ImiU^ + E)]. 

In order that the well should contain only one level, close to zero, it is necessary that 

Uo = (772/l2./8mc2)(l -r A) 

with A < 1; see §33, Problem 1. Expanding the above equation in powers of ka and A, we 
find that 

whence a = l/«0 = 8a/jraA, r0 = a. The value of «0 coincides, as it should, with that of 
■yl/(2m\E,\)lti, where El is the energy of the level in the well; see §33, Problem 1. 
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Problem 4. Express the integral 

J ** dr 

of the squared wave function of the s state in terms of the phase 80(£) for a field U(r) that is 
zero outside a sphere of radius a (G. Liiders 1955). 

Solution. According to (128.10), 

where the prime denotes differentiation with respect to r (and the derivatives with respect to 
E in (128.10) are replaced by those with respect to k = \/{2mE)lti). Since, at r = a, there 
is no field, we can use on the right-hand side the wave function of free motion, y = 2 sin 
(kr+ 8n) (normalized as in (33.20)). The result is 

Since the integral of y2 is certainly positive, the expression on the right must also be positive.! 

§134. Resonance at a quasi-discrc.e level 

A system which can disintegrate does not, strictly speaking, have a discrete 

energy spectrum. The particle leaving it when it disintegrates recedes to 

infinity; in this sense, the motion of the system is infinite, and hence the 

energy spectrum is continuous. 

It may happen, however, that the disintegration probability of the system 

is very small. The simplest example of this kind is given by a particle sur¬ 

rounded by a fairly high and wide potential barrier. Another possible 

reason for metastability of a state is that the spin of the system must change 

in a disintegration due to a weak spin-orbit interaction. 

For such systems with a small disintegration probability, we can introduce 

the concept of quasi-stationary states, in which the particles move “inside 

the system” for a considerable period of time, leaving it only when a fairly 

long time interval t has elapsed; t may be called the lifetime of the almost 

stationary state concerned (r ~ 1/tc, where w is the disintegration prob¬ 

ability per unit time). The energy spectrum of these states will be quasi- 

discrete-, it consists of a series of broadened levels, whose width is related 

to the lifetime by T ~ h/r (see (44.7)). The widths of the quasi-discrete 

levels are small compared with the distances between them. 

In discussing the quasi-stationary states, we can use the following formal 

method. Until now we have always considered solutions of Schrodinger’s 

equation with a boundary condition requiring the finiteness of the wave 

function at infinity. Instead of this, we shall now look for solutions which 

represent an outgoing spherical wave at infinity; this corresponds to the 

particle finally leaving the system when it disintegrates. Since such a 
boundary condition is complex, we cannot assert that the eigenvalues of 

t This inequality had previously been derived in a different manner by Wigner (1955)., 
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the energy must be real. On the contrary, by solving Schrodinger’s equa¬ 

tion, we obtain a set of complex values, which we write in the form 

E=E0-iiT, (134.1) 

where E0 and T are two constants, which are positive (see below). 

It is easy to see the physical significance of the complex energy values. 

The time factor in the wave function of a quasi-stationary state is of the form 

eAHh)Et = e-[HKEJteA r/ft)t/2_ 

Hence all the probabilities given by the squared modulus of the wave function 

decrease with time as e~(r/R)'.f In particular, the probability of finding 

the particle “inside the system” decreases according to this law. Thus T 

determines the lifetime of the state; the disintegration probability per unit 

time is 

/h. (134.2) 

At large distances the wave function of the quasi-stationary state (the 

outgoing wave) contains the factor 

exp [tV \/{2m(£o—i*T)}/K\, 

which increases exponentially as r oo (the imaginary part of the root 

is negative). Hence the normalization integral J |i//|2 dF for these functions 

diverges. It may be noted, incidentally, that this resolves the apparent 

contradiction between the decrease with time of |0[2 and the fact that the 

normalization integral can be shown from the wave equation to be a constant. 

Let us ascertain the form of the wave function which describes the motion 

of a particle with energy close to one of the quasi-discrete levels of the system. 

As in §128, we write down the asymptotic form (at large distances) of the 

f We may note that this shows the physical necessity for T to be positive, a condition which 
is automatically satisfied on account of the boundary condition imposed at infinity on the 
solution of the wave equation, or by the equivalent (see §130) rule of passage round poles in 
the formulae of perturbation theory. Let transitions from the discrete level n to the states v 
of the continuous spectrum be caused by a constant perturbation V. Then the second-order 
correction to the energy level is 

En | Vnv\2 dy 
£„<°i -£, + t0' 

cf. (38.10). The rule (43.10) gives 

T = - 2 im £„(2) = 2,t J | Vnv\2 8(£„<°) —£,) dv, 

in agreement with (43.1) for the transition probability. 
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radial part of the wave function in the form (128.1): 

*,= I[^(£)exp(_^Z^^+Bi(^eXp^^Z^r)], (134.3) 

and regard E as a complex variable. For real positive E, 

1 
R, = -[Al(E)ei'‘'+Bl(E)e-{kr], k = ^/(2mE)lh, (134.4) 

and Ai(E) = Bt*(E) (see (128.3), (128.4)); the function B^E) is here taken 

on the upper edge of a cut along the right half of the real axis. 

The condition which determines the complex eigenvalues of the energy 

consists in the absence of an ingoing wave from the asymptotic expression 

(134.3). This means that for E = Eo-biT the coefficient Bi(E) must vanish: 

Bi{Eo-iiT) = 0. (134.5) 

Thus the quasi-discrete energy levels, like the true discrete levels, are zeros 

of the function Bi(E). However, unlike the zeros which correspond to true 

levels, they do not lie on the physical sheet: in writing the condition (134.5) 

we have assumed that the required wave function of the quasi-stationary 

state arises from the same term in (134.3), which is an outgoing wave (~eifcj") 

when E > 0 also (in (134.4)). But the point E = E0-Ur lies below the 

positive real axis. This point can be reached from the upper edge of the cut 

(where the coefficients in (134.4) are defined), without leaving the physical 

sheet, only by passing round the point E = 0. Then y/-E changes sign, 

so that the outgoing wave becomes an ingoing one. Consequently, to pre¬ 

serve the outgoing wave the point must be reached by going directly down 

through the cut, on to another, non-physical, sheet. 

Let us now consider real positive energy values close to the quasi-discrete 

level (assuming, of course, that T is small, since otherwise no such close 

values could exist). Expanding the function Bi(E) in powers of the difference' 

E—(E0 — iiT) and taking only the first-order term, we have 

Bi(E) = (E—Eo+%iT)bi, (134.6) 

where bi is a constant. Substituting in (134.4), we obtain the following 

expression for the wave function of a state close to the quasi-stationary state: 

1 
Ri = -[(£- £o - ilT)6, V*1-+(E-Eg+j. (134.7) 

The phase 8; of this function is given by 

e2«. = 
E-Ea + biT 

= e2»,<«>/,l-lL \ 
' e—f’o+Jir/ 

(134.8) 
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eSM."* = (-l)i+i bffo. (134.9) 

For |E— Sol P r, the phase 8; is equal to 8j<°>, so that Sz<0) is the value of the 

phase far from the resonance. 

In the resonance region 8; varies considerably with energy. If we rewrite 

formula (134.8), using the result 

enan-'A 1+,'A 

in the form 

r 

2(E-Eo)' 
(134.10) 

we see that the phase changes by -n in a passage through the whole resonance 

region (from E <£ Eo to E p Eo). 

For E = JS'o-ifr, the function (134.7) becomes Rt - — (l/r)iT6i*eli'r. 

If the wave function is normalized by the condition that the integral of |0|2 

over the region within the system is unity, the total current in this outgoing 

wave, equal to t;|tT6;*|2, must be equal to the distintegration probability 

(134.2). Hence we find 

|&i|*=l/*»r. (134.11) 

These results enable us to determine the amplitude of elastic scattering 

of a particle with energy E close to some quasi-discrete level Eo of the 

compound system consisting of the scattering system together with the 

particle undergoing scattering. In the general formula (123.11) we must 

substitute the expression (134.8) in the term with the value of l which corres¬ 

ponds to the level Eo. This gives 

2/+1 4r 
m = /(0W-7— • , (134.12) 

r h — ho+%ti 

where fl0\8) is the scattering amplitude far from the resonance, which is 

independent of the properties of the quasi-stationary state (it is given by 

formula (123.11) with 8t = Sj<°> in each term of the sum).t The amplitude 

/<°>(0) is called the potential scattering amplitude, and the second term 

in (134.12) the resonance scattering amplitude. The latter has a pole at 

E = .Eo-^T, which, as shown above, is not on the physical sheet. % 
Formula (134.12) determines the elastic scattering near resonance at one 

of the quasi-discrete levels of the compound system. Its range of validity 

t If scattering of a charged particle by a system of charged particles is considered, the 
expression (135.11) must be used for the phases SdC). 

Jit may be noted that formula (133.15) for resonance scattering of slow particles by a 
positive energy level « with l¥= 0, with E close to e, is in exact correspondence with the 
resonance term in (134.12). The values of £■„ and T are given by formulae (133.16), and since 
E is small the phase S/<0) is small, so that 
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is defined by the requirement that the difference lE-Eol should be small 

compared with the distance D to the adjoining quasi-discrete levels: 

\E-Eo\ <§ D. (134.13) 

This formula is somewhat simplified if the scattering of slow particles is 

being considered, i.e. if the wavelength of the particles in the resonance 

region is large compared with the dimensions of the scattering system. Here 

only s-wave scattering is important; we shall suppose that the level Eq 

does in fact belong to motion with / = 0. The potential scattering amplitude 

then reduces to a real constant —a (see §132).f In the resonance scattering 

amplitude we put 1 = 0 and replace ezid»t0) by unity, since S0(0) = — ak 1. 

Thus we find 

m = 
k(E-EG+iiT) 

(134.14) 

In a narrow range \E— £o| ~ T the second term is large compared with the 

amplitude a, and the latter may be omitted. Farther from the resonance, 

however, the two terms may be comparable. 

In the above derivations it has been tacitly assumed that the value E0 of 

the level itself is not too small, and that the resonance region is not in the 

neighbourhood of the point E = 0. If resonance at the first quasi-discrete 

level of the compound system is considered, which lies at a distance from 

E = 0 small compared with the distance to the next level (Eo D), the ex¬ 

pansion (134.6) may be no longer permissible. This is seen from the fact 

that the amplitude (134.14) does not tend to a constant limit as £->0, as 

would be necessary for s-wave scattering according to the general theory. 

Let us consider the case of a quasi-discrete level close to zero, again 

assuming that in the resonance region the particles undergoing scattering are 

so slow that only s-wave scattering is of importance. 

The expansion of the coefficients Bi(E) in the wave function must now be 

made in powers of the energy E itself. The point E = 0 is a branch point of 

the functions Bi(E), and a passage round this point from the upper to the lower 

edge of the cut changes Bi(E) into B*(E). This means that the expansion is 

in powers of \/ — E, which changes sign on the above-mentioned passage. 

We write the first terms in the expansion of the function B0(E) for real positive 
E in the form 

B0(E) = (E-*0 + iy^E)b0{E), (134.15) 

where e0 and y are real constants, and b0(E) a function of energy, which can 

also be expanded in powers of \/E but has no zero near the point E = 0.J 

The quasi-discrete level E = E0-$iT corresponds to the vanishing of the 

t It is assumed that the scattering field decreases sufficiently rapidly with increasing distance 
In §145 the results given here will be applied to the scattering of slow neutrons by nuclei. 

1 The function ba(E) determines, according to (134.9), the phase of the potential’scattering. 
In the scattering of slow particles, the first terms in its expansion are bJE) = constant X 
«'(1+««*). 
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factor E—€0 + iy\/E, continued into the lower half-plane of the non-physical 

sheet; we therefore have for the determination of Eo and T the equation 

£o-iiT-*o+iyV(£o-i«T) = 0 (134.16) 

(the constants eo and y must be positive in order that E0 and T should be 

positive). For example, a level with width T Eo corresponds to the rela¬ 

tion eo > y2 between these constants, and from (134.16) we have £o = eo, 

T = 2y\/eo- 

The expression (134.15) replaces in this case formula (134.6); the subse¬ 

quent formulae must be correspondingly modified (everywhere replacing Eo 

by eo and T by 2ys/E). Hence we obtain for the scattering amplitude, instead 

of (134.14), the expression 

/= ~a~V(2m)(E-eo+iyVE) (134'1/} 

(where we have put k = \/(2mE)jh, m being the reduced mass of the particle 

and the scattering system). For E -»■ 0 this amplitude tends to a constant 

limit, as it should, thus confirming the form of the expansion (134.15). 

It may be noted that the expression (134.17) also covers the case of a true 

discrete level of the compound system close to zero, which is given by an 

appropriate relation between the constants eo and y. If |eo| y2, the first 

term E may be neglected in the denominator of the resonance term for 

energies E <£ y2. 

Neglecting also the potential scattering amplitude a, we obtain the formula 

1 

~ lk-^(2m)eolhy 

which is the same as formula (133.7) (with k = — \^(2m)eojhy). This corres¬ 

ponds to resonance at the level E = eo2/y2, which is a true or virtual discrete 

level according as the constant k is positive or negative. 

§135. Rutherford’s formula 

Scattering in a Coulomb field is of interest from the point of view of 

physical applications. It is also of interest in that, for this case, the quantum- 

mechanical collision problem can be solved exactly. 
When there is a direction (in this case, the direction of incidence of the 

particle) which can be distinguished from the remainder, Schrodinger s 

equation in the Coulomb field is conveniently solved in parabolic coordi¬ 
nates C rj, <fc (§37). The problem of the scattering of a particle in a central 

field is axially symmetric. Hence the wave function 0 is independent of the 

angle <j>. We write the particular solution of Schrodinger’s equation (37.6) 

in the form 

<!> = Mi)Mv); (135.1) 
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this is (37.7) with m = 0. Accordingly, after separating the variables, we 

obtainf equations (37.8) with m = 0: 

(135.2) 

d^(v)+(^-^2)/2=°’ h+h=L 

The energy of the particle scattered is, of course, positive; we have put 

E = \k2. The signs in equations (135.2) are for the case of a repulsive field; 

exactly the same final result is obtained for the scattering cross-section in an 

attractive field. 

We have to find that solution of Schrodinger’s equation which, for nega¬ 

tive z and large r, has the form of a plane wave; 

ip ~ eikz for — oo < z < 0, r ~> oo, 

corresponding to a particle incident in the positive direction of the ar-axis. 

We shall see from what follows that the condition imposed can be satisfied 

by a single particular integral (135.1); a sum of integrals with various values of 

jSi, f$2 is not needed. 
In parabolic coordinates, this condition takes the form 

ip ~ etk(£-7,)/2 for t] -» oo and all f. 

This can be satisfied only if 

Mt)=em,2 (l35.3) 

and /2(tj) is subject to the condition 

Ml) ~ e-‘*7/2 for t] -> oo. (135.4) 

Substituting (135.3) in the first of equations (135.2), we see that this 

function does in fact satisfy the equation, provided that the constant = \ik. 

The second equation (135.2), with /?2 = 1 — fii, then takes the form 

d / d/2 \ 

cbj V -1+¥k)h = 0. 

Let us seek its solution in the form 

Mv) = e-H^atoOj), (135.5) 

where the function w(t]) tends to a constant as 77 -► oo. For w(rj) we have 
the equation 

r]ze"+(l—ikr])to'—to =0, 

t In this section we use Coulomb units (see §36). 

(135.6) 
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which, by introducing the new variable = ikrj, can be reduced to the 

equation for a confluent hypergeometric function with parameters a = —ijk, 

y = 1. We have to choose that solution of equation (135.6) which, on being 

multiplied by /^f), contains only an outgoing (i.e. scattered) and not an 

ingoing spherical wrave. This solution is the function 

w = constant x F(~tjk, 1, iktj). 

Thus, on assembling the expressions obtained, we find the following exact 

solution of Schrodinger’s equation, describing the scattering: 

</, = e-»/«r(l+i7A)e*«f-?)/*F(-i/A, 1, ikrj). (135.7) 

We have chosen the normalization constant in il> such that the incident plane 

wave has unit amplitude (see below). 

In order to separate the incident and scattered waves in this function, we 

must consider its form at large distances from the scattering centre. Using 

the first two terms of the asymptotic expansion ^formula (d.14)) for the con¬ 

fluent hypergeometric function, we have for large rj 

F(-Hk, 1, ikv) 
i-ifoi)*!*^ 1 (ifc,)-*/* 

~ V(\+ijk)\ +if^J + T(-ilk) *7 
e"/2* / 1 \ (i/A)e"/» e**i 

T(\+iik)\ ih?T,j m-iik) ikv 
Ai/k) logit: ij)_ 

Substituting this in (135.7) and changing to spherical polar coordinates 

(£-77 = 2z,t] = r — z = r(l — cos 6)), we have the following final asymptotic 

expression for the wrave function: 

ikzr(\—cos8) J 
1 el kz+U /k) losikr-kr (135.8) 

where 

m 
_eA2i/k) log sinfi/2 
2fe2 sin 2£0 

r(i+i/*) 
r(i—»/*)’ 

(135.9) 

The first term In (135.8) represents the incident wave. We see that, in 

consequence of the slow decrease of the Coulomb field, the plane wave is 

distorted even at large distances from the centre, as is shown by the presence 

of the logarithmic term in the phase and of the l,r term in the amplitude.f 

The distorting logarithmic term in the phase is found also in the scattered 

t The origin of this distortior 
classical Coulomb hyperbolic p: 
2-axis), the equation of the surfac 
(2 ->■— cc) is easily shown to tent 
is the surface of constant phase t 

ay be elucidated classically. If we 
with the same direction of incit 

irmal to them at large distances fror 
z + log k{r—2) — constant, nc 
le incident wave in (135.8). 

consider a family of 
;nce (parallel to the 
the scattering centre 
2 = constant. This 
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spherical wave given by the second term in (135.8). These differences from 

the usual asymptotic form of the wave function (123.3) are unimportant, 

however, since they give a correction to the current density which tends 

to zero as r -> oo. 

Thus we obtain for the scattering cross-section da = I f (6)|2 do the 

formula 

do = do/464 sin4£0, 

or, in ordinary units, 

do = (aj2mv2)2 do/sin4£0, (135.10) 

where the velocity v of the particle = khjm. This is the familiar Rutherford’s 

formula given by classical mechanics. Thus, for scattering in a Coulomb field, 

quantum and classical mechanics give the same result (N. Mott, and W. 

Gordon, 1928). Born’s formula (126.12) naturally leads to the same 

expression (135.10) also. 

We shall give for reference the expression for the scattering amplitude 

(135.9), written as a sum of spherical harmonics. This is obtained by 

substituting in (124.5) the phases from (36.28), i.e.f 

exp(2fi5*,coui) = r(/+l-H*)/r(/+l--*•/*). (135.11) 

Thus we find 

1 r(/+l+i/*) 

(13512) 
The signs in the scattering amplitude (135.9) correspond to a repulsive 

field. In an attractive Coulomb field, formula (135.9) is replaced by the 

complex conjugate expression. f(8) then becomes infinite at the poles of the 

function T(1 —ijk), i.e. at points where the argument of the gamma function 

is a negative integer or zero (when im k > 0 and the function rf decreases at 

infinity). The corresponding energy values are hk2 = — 1/2n2 (n = 1, 2, 3, 

...), and coincide with the discrete energy levels in the Coulomb field 
(cf. §128). 

§136. The system of wave functions of the continuous spectrum 

In the analysis of motion in a centrally symmetric field (Chapter V) we 

have considered stationary states in which the particle has definite values of 

the energy, the orbital angular momentum /, and the component m of this 

angular momentum. The wave functions of such states of the discrete 

spectrum (fnim) and the continuous spectrum (^tim, energy h2k2J2m) 
together form a complete set in terms of which the wave function of any state 

t The value of Si.Coul in this formula differs from the true (divergent) Coulomb phase by a 
quantity which is the same for all l. 
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may be expanded. Such a set of functions is, however, not appropriate for 

problems in scattering theory. Here another set is convenient, in which the 

wave functions of the continuous spectrum are described by a particular 

asymptotic behaviour: at infinity there is a plane wave and an outgoing 

spherical wave. In these states the particle has a definite energy, but no 

definite angular momentum magnitude or component. 

According to (123.6) and (123.7), such wave functions, here denoted by 

</4+), are given by 

</i+) = ~^il(2l+ *)eU' Rki(r)pi(* • (136.1) 
R 1=0 

The argument of the Legendre polynomials is written as cos 8 = k . rjkr, 

and the expression therefore does not involve any particular choice of the 

coordinate axes as it did in (123.6) (where the sr-axis was the direction of 

propagation of the plane wave). By giving the vector k all possible values, 

we obtain a set of wave functions, which, as we shall now show, are ortho¬ 

gonal and normalized by the usual rule for the continuous spectrum: 

J dF = (2tt)3 S(k' -k). (136.2) 

To prove this,f we note that the product is expressed by a double 

sum over / and /' of terms containing the products 

PI(k.r/fa-)Pl.(k'.r/*V). 

The integration over the directions of r is effected by means of the formula 

f Pt(k . r/fcOP,.(k'. r/A'r)do = S„. -p- Pi(k . k’Ikk'); (136.3) 
J Zl+1 

cf. (c.12) in the Mathematical Appendices. This leaves 

J <Plf)*A+) dF = jg ^(2l+l)etoW-hW))pl(cosy)j Rki{r)Rki{r)r* &r, 

i-o o 

where y is the angle between k and k'. The radial functions Rs-i ate ortho¬ 

gonal, however, and are normalized by 

| Rk iR/ci r2 dr = 2tt8(^' -k). 

t Essentially, only the orthogonality of the ^(kf) needs to be proved separately; the nor¬ 
malization could be derived directly from the asymptotic form of the functions (cf. §21). In 
this sense, the validity of (136.2) is evident from the fact that, as i ^ oc, the only non-decreasing 
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Hence we can put k = k' in the coefficients in front of the integrals; using 

also the relation (124.3), we have 

I 
dV = jfS(k'-k) 2 (21+ l)Pi(cos y) 

= —S(*'-A)S(l-cosy). 
k2 

The expression on the right is zero for k # k'; on being multiplied by 

2nk2 sin y dk dy/(27r)3 and integrated over all k-space it gives 1, and this 

proves formula (136.2). 

Together with the system of functions we can also introduce a system 

corresponding to states in which there are at infinity a plane wave and an 

ingoing spherical wave. These functions, which we denote by are 

obtained directly from the i/4+): 

= #2*, (136.4) 

since the complex conjugate of eikTjr (outgoing wave) is e~ikrjr (ingoing 

wave), and the plane wave becomes e~lkr, so that, in order to retain the 

previous definition of k (plane wave e‘kr), we must replace k by — k, as in 

(136.4). Noticing that P;( — cos 8) = (- l)(P*(cos 6), we obtain from H 36.1) 

tiT' = ^ J (136.5) 

The case of a Coulomb field is of great importance. Here the functions 

i/t1"1 (and i/4-1) can be written in a closed form, which is obtained directly 

from formula (135.7). We express the parabolic coordinates by 

iK$—v) = hz = k . r, h-q = h(r—z) = kr—k. r. 

Thus we obtain for a repulsive Coulomb fieldf 

= e-”MT(\+ilkyk-rF(-ilk, 1, ikr-ik.r), (136.6) 

y-> = e-w2*r(l-»/*)*«<.rF(ty*, 1, -ikr-ik.r). (136.7) 

+ Using Coulomb units. 
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The wave functions for an attractive Coulomb field are found by simul¬ 

taneously changing the signs of k and r: 

= e”l^r(\-ilk)e^-TF{ijk, 1, ikr-ik.r), (136.8) 

</4-) = e”Mr(\+ilk)e^-'F{-ilk, 1, -ikr-ik.r). (136.9) 

The action of the Coulomb field on the motion of the particle near the 

origin may be characterized by the ratio of the squared modulus of <}Jk~) or 

i/4-) at the point r = 0 to the squared modulus of the wave function </ik = 

e,k'r for free motion. Using the formula 

T(1 + ilk) r(i - ilk) = rn V{iik) r(i - ilk) 

= 77/fc sinh(77/*), 

we easily find, for a repulsive field, 

i<ftL+)(0)i2 = \A~m2 _ 
10k|2 l*J2 K*”'k-1)’ 

and for an attractive field, 

(136.10) 

\A+\Q)\2 _ I’ftirW2, 
IM2 . M2 *(1-«-*»/*)' 

(136.11) 

The functions i/;k+) and i/4_) play an important part in problems relating to 

the application of perturbation theory in the continuous spectrum. Let us 

suppose that, as a result of some perturbation P, the particle makes a tran¬ 

sition between states of the continuous spectrum. The transition probability 

is determined by the matrix element 

| 4,f*Pjn&V. (136.12) 

The question arises of which solutions of the wave equation are to be taken 

as the initial (ipt) and final (</</) wave functions, in order to obtain the ampli¬ 

tude for a transition of the particle from a state with momentum /ik to one with 

momentum hk' at infinity.-j- We shall show that this requires that 

= <Ak+,> <A/ ~ lAk'") (136.13) 

(A. Sommerfeld 1931). 

t An example of such a process is an electron colliding with a heavy nucleus at rest and 
emitting a photon, thereby changing its energy and its direction of motion; the perturbation V 
is the interaction between the electron and the radiation field, and the Coulomb field of the 
nucleus is the field V for which the functions and i>k ' are defined I see RQT> §§92 and 96). 
Another example is a collision of an electron with an atom, accompanied by ionization of the latter; 
see §148, Problem 4. 
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This becomes clear if we consider how the problem would be solved by 

perturbation theory applied not only as regards the perturbation P but also 

as regards the field U(r) in which the particle is moving. In the zero-order 

approximation (with respect to U), the matrix element (136.12) is 

Vu.k = f e~‘U rf~e‘kr dV. 

In subsequent approximations with respect to U, this integral is replaced by 

a series of which each term is an integral 

J Vu u UU 

(Ek-Ek+iO). 

... Uknk 

(Ek-Ekn + iO) 
d3*x ... d3&M; 

cf. §§43 and 130. The numerator contains the matrix elements (in varying 

order) with respect to the unperturbed plane waves, and all poles are avoided 

in the integrations, according to one fixed rule. On the other hand, this 

series can be obtained as the matrix element (136.12) with the wave functions 

ipi and ff as perturbation-theory series with respect to the field U. The fact 

that the result must be a sum of integrals in which all poles are avoided by the 

same rule means, therefore, that the poles in the terms of the series represen¬ 

ting fi and ff* must be avoided by a similar rule. But if the wave equation 

is solved by perturbation theory with this avoidance rule, we necessarily 

obtain a solution whose asymptotic form includes an outgoing (as well as a 

plane) wave. In other words, the wave functions, which in the zero-order 

approximation (with respect to U) have the form 

<P i = erh'r, ff* = e~-,h-r, 

must be replaced by exact solutions of the wave equation, respectively 

and + (^£-))*. This proves the rule (136.13). 

The choice of as the final wave function applies also to transitions 

from the discrete to the continuous spectrum; here there is, of course, no 

problem of choosing fi. 

§137. Collisions of like particles 

The case where two identical particles collide requires special considera¬ 

tion. The identity of the particles leads in quantum mechanics to the 

appearance of a peculiar exchange interaction between them. This has an 

important effect on scattering also (N. F. Mott 1930)4 

The orbital wave function of a system of two particles must be symmetric 

or antisymmetric with respect to the particles, according as their total spin 

is even or odd (see §62). The wave function which describes the scattering, 

and which is obtained by solving the usual Schrodinger’s equation, must 

therefore be symmetrized or antisymmetrized with respect to the particles. 

An interchange of the particles is equivalent to reversing the direction of the 

f Here the direct spin—orbit interaction is again ignored. 
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radius vector joining them. In the coordinate system in which the centre 

of mass is at rest, this means that r remains unchanged, while the angle 8 

is replaced by n—6 (and so z = r cos 8 becomes — z). Hence, instead of the 

asymptotic expression (123.3) for the wave function, we must write 

0 = e«“±e-«“+e<*’-\J(e)±f(TT-d)]lr. (137.1) 

By virtue of the identity of the particles it is, of course, impossible to say 

which of them scatters and which is scattered. In the coordinate system 

in which the centre of mass is at rest, we have two equal incident plane waves, 

propagated in opposite directions (eikz and e~ikz). The outgoing spherical 

wave in (137.1) takes into account the scattering of both particles, and the 

probability current calculated from it gives the probability that either of the 

particles will be scattered into the element do of solid angle considered. The 

scattering cross-section is the ratio of this current to the current density in 

either of the incident plane waves, i.e. it is given, as before, by the squared 

modulus of the coefficient of eikrtr in the wave function (137.1). 

Thus, if the total spin of the colliding particles is even, the scattering 

cross-section is of the form 

da, =|/(0)+/(7r-0)|2do, (137.2) 

while if the total spin is odd, it is 

dao = |/(0)-/(*-0)l2do. (137.3) 

The appearance of the interference term/($)/* (n - 6) +f *(8) f (n — 6) 

characterizes the exchange interaction. If the particles were different, as 

they are in classical mechanics, the probability that either of them would be 

scattered into a given element of solid angle do would simply be equal to the 

sum of the probabilities that one particle is deviated through an angle 6 and 

the other through tt — 8\ in other words, the cross-section would be 

OTF+l/^-Wdo. 

In the limiting case of low velocities, the scattering amplitude tends to a 

constant value independent of the angle (§132) if the interaction of the 

particles decreases sufficiently rapidly with increasing distance. It is seen 

from (137.3) that doa is then zero, i.e. only particles with even total spin 

scatter each other. 
In formulae (137.2), (137.3) it is supposed that the total spin of the col¬ 

liding particles has a definite value. If the particles are not in definite spin 

states, then to determine the cross-section it is necessary to average, assuming 

all possible spin states to be all equally probable. We have shown in §62 that, 
of the total number of (2s + l)2 different spin states of a system of two particles 
with spin s, $(2s + 1) states correspond to an even total spin and (s + l)(2s +1) 
to an odd total spin (if $ is half-integral), or vice versa if r is integral. Let us 
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first suppose that the spin 5 of the particles is half-integral. Then the 

probability that the system of two colliding particles will have even 5 is 

r(2r + l)/(2s+ l)2 = s'(2r + 1), while the probability of odd is (s + l),(2s-i- 1). 

Hence the cross-section is 

$ $+1 
do - -doj-)-do0. 

2f+l 2f+l 

Substituting here (137.2), (137.3), we obtain 

1 

(137.4) 

= {\mnm-n-e)i2- 2s+-UW*(*-e)+f*mf(.*-e)]} do. 

Similarly, we find for integral s 

do = {|/(0)|2+|/(7r-0)|2+_L_[/(0)/*(7r-e)+/*(0)/(7r_0)]} do. 

(137.6) 

As an example, we shall write out the formulae for the collision of two 

electrons interacting by Coulomb’s law (U = e2/r). Substitution of the 

expression (135.9) in the formula (137.5) with r = J gives (in ordinary units), 

after a simple calculation, 

.{'_fLyr_L 
\m0vzJ Lsin4l l%8 cos4|0 sin2\8 coss}8 

)s^—logtan2£0^J do, 

(137.7) 

where we have introduced the mass m0 of the electron in place of the reduced 

mass m = \m0. This formula is considerably simplified if the velocity is 

so large that ez vh; we notice that this is just the condition for perturba¬ 

tion theory to be applicable to a Coulomb field. Then the cosine in the third 

term can be replaced by unity, and we have 

do 
' 2e2 \2 4—3 sin20 

. m0v2J sin40 
(137.8) 

The opposite limiting case, e2pvh, corresponds to the passage to the limit 

of classical mechanics (see the end of §127). In formula (137.7) this transition 

occurs in a very curious way. For e2 p vh, the cosine in the third term in the 

square brackets is a rapidly oscillating function. For any given 6, formula 

(137.7) gives for the scattering cross-section a value which in general differs 

considerably from the Rutherford value. However, on averaging over even 
a small range of values of 8, the oscillating term in (137.7) vanishes, and we 
obtain the classical formula. 

All the above formulae for the cross-section refer to a system of co¬ 
ordinates in which the centre of mass is at rest. The transition to a system 
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in which one of the particles is at rest before the collision is effected (according 

to (123.2)) simply by replacing 6 by 2&. Thus, for a collision of electrons 

we have from (137.7) 

do = (—') ---cosf— logtan2^! cos do, 
Wot’2) Lsin4S cos4& sin2& cos2S \hv /J 

(137.9) 

where do is the element of solid angle in the new system of coordinates. 

In replacing 8 by 2$, the element of solid angle do must be replaced by 

4 cos $■ do, since sin 6 d8d<f> = 4 cos & sin &d&d^. 

PROBLEM 
Determine the scattering cross-section for two identical particles of spin f, with given mean 

spin values s, and S2. 

Solution. The dependence of the cross-section on the polarizations of the particles must 
be expressed by a term proportional to the scalar s,.S2. We look for da in the form a + is,.s2. 
For unpolarized particles (s, = §2 = 0), the second term is absent, and according to (137.4) 
do = a = i(d«7j + 3da0). If both particles are completely polarized in the same direction 
(s,.s2 = J), the system is certainly in a state with 5 = 1; in this case, therefore, da = a + \b — 
do„. With a and b determined from these two equations, we have 

da = J(das+3dan) + (daa-das)Si.i2. 

§138. Resonance scattering of charged particles 

In the scattering of charged nuclear particles (e.g. of protons by protons), 

as well as the short-range nuclear forces there is the Coulomb interaction, 

which decreases only slowly. The theory of resonance scattering in this case 

is developed by the same method as that described in §133. The only differ¬ 

ence is that the wave function in the region outside the range of action of the 

nuclear forces (r a) must be, instead of the solution of the equation of free 

motion (133.2), the exact general solution of Schrodinger’s equation in a 

Coulomb field. Here the velocity of the particles is again assumed only so 

small that ka <£ 1; the relation between 1/k and the Coulomb unit of length 

ac — h2/mZiZ2e2 (where m is the reduced mass of the colliding particles) is 

left arbitrary.f 
For motion with / = 0 in a repulsive Coulomb field, Schrodinger s 

equation for the radial function x — r^o is 

X'+ = (138.1) 

here we use Coulomb units. In §36 the solution of this equation has been 
found, subject to the requirement that xlr is fuiite at r = 0. This solution. 

t The theory given below is due to L. D. Landau and Ya. A. Smorodinskii (1944). 
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which we here denote by Fo, has the form (see (36.27) and (36.28)) 

575 

Fo = AeikrkrF(ijk+1, 2, -2ih), 

1 ) 

The asymptotic expression for this function at large distances is 

(138.2) 

Fo « sin^fo-— -log2&r+8o,coui^. 

So.coui = aigr(l + i/A), 

and the leading terms of the expansion for small r (kr 1, 

Fo =Akr{l + r+ ...). 

j (138.3) 

< 1) are 

(138.4) 

Now, however, with the changed boundary condition, the behaviour of the 

function at the origin becomes unimportant, and we need the general solution 

of equation (138.1), which is a linear combination of two independent 

integrals. 

The parameters of the confluent hypergeometric function in (138.2) are 

such (the value of y = 2 being integral) that the case described at the end 

of §d of the Mathematical Appendices occurs. In accordance with the 

discussion given there, we obtain the second integral of equation (138.1) 

by replacing the function F in (138.2) by some other linear combination of 

two terms whose sum is, according to (d. 14), the confluent hypergeometric 

function. Taking the difference of these terms as the combination in question, 

we find the second independent solution of equation (138.1) (denoted by Go) 

in the formf 

Ae-t^kr 
Go = 2im--(-2ifo-)-*-H/*G(l-i/*, -ilk, -2ikr); (138.5) 

r(l + «/*) 

the function F0 is the real part of the same expression. The asymptotic form 
at large distances is 

G0 ~ cos^fer-- log2ftr+8o,coui^, (138.6) 

and the leading terms of the expansion for small r are 

G° = +2r[l°g2r + 2C- 1 + /t(fc)] + ...}, (138.7) 

t The functions and G0 (and the correspondingly defined functions Fi and G, with l?t0) 
are called regular and irregular Coulomb functions respectively. 
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where C = 0-577... is Euler’s constant, and h(k) denotes the function 

h{k) = re ^(—«’/&) +log (138.8) 

<jj(z) = T'(z)IT(z) being the logarithmic derivative of the T function.-}- 

The general integral of equation (138.1) may be written as the sum 

X = constant x (Fq cot8o + Go), (138.9) 

where cot 8o is a constant. The notation is chosen so that the asymptotic 

form of this solution is 

X ~ sin^ftr— -log2Ar+8o,coui + So^. (138.10) 

Thus 8o is the additional phase shift of the wave function due to the short- 

range forces. We have to relate it to the constant appearing in the boundary 

t The expansion (138.7) is obtained from (138.5) by means of the expansion (d.17), using 
the well-known relation 

tKl+») = tK*) + l/» 

(which is easily derived from r(r+ 1) = 2l~(2)) and the values i/<(1) = —C, ip(2) = —C + 1. 
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condition [x'/xlr-o = constant, which replaces the treatment of the wave 

function in the region where nuclear forces act. Owing to the logarithmic 

divergence of the logarithmic derivative x'/x as r -> 0, this condition must 

be applied at some arbitrarily small but finite value r = p, not at r = 0. 

Calculating by means of formulae (138.4) and (138.7) the derivative x'(p)Ix(p) 

and equating it to a constant, we obtain the boundary condition in the form 

kA- cot 8o + 2[log 2p + 2C + h(k)] = constant. 

The expression on the left-hand side of the equation contains the constants 

2 log 2p and 4C, which are independent of k; we include these in the constant 

on the right, and then denote it by — k. The final expression for cot 8o is, 

in ordinary units, 

1 
cotSo = ——(e2w/*a'-l)[A(ftfle)+^Kflc]; (138.11) 

in the limit l/ac->0, i.e. for uncharged particles, formula (138.11) becomes 

the relation cot S0 = — k/A, i.e. (133.6). 

Figure 49 shows a graph of the function A(x).f 

Thus, when there is a Coulomb interaction, the “constant” is 

2it cot So 

ac(e2nka' — l) 

2 
—h(kac) = -k. 
Oe 

(138.12) 

We have put the word “constant” in quotation marks, since k is actually the 

first term in an expansion in powers of the small quantity ka of some function 

which depends on the properties of the short-range forces. As stated in §133, 

resonance at low energies corresponds to the case where the value of the con¬ 

stant k is anomalously small. Consequently, in order to improve the accuracy, 

we must take account also of the next term (~k2) in the expansion, which 

t To calculate the function h(k), we can use the formula 

which is easily obtained by means of the formula 

1 "ST- 1 
= —C-ha y -; 

a n(n-ha) 

see Whittaker and Watson. Course of Modern Analysis, Cambridge, 1944, §12.16 The 
limiting expressions for h(k) are 

A(A) *2/12 for * « 1, 

/>(*) = —C + log k + l-l/k1 for k > 1; 

the latter formula gives values of h(k) which are correct to within 4% even for k> 2-5. 
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contains a coefficient of “normal” magnitude, i.e. in (138.12) —k must be 

replaced by — k0 + %rok2.f 

The existence of resonance may, as stated in §133, be due to either a true 

or a virtual discrete bound state of the system. It can be shown} that the sign 

of the constant k is again the criterion which determines whether the level is 

true or virtual. 

The total phase shifts of the wave functions are, according to (138.10), the 

sums 8/>Coul +5/. The scattering cross-section is therefore 

f(B) = ~^i2l+ 1)[e2'(^>c°ui-,5') - l]P/(cos 6). (138.13) 

The difference in the brackets may be written 

c2iU,jCoui+«i) _ 1 = (g2i*j,Coul — 1] 

+ [«2tti.coui(e2tt«-l)]. (138.14) 

The Coulomb phases 8/ CouI contribute equally, in order of magnitude, to the 

scattering amplitude for all l. The phases 8; relating to the short-range 

forces are small for /#0 at low energies. Hence, in substituting (138.14) in 

(138.13), we retain the first bracket in every term of the sum; the sum of 

these terms is the Coulomb scattering amplitude (135.9) 

/coui(0) = ~9 vA 2 iflexP ( ~T~ lpg sin + (138.15) 
Lack1 sin2 \ v \ kac j 

The second bracket in (138.14) is retained only in the term with l = 0. Thus 

the total scattering amplitude is 

/(*) = _/coui(0)+-^2^- l)^o,coui. (138.16) 
hk 

The second term in this expression may be called the nuclear scattering 

amplitude. It should be emphasized, however, that the division is arbitrary: 

in view of the definition of 50 in (138.11), the presence of the Coulomb inter¬ 

action has a considerable effect on this term also, which is quite different 

from the corresponding term with the same short-range forces for uncharged 

particles. In particular, when kac ->0 the phase So, and therefore the w'hole of 

t The values of the constants a = 1/k0 and r0 for proton-proton scattering are a = -7 8 x 
10-13 cm, r„ = 2-8 x 10"13 cm (Coulomb unit of length 2/i3/mpe! = 57-6 X10-13 cm). These 
values relate to a pair of protons with antiparallel spins; when the spins are parallel a system of 
two protons cannot be in the s state, by Pauli’s principle. 

J See L. Landau and Ya. A. Smorodinskii, Zhurnal eksperimental'noi i teoreticheskoi fiziki 14, 
269, 1944. 
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the second term in (138.16), tend exponentially to zero as e~2n/kac, i.e. the 

nuclear scattering is entirely masked by the Coulomb repulsion. 

In the scattering cross-section the two parts of the amplitude interfere: 

da /Z\Z?e2 \2r 1 
— - l/(0)i- - ( 2mv2 ) [_sjn4|0 

-sin S0 cos (-log sin {6 + S0) + 4(Aac)2 sin2S0l .(138.17) 
sin2*# \kac / J 

Here it is assumed that the colliding particles are different; for like particles, 

the scattering amplitude must be symmetrized before being squared (cf. 

§137). 

§139. Elastic collisions between fast electrons and atoms 

Elastic collisions between fast electrons and atoms can be treated by means 

of the Born approximation if the velocity of the incident electron is large 

compared with those of the atomic electrons. 

Owing to the large difference in mass between the electron and the atom, 

the latter may be regarded as at rest during the collision, and the system of 

coordinates in which the centre of mass is fixed is the same as that in which 

the atom is fixed. Then p and p' in formula (126.7) denote the momenta of 

the electron before and after the collision, m the mass of the electron, and 

the angle 6 is the same as the angle of deviation & of the electron. The poten¬ 

tial energy U{r) in formula (126.7) must be defined appropriately. 

In §126 we have calculated the matrix element Upp of the interaction 

energy with respect to the wave functions of a free particle before and after 

the collision. In a collision with an atom it is necessary to take into account 

also the wave functions describing the internal state of the atom. In an elastic 

collision, the state of the atom is left unchanged. Hence Up.p must be deter¬ 

mined as the matrix element with respect to the wave functions >pp and i/y of 

the electron; it is diagonal with respect to the wave function of the atom. 

In other words, U{r) in formula (126.7) must be taken to be the potential 

energy of the interaction of the electron with the atom, averaged with respect 

to the wave function of the latter. It is ecf>(r), where f(r) is the potential of 

the field at the point r due to the mean distribution of charges in the atom. 

Denoting the density of the charge distribution in the atom by p(r), we 
have, for the potential^, Poisson’s equation: 

A <f> = —4-np(r). 

The required matrix element Up.p is essentially the Fourier component of U 

(i.e. of 4>) corresponding to the wave vector q = k'-k. Applying Poisson’s 
equation to each Fourier component separately, we have 

A(V-r) = -?2V',-r = -477pQ«‘<jq 
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so that 
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4><i = tirpjq2. 

J ^-‘Q.rdF = (4^/?2) J pe-iQ.rdF. (139,1) 

The charge density p(r) consists of the electron charges and the charge 
on the nucleus: 

p = -en(r) + Ze 8(r), 

where en{r) is the electron charge density in the atom. Multiplying by 
e-i,-r and integrating, we have 

| pe-'i.rdF = -e j ne^*-r<iV+Ze. 

Thus we obtain for the integral in question the expression 

| Ue-<*-rdV = ~~[E—F(q)], (139.2) 

where F(q) is defined by the formula 

F(q) = j ne-i*-r dv (139.3) 

and is called the atomic form factor. It is a function of the scattering angle and 
of the velocity of the incident electron. 

Finally, substituting (139.2) in (126.7), we obtain the following expression 

for the cross-section for the elastic scattering of fast electrons by an atomf: 

da = do> 9 = ITsin (139-4) 

Let us consider the limiting case qao 1, where ao is of the order of 

magnitude of the dimensions of the atom. Small scattering angles correspond 

to small q: 8- vq/v, where vo^fi/mao is of the order of magnitude of the 

velocities of the atomic electrons. 

Let us expand F(q) as a series of powers of q. The zero-order term is 

J ndV, which is the total number Z of electrons in the atom. The first- 

t We are neglecting exchange effects between the fast electron which undergoes scattering 
and the atomic electrons, i.e. we do not symmetrize the wave function of the system. The 
legitimacy of this procedure is evident: the interference between the rapidly oscillating wave 
function of the free particle and the wave function of the atomic electrons in the “exchange 
integral” has the result that the corresponding contribution to the scattering amplitude is 
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order term is proportional to J rn(r) dV, i.e. to the mean value of the dipole 

moment of the atom; this vanishes identically (see §75). We must therefore 

continue the expansion up to the second-order term, obtaining 

Z-F(q) -w- 
substituting in (139.4), vve obtain 

(139.5) 

Thus, in the range of small angles, the cross-section is independent of the 

scattering angle, and is given by the mean square distance of the atomic 

electrons from the nucleus. 

In the opposite limiting case of large q{qa0 p 1, i.e. 8 $>> v0jv), the factor 

e-i<ir in the integrand in (139.3) is a rapidly oscillating function, and there¬ 

fore the whole integral iS nearly zero. Consequently, we can neglect F(q) 

in comparison with Z, so that 

/Zf2\ 2 do 

\2mv2) sin4^8 

i.e., we have Rutherford scattering at the nucleus of the atom. 

We may also calculate the transport cross-section 

(139.6) 

otr = J (1—cos 8) do. (139.7) 

In the range of angles 8 vo/v we have, according to (139.5), dcr = constant x 

x sin 8 d8 = constant x 8 d8, where the constant is independent of 8. 

Hence, in this region, the integrand in the above integral is proportional 

to 8s, so that the integral converges rapidly at the lower limit. In the region 

1 > 8 > v0/v we have da ss constant x d8/83; the integrand is proportional 

to 1/8, and the integral (139.7) diverges logarithmically. Hence we see that 

this range of angles plays the chief part in the integral, and we need integrate 

only over this range. The lower limit of integration must be taken as of the 

order of vo/v; we shall write it in the form e2/yhv, where y is a dimensionless 

constant. As a result we have the formula 

Otr = ^n(Ze2lmvz)z iog(yhv/e2). (139.8) 

An exact calculation of the constant y requires a consideration of scattering 

through angles 8 > v0/v, and cannot be carried out in a general form; otr 

depends only slightly on the choice of this constant, since it enters only in 
a logarithm, and multiplied by the large quantity hv/ez. 

For a numerical calculation of the atomic form factor for heavy atoms, we 
can use the Thomas-Fermi distribution of the density n(r). We have seen 
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that, in the Thomas-Fermi model, n(r) has the form 

n{r) = 2*f(rZU»lb); 

all quantities in this and the following formulae are measured in atomic units. 

It is easy to see that the integral (139.3), when calculated with such a function 

n(r), will contain q only in the combination qZ-Vs; 

F(q) = Z^(fc?Z-i/3). (139.9) 

Table 11 gives, for reference, the valoes of the function f(x), which holds 

for all atoms.f 

Table 11 

The atomic form factor on the Thomas-Fermi model 

* m ' * «*) * m 
0 1-000 1-08 0-422 2-17 0-224 

0-15 0-922 1-24 0-378 2-32 0-205 
0-31 0-796 1-39 0-342 2-48 0-189 
0-46 0-684 1-55 0-309 2-64 0-175 
0-62 0-589 1-70 0-284 2-79 0-167 
0-77 0-522 1-86 0-264 2-94 0-156 
0-93 0-469 2-02 0-240 

With the atomic form factor (139.9), the cross-section (139.4) will have the 

form 

do = (4Z2/54)[1-^(65Z-i/3)]2 do = Z2/3(D(Z-i/3t. sin£8) do, (139.10) 

where <J>(x) is a new function holding for all atoms. The total cross-section 

may be obtained by integration. The chief part in the integral is played by the 

range of small Hence we can write 

do « Z2/3(D(Z-i/3»&/2)27tS d», 

and extend the integration over & to infinity: 

o = 2ttZ2/3 j(D(Z-i/3^/2)$ dF = (87t/u2)Z4/3 | rO(x) dx. 

o o 

Thus o is of the form 

o = constant x Zil3lv2. (139.11) 

Similarly, it is easy to see that the constant y in formula (139.8) will be 

proportional to Z-1/3. 

t It must be borne in mind that this formula is not applicable for small g, since the integral 
of nr1 cannot in practice be calculated by the Thomas-Fermi method (see the third note to 
§113). It should also be mentioned that the Thomas-Fermi model does not represent the 
individual properties of atoms or their systematic variation with atomic number. 
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PROBLEM 

Calculate the cross-section for the elastic scattering of fast electrons by a hydrogen atom 
in the ground state. 

SOLUTION. The wave function of the normal state of the hydrogen atom is (in atomic 
units) if1 = so that n = e-'-’l-n. The integration over angles in (139.3) is effected 
as in the derivation of formula (126.12); we have 

F = -]f,(r)smer.rdr = (, + i?2)2- 

Substituting in (139.4), we obtair 

4(8+g2)2 dj 

(4+?2)4 

where q = 2v sin \\T. The total cross-section is calculated by putting do = 2ir sin S' d d = 
(2jt/v2)q dq and integrating over q from 0 to 2v\ since v is assumed large and the integral 
converges, the upper limit may be replaced by infinity. The result is 

o =T7W3"2. 

The transport cross-section is calculated as 

Changing the variable of integration by putting u = 4 + g2, and taking the upper limit as 
infinity everywhere except in the term du/u, we obtain 

in accordance with (139.8). 

§140. Scattering with spin-orbit interaction 

Hitherto we have considered only collisions of particles whose interaction 

does not depend on their spins. Under these conditions the spins either do 

not affect the scattering process at all, or have an indirect influence due to 

exchange effects (§137). 
Let us now examine the generalization of the theory of scattering given in 

§123 to the case where the interaction of the particles depends significantly 

on their spins, as occurs in collisions of nuclear particles. 

We shall discuss in detail the simplest case, where one of the colliding 

particles (for definiteness taken to be the particle in the incident beam) has 

spin i, and the other (the target particle) has spin zero. 

Fora given (half-integral) angular momentum j of the system, the orbital 

angular momentum can have only the two values l = j ± corresponding 

to states of different parities. In this case, therefore, the conservation of the 
absolute magnitude of the orbital angular momentum follows from that of j 
and the parity. 

The operator / (§125) now acts not only on the orbital variables but also 
on the spin variables of the wave function of the system. It must commute 
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with the operator of the conserved quantity l2. The most general form of such 

an operator is 

/ = a +bi .s, (140.1) 

where a and 5 are orbital operators depending only on l2. 

The 5-matrix, and therefore the matrix of the operator /, are diagonal with 

respect to the wave functions of states with definite values of the conserved 

quantities / and; (and the component m of the total angular momentum), and 

the diagonal elements are expressed in terms of the phases S of the wave 

functions by formula (123.15). For given land given total angular momentum 

; = 1+ £ or l— \ the eigenvalues of 1. s are U and —1(1+ 1) respectively (see 

(118.5)). Hence, to determine the diagonal matrix elements of the operators 

a and h (denoted by ai and bi), we have the relations 

ot+Vbt = ^(e2W'+-l), 

1 
ai-KZ+l)6i = 

2ik 
'"-1), 

(140.2) 

where the phases Si+ and Sr correspond to states with; = l+\and; = l—\ 

respectively. 

We are interested, however, not in the diagonal elements themselves of 

the operator / with respect to the states with given / and;, but in the scatter¬ 

ing amplitude as a function of the directions of the incident and scattered 

waves. This amplitude is still an operator, but only with respect to the spin 

variables—an operator which is non-diagonal with respect to the spin com¬ 

ponent a. In the rest of this section / will denote this operator. 

To derive this operator we must apply the operator (140.1) to the function 

(125.17) which corresponds to a plane wave incident along the z-axis. Thus 

/ = 2 (2/+ 1)(*+M • S)P/(cos0). (140-3) 

Here we must also calculate the result of the action of the operator i . s on 

the function Pi{cos 6). This can be done by writing 

i.s = +£-/+)+li$z 

(see (29.11)) and using formulae (27.12) for the matrix elements of the oper¬ 

ators 4, or still more simply by using the operator expressions (26.14), 

(26.15). The result is 

i . sPi(cos8) - »v . SP/Hcosfl), 

where Pi1 is the associated Legendre polynomial and v a unit vector in the 

direction n x n' which is perpendicular to the plane of scattering (n being 
the direction of incidence (the z-axis) and n' the direction of scattering, 

defined by the spherical polar angles 6, <f>). 
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On determining ax and bx from (140.2) and substituting in (140.3), we 

have finally 

/ = .<4 + 2.Bv . s, (140.4) 

A = -k IK/+ miccse), 
1 l- 0 

1 °° 
B = — ^ {e^-e^p^cose). 

(140.5) 

The matrix elements of this operator give the scattering amplitude for 

definite values of the spin component in the initial (o) and final (o') states. 

Let us consider the cross-section summed over all possible’ values of o' and 

averaged with respect to the probabilities of various values a in the initial 

state (in the incident beam). The cross-section is given by 

da=(F7Udo; (140.6) 

by taking the diagonal matrix elements of the product /+/ we effect the 

summation over final states, and the bar denotes the averaging with respect 

to initial states.-}- If all spin directions are equally probable in the initial 

state, this averaging reduces to taking the trace of the matrix, divided by the 

number of possible values of the spin component o: 

dc = *tr(/V)do. (140.7) 

On substitution of (140.4) in (140.6) the mean value of the square (v.s)2 

is calculated as ^v2s2 = $$($+1) = The result is 

do/do = |^|2 + |B|2 + 2 re(AB*)v . P, (H0.8) 

where P = 2s is the initial polarization of the beam, defined as the ratio 

of the mean spin in the initial state to its maximum possible value (£). 

In the case of spin \ the vector s completely describes the spin state (§59). 

It may be pointed out that the polarization of the incident beam leads 

to an azimuthal asymmetry of the scattering: owing to the factor v.P in 

the last term, the cross-section (140.8) depends not only on the polar angle 6 

t If the squared modulus |/0n|! of the matrix element of some operator for the transition 
0 is summed over final states n, we have 

Sl/oa!2 = S/o„(/o„)* = IhnU'U 

= (//+) 00. 

To avoid misunderstanding, it should be emphasized that the sign *■ denoting the con¬ 
jugate refers in (140.6) and henceforward to/as a spin operator; in particular, the transposition 
of n and n' is not implied. 
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but also on the azimuth 4> of the vector n' relative to n (if the polarization 

is not perpendicular to v, so that v.P # 0). 

The polarization of the scattered particles can be calculated from the 

formula 

P' = 2{f^sfUlCFfU. (140.9) 

For example, if the initial state is unpolarized (P = 0), a simple calculation 

gives 
2 re(AB*) 

H2+iV 
(140.10) 

Thus scattering leads, in general, to the appearance of a polarization per¬ 

pendicular to the plane of scattering. This effect is, however, absent in the 

Born approximation: if all the phases S are small, the coefficient A is real 

in the first approximation with respect to the phases, and B is purely imaginary, 

so that re(AB*) = 0. 

The fact that the polarization P' (140.10) is in the direction of v is obvious 

a priori. P' is an axial vector, and v is the only axial vector which can be 

constructed from the available polar vectors n and n'. It is therefore evident 

that this property will also be possessed by the polarization resulting from the 

scattering of an unpolarized beam of particles with spin i by an unpolarized 

target composed of nuclei with any spin (not necessarily zero).-}- 

In formulating the reciprocity theorem for scattering in the presence 

of spins it must be borne in mind that time reversal changes the signs not 

only of the momenta but also of the angular momenta. Hence the symmetry 

of scattering with respect to time reversal must in th>s case be expressed by 

the equality of amplitudes for processes which differ not only in the inter¬ 

change of the initial and final states and the reversal of the directions of 

motion but also in that the signs of the spin components of the particles are 

changed in both states. Here, however, the signs of these amplitudes may 

differ because, according to (60.3), time reversal introduces a factor (- 1)*-° 

in the spin wave function. This has the result that the reciprocity theorem 

must be formulated as follows 

f(ai, 02, n; off, 02', n') = ( —l)r(s_CT)/(—01', —02', — n'; —01, —02, —n).(140.11) 

Here f{a\, 02, n; off, 02', n') is the amplitude of scattering with change 

in the spin components of the colliding particles from 01, 02 to off, 02'. 

The sum in the exponent is taken over both particles before and after scatter¬ 

ing. 

t Here we have in mind a target with a completely random distribution of spin directions. 
For j>i, it will be recalled, the mean value of the spin vector does not fully determine the 
spin state, and if this mean value is zero there is not necessarily a complete absence of ordering 
of the spins. 

} The derivation of this relation is similar to that of formula (125.12). The amplitudes of 
the ingoing and outgoing waves must contain spin factors, and instead of (125.10) we have the 
condition K-'Sft = 5, where K is an operator which not only effects inversion but also 
changes the spin state in accordance with (60.3). 
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In the Born approximation, the scattering has a further symmetry; the 

probabilities of processes differing by the interchange of the initial and 

final states, without change in the signs of the momenta and spin components 

of the particles as in time reversal, are the same (see §126). Combining this 

property with the reciprocity theorem, we find that the scattering is sym¬ 

metrical with respect to a change in sign of all the momenta and spin com: 

ponents, without interchange. Hence we easily conclude that in the Born 

approximation there can be no polarization in the scattering of any unpolar¬ 

ized beam by an unpolarized target. For, under the transformation men¬ 

tioned, the polarization vector P changes sign, while the unit vector k x k', 

whose direction must be the same as that of P, remains unaltered. Thus the 

property noted above for the scattering of particles with spin i by particles 

with spin zero is actually a general one. 

In the case of arbitrary spins of the colliding particles, the general formulae 

for the angular distributions are very complicated, and we shall not pause to 

derive them here, but merely calculate the number of parameters by which 

these distributions must be determined. 

The case considered above of a collision between particles of spin \ and 

0 has, in particular, the property that to given values of j and the parity there 

corresponds only one state of the system of two particles (apart from the 

unimportant orientation of the total angular momentum in space). Each 

such state leads to one real parameter (the phase S) in the scattering ampli¬ 

tude. For other spins there are in general several different states with the 

same total angular momentum J and parity; these states differ in the 

values of the total spin 5 of the particles and the orbital angular momentum 

/ of their relative motion. Let the number of such states be n. It is easy to 

see that each such group of states contributes \n{n+1) real parameters in 

the scattering amplitude. For the 5-matrix is, with respect to these states, 

a matrix having unitary symmetry (owing to the reciprocity theorem), with 

n . n complex elements. The number of independent quantities in this matrix 

is conveniently calculated by noting that, if the operator 5 is written in the 

form 5 = exp(iR), the unitarity condition is automatically satisfied when R is 

any Hermitian operator (see (12.13)). If the matrix 5 is symmetrical, so is the 

matrix R, which, being Hermitian, is therefore real, and a real symmetrical 

matrix has .,-«(« 4- 1) independent components. 

As an example, for two particles with spins £ the number n — 2: for 

given J there are in all four states, two with l = J and total spin 5 = 0 or 

1, and two with 1 = J±1, S = l. It is evident that two of these states are 
even (/ is even) and two are odd (l is odd). 

The general form of the scattering amplitude for particles with spin 

as an operator relating to the spin variables of the two particles, is easily 

written down from the necessary invariance conditions: it must be a scalar 
invariant under time reversal. To construct this expression we have the 
two axial vectors Si and s2 of the particle spins and two ordinary (polar) 
vectors n and n' Each of the operators §i and §2 must appear linearly in the 
amplitude, since any function of an operator of spin £ can be reduced to a 
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linear function. The most general form of operator satisfying these condi¬ 

tions can be written as 

f = A + £(ix. X)(s2 . X)+C(sx. |x)(§2 . (x) + 

+ D(si .v)(s2 .v) + £(si + s2) .v. (140.12) 

The coefficients A, B, ... are scalar quantities, which can depend only on the 

scalar n . n', i.e. on the scattering angle 8 (and on the energy); X, p, v are 

three mutually perpendicular unit vectors along n + n', n —n' and n x n' 

respectively. The operations of time reversal correspond to the changes 

so that 

si -* —si, s2 -* —s2, n 

X -x — X, p. ^ p, 

n' —— n, 

and the invariance of the operator (140.12) is obvious. 

In the mutual scattering of nucleons (protons and neutrons) the last term 

in (140.12) does not appear. This is evident from the fact that the nuclear 

forces acting between nucleons conserve the absolute magnitude of the total 

spin S of the system; the operator si—s2, however, does not commute with 

the operator S2. (The remaining terms in (140.12) are expressed, according 

to (117.4), in terms of the total spin operator S, and therefore commute with 

S2.) In the scattering of like nucleons (pp or nn), the coefficients A, B, ... 

as functions of the angle of scattering also satisfy certain symmetry relations 

as a result of the identity of the two particles (see Problem 2). 

PROBLEMS 

Problem 1. Determine the polarization after the scattering of particles with spin J by 
particles with spin zero when the polarization before scattering is non-zero. 

Solution. A calculation using formula (140.9) is conveniently effected in components, 
with the z-axis in the direction of v. The result is 

pi (|A|Z—]B|2)P+2|£|2v(v.P) + 2 im(AB*)vx P+2v re(AB*) 

|A|2+|B|2 + 2re(AB»)v.P ‘ 

Problem 2. Find the symmetry conditions satisfied by the coefficients in the scattering 
amplitude for two like nucleons, as functions ot the angle 6 (R Oehme 1955). 

Solution. We regroup the terms in (140.12) in such a way th" each is non-zero only 
for singlet (S = 0) or triplet (S = 1) states of the system of two ucleons: 

/ - o(si . s2-i)+fc(si. s2 + i) + c[i + (si -v)(s2 .v)] + 

+ d[(i,. n)(s2 .n') + (si - n')(§2 . n)] + e(in-s2) .v. (1) 

Using formulae (117.4), we easilv see that the first term is non-zero only for S = 0 and the 
remainder only for S = 1. Owing to the identity of the particles, the scattering amplitude 
must be symmetric with respect to interchange of the particle coordinates -for S — U, ana 
antisymmetric for 5 = 1. This transformation is equivalent to 8 -*■ -n—3, or to a change in 
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sign of one of the vectors n and n' (cf. §137). From these conditions we obtain the relations 

4r-8) = a(B). b(n-ff) = -4(6), dir-S) = -r(6), ) 

Owing to isotopic invariance, the scattering amplitude is the same for nn and pp scattering 
and for np scattering in the isotopic state with T = 1. For the np system, however, the state 
with T = 0 is also possible, and the np scattering amplitude is therefore described by other 
coefficients a, b,... in (1), which do not possess the symmetry properties (2). 

§141. Regge poles 

In §128 we have considered the analytical properties of the scattering 

amplitude as a function of the complex variable E, the energy of the particle; 

the orbital angular momentum l acted as a parameter having real integral 

values. Further properties of the scattering amplitude that are of metho¬ 

dological importance appear if vve now regard / as a continuous complex 

variable for real values of the energy E.f 

As in §128, we shall take radial wave functions whose asymptotic form 

(as r-*oc) is 

= rRt = A(l, E) exp^_V(~2mE)^ 

+ B(l, E) expj 
V(-2 mE) 

h 
(141.1) 

These functions are solutions of Schrodinger’s equation (32.8) (in which l is 

now regarded as a complex parameter); the choice from the two independent 

solutions is governed by the condition 

Ri x constant xW forr-A). (141.2) 

It is immediately evident that this condition places a certain limitation on 

the permissible values of the parameter l: the general form of the solution of 

equation (32.8) for small r is 

Ri x arl + ty-1-1 

(see the end of §32). In order for the second solution to be clearly distin¬ 

guished from the first solution and eliminated, the term in r~l~y must exceed 

that in rl as r -*0. For complex l, this leads to the condition re / > re ( — / — 1), 

re (I+2) >0. (141.3) 

In the following, w'e shall consider only this half of the complex /-plane, to the 
right of the vertical line l = -4. 

t These propertie igated by T. Regge (1958). 
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The wave function R(r\ /, £), being a solution of a differential equation with 

coefficients analytic in the parameter /, is an analytic function of /, having no 

singularities in the half-plane (141.3). This applies, in particular, to the 

asymptotic expression (141.1), and the functions A(l, E) and £(/, E) therefore 

have no singularities with respect to /. Here, however, it is assumed that the 

retention of both terms in (141.1) as r is in fact legitimate. When E> 0 

this is always true; when E < 0 it is true if the field U(r) satisfies the condition 

(128.6) or (128.13). In these arguments it is important that the form of the 

asymptotic behaviour (with respect to r) of the wave function depends on E 

but not on /. The approach to the asymptotic form is therefore unaffected 

by the fact that l is complex. 

Comparing (141.1) with the asymptotic formula (128.15), we find the 

5-matrix element in the form 

S(l, E) = exp[2i'S(/, £)] = A{1 £);£(/, E), (141.4) 

which is valid for complex / also (although the “phase shift” 8 is of course 

then not real). 

For real/, and£> 0, the functions A and B are related by (128.4): A(l, E) = 

£*(/, E). Hence it follows that, for complex /, 

A(l*, E) = B*(l, E) for £ > 0, (141.5) 

and S(l, E) therefore satisfies the complex unitarily condition 

S*(l, E)S(l*, E) = 1. (141.6) 

Since A(l, E) and B(l, E) have no singularities as functions of /, the function 

5(/, £) and thus the partial scattering amplitude/(/, £) have singularities 

(poles) only at the zeros of the function B(l, £). The poles of the scattering 

amplitude in the complex /-plane are called Regge poles. Their position 

depends, of course, on the value of the real parameter £. The functions 

/ = «*(£), 

which determine the positions of the poles, are called Regge trajectories; when 

£ varies, the poles move along certain lines in the /-plane. The subscript i 

w'hich labels the poles will be omitted henceforward. 

Going on now to study the properties of the Regge trajectories, we shall 

show first of all that for £ < 0 all the a(£) are real functions. To do so, let us 

consider the equation 

+ (141.7) 

which is satisfied b the wave function with / = a. Multiplying this equation 
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by x* and integrating with respect to r (with integration by parts in the first 

term), we obtain 

"J lx'|2dr + |^ j (£- t/’)|xl2 dr-*(a+ 1) J 1M! dr = 0. 

Here we have used the fact that for B = 0 (the condition determining the 

Regge poles) the wave function decreases exponentially as r->oc, so that all 

the integrals converge. The first two terms in the above equation are real, 

and so is the integral in the last term. Hence we must have 

im a(a+ 1) = im (a+ l)2 = 2 re (a + A) ini a = 0. 

But, since we are considering only poles in the half-plane (141.3), we certainly 

have re (a + -A) > 0, and this gives the desired result 

ima(E) = 0 for E<0. (141.8) 

Next, we proceed as follows with (141.7), in a similar manner to the 

derivation of equation (128.10): differentiate with respect to E, multiply by y, 

and multiply (141.7) by dgjdE, and subtract. This gives the identity 

[*• cE 

2 m q x2 d«(o:+ 1) = 0 

r2 d E 

Integration with respect to r from 0 to x>, again using the fact that y -*0 as 

r-*co, shows that the integral of the first term is zero, and we have 

d«(«+l) (Vd, 
d E J r2 

2m r 
X2 dr. (141.9) 

Since we know that a is real, the wave function is also real, and both integrals 

in (141.9) are therefore positive. Hence 

d^+,) = 2(« + J)||>0. 
and, since i > 0, 

da 'd-E > 0 for E< 0. 

Thus, for E <0, the functions cc(E) increase monotonically with E. 
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The negative values of E for which the functions a(E) take “physical” 

values (i.e. are integers / = 0, 1, 2, ...) correspond to the discrete energy 

levels of the system. Note that this gives rise to a new principle of classification 

of bound states, according to the Regge trajectories on which they lie. 

As an example, let us consider Regge trajectories for motion in an attractive 

Coulomb field. The scattering matrix elements are then given byf 

s = m+i-iik) 

1 r(/+i+£/*)’ 
(141.10) 

with k in Coulomb units. The poles of this expression are at points where the 

argument of T(/+ 1 ~i;k) is a negative integer or zero. For £<0 we have 

k = i\/{ — 2E), so that 

«(£) = -fir-l + l/V(-2£), E< 0, (141.11) 

where nr = 0, 1, 2, ... is the number of the Regge trajectory. Equating a(E) 

to an integer / = 0, 1, 2, ..., we obtain the familiar Bohr formula for discrete 

energy levels in a Coulomb field: 

E = -i(»r+l+/)-*. 

The number nr here coincides with the radial quantum number which 

determines the number of nodes of the radial wave function. Each Regge 

trajectory (i.e. each given value of nr) corresponds to an infinity of levels with 

different values of the orbital angular momentum. 

Let us now consider the properties of the functions cc(E) for E >0. The 

functions A(l, E) and B(l, E) of the complex variable E in (141.1) are defined 

on a plane with a cut along the right half of the real axis (see §128). Corres¬ 

pondingly, the functions l = a(E), for which B(l, E) = 0, have a similar cut. 

On the upper and lower edges of the cut, a(E) has complex conjugate values, 

with im a > 0 on the upper edge. Without pausing to give a formal proof of 

this, we shall present a more physical explanation of the reason. 

When l is complex, so is the centrifugal energy and therefore the effective 

potential energy U.i = U+1(1+ l)/2mr2. Repeating the derivation in §19, 

we now have instead of (19.6) 

i|T|2 + divj = 2|Tj2 im Uh 
dt 

When / = a, and im a > 0, we also have im lh > 0. Then the right-hand side 

of the equation is positive, signifying an emission of new particles in the field 

volume. Accordingly, the asymptotic expression for the wave function 

(which, when B — 0, contains only the first term in (141.1)) must represent 

t Cf. (135.11), in which the sign of k must be changed to convert from repulsion to 
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an outgoing wave, and this occurs on the upper edge of the cut; cf. the 

derivation of (128.3) from (128.1). 

Since, for £>0, the functions x(E) are complex, they cannot here take 

their “physical” values / = 0, 1, 2, .... They may, however, be close to these 

values in the complex /-plane. We shall show that there is then a resonance in 

the partial scattering amplitude (corresponding to the integral value of / in 

question). 

Let /o be the integral value close to the function a(£), and let £0 be the (real 

and positive) value of the energy for which re a(£o) = lo- Then, near this 

value, we have 

<x(E) » l0 + iv + /5(E-Eo), (141.12) 

where tj = im a(£o) is a real constant. We shall consider values a(£) on the 

upper edge of the cut; according to the preceding discussion, 17 >0 in that 

case (and 17 1, from the assumption that a is close to lo)- It is easy to see that 

the constant jS (i.e. the derivative da/d£ for E = £0) may be regarded as real 

and positive: since a(£) is almost real, so is the wave function x(r; a, £). 

Neglecting quantities of a higher order of smallness with respect to 17, we can 

neglect the imaginary part of x> and then it follows that jS is positive, since 

the integrals in (141.9) are positive.! 

Since / = a(£) is a zero of £(/, £), the latter is proportional to a - / near the 

point a, £o- Using (141.12), we therefore have 

B(l0, E) v constant x [a(£-£0)4-117]. (141.13) 

The form of this expression is the same as that of (134.6), with £0 the energy 

and T = Zrj/a > 0 the width of the quasi-discrete level. Thus the closeness of 

the Regge trajectory (for £>0) to integral values of / corresponds to quasi¬ 

stationary states of the system. For these states, therefore, there exists the 

same principle of classification as for strictly stationary states: each Regge 

trajectory can correspond to a family of discrete and quasi-discrete levels. 

The treatment of / as a complex variable enables us to derive a useful 

integral form of the total scattering amplitude (for £ > 0), given by the series 

(123.11): 

t To elucidate the structure of these integrals, we note that the asymptotic region r a 
(where a is the range of action of the field), in which the expression (141.1) for the wave 
function is valid, makes only a small contribution to the integrals if 17 is small. For, if l = a(£) 
is a zero of £(/,£), then by (141.5) / = 2* is a zero of A(l,E). Hence A{x,E) and therefore 
x(r-,x,E) in the region r a, are small quantities see (134.11). In estimating the 
integrals, it is also important that, on the upper edge of the cut (in relation to £'), the wave 
function contains a factor e‘*': x(r •,*,£) = A(x,E)e‘*'. On this edge, we can regard E as 
E + iS (&-> +0); then k also has a small positive imaginary part, which ensures the con¬ 
vergence of the integrals in (141.9). Physically, the smallness of the contribution to the 
integrals from the region r $> a is due to the fact that the energy E0 corresponds to a quasi¬ 
stationary state (see below); the particle therefore reaches this region only as a result of an 
improbable decay of the state The principal contribution to the integrals comes from the 
region r~ a, in which the wave function is almost real. 
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fip) = ^2(2/+1)[S(/’ £)~*= cos 6• (14U4> 

To obtain this, we must first define the functions Pi(^) not only for integral 

/ 3* 0 but also for complex /. This can be done by taking P/(pt) as the solution 

of equation (c.2): 

(i-^pr^-z^pa^+iu+^PiM = o (i4i.i5) 

with the boundary condition Pi(l) = 1. The P;(p.) thus defined as a function 

of l has no singularities for finite values of 

It is easily seen that the series (141.14) is equal to the integral 

f(p) = jr f ^[S(J, E)~ l]-Pi(-^)d/, (141.16) 
4k J sin 7tL 

taken along a contour C that passes in a negative direction (clockwise) round 

all the points / = 0, 1, 2, ... on the real axis and is closed at infinity: 

All the poles l = ay, a2, ... of the function S(l, E) (which are not on the real 

axis if £>0) must remain outside the contour C. The integral (141.16) 

reduces to — 2m times the sum of the residues of the integrand at the points 

l = 0, 1,2, ..., which are poles of the function 1/sin 77/, and the residues of 

this function itself are (—1 y/n. Since for integral l w7e have Pi( — pt) = 

(- 1 yPifa), we arrive at (141.14) from (141.16).% 

PROBLEM 

Show lhat the phase shifts corresponding to successive integral values of l satisfy the inequality 

' S,+ l(E)-6,(E)<in. 

Solution. We will regard l as a continuous real variable, and differentiate (32.10) with respect 

d*" r? m,. 
j(E-U) 

(((+1)' >1«*_ 
J SI (2( + l)z/r2- 

Multiplication of this by ^ and the original equation by dxjdl^ and subtraction, gives 

[xSx'ISl - x’BxIdl]’ = (21 + 1 )x>2- 

YVe integrate this over r from 0 to oo. For r = 0 the expression in the square brackets is 
for r -» co we can use for y the asymptotic expression (33.20). The result is 

4A (lit - 86,181) = (2/ + 1) J (Z V) dr > 0, 

so that 86,181 <^n. Integration over l from l to l + 1 gives the required inequality. Together with 
(133.17), il shows that the number n, of discrete levels does not increase with l. As E -» co and the 
Born approximation becomes valid, the scattering phases tend to zero, so that <5,(co) = 0. Then 

«r+. -«/= (l/7r)[6, + i(0) - £,(0)] < i, n,+ , - n, < 0. 

t By comparison of (141.15) with (e.2) we can express Pi(p-) as a hypergeometric function: 
PlM = + 1; i-ifr). 

J A more detailed account of the ideas discussed in this section (for non-relativistic theory) 
is given in the book by de Alfaro and Regge quoted in §123. 



CHAPTER XVIII 

INELASTIC COLLISIONS 

§142. Elastic scattering in the presence of inelastic processes 

Collisions are said to be inelastic when they are accompanied by a change 

in the internal state of the colliding particles. Here we understand “a change 

in the internal state” in the widest sense; in particular, the very nature of 

the particles may be altered. For example, the change may consist in the 

excitation or ionization of atoms, the excitation or disintegration of nuclei, 

and so on. Where a collision (e.g. a nuclear reaction) may be accompanied 

by various physical processes, these are referred to as various channels of the 

reaction. 

The existence of inelastic channels has a certain effect on the properties 

of elastic scattering also. 

In the general case where various reaction channels exist, the asymptotic 

expression for the wave function of the system of colliding particles is a sum, 

with one term corresponding to each possible channel. Among these there is, 

in particular, a term describing the particles in the original unchanged state 

(the input channel). This is the product of the wave functions of the internal 

state of the particles and a function describing their relative motion (in a 

coordinate system where their centre of mass is at rest). The latter function 

is the one of interest here; we shall denote it by ip, and seek its asymptotic 

form. 

The wave function ip in the input channel consists of an incident plane 

wave and an outgoing spherical wave corresponding to elastic scattering. It 

can also be represented as the sum of an ingoing and an outgoing wave, as 

in §123. The difference is that the asymptotic expression for the radial 

functions Ri(r) cannot be taken in the form of the stationary wave. The 

stationary wave is the sum of ingoing and outgoing waves of equal amplitude. 

In purely elastic scattering this corresponds to the physical significance of 

the problem, but when there are inelastic channels the amplitude of the out¬ 

going wave must be less than that of the ingoing wave. The asymptotic 

expression for </, will therefore be given by formula (123.9): 

4> = ^2(2/+1)Pi(c0S 6')f(-1)'+le“ifc,' + S'ie^r], (142.1) 

except that the Si are no longer given by (123.10), but are certain quantities, 

in general complex, with moduli less than unity. The elastic scattering 
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amplitude is given in terms of these quantities by formula (123.11): 

§142 

M = ^ 2(2Z+ l)[Sl~ l^c°se)- (142.2) 
1=0 

For the total elastic scattering cross-section oe we have, instead of (123.12), 

the formula 

ae = ^\2l+l)\l-S^ (142.3) 

1=0 

The total inelastic scattering cross-section or reaction cross-section cr for all 

possible channels can also be expressed in terms of the Si. To do so, we 

need only note that for each value of l the intensity of the outgoing wave is 

reduced in the ratio |Si|2 in comparison with that of the ingoing wave. This 

reduction must be ascribed entirely to inelastic scattering. It is therefore 

clear that 

o'=J2(z/+1)(1-|S,|Z)* (142-4) 
R 1=0 

and the total cross-section is 

In " 

Of = *.+ dr = 2(2Z+ 1K1 “reS*)- (142-5) 
1=0 

The partial amplitude for elastic scattering with angular momentum l, 

determined from (123.15), is 

/, = (S,-l)/2i*, (142.6) 

and each of the terms in the sum in (142.3) and (142.4) is the partial cross- 

section for elastic or inelastic scattering of particles with angular momen¬ 

tum l: 

O'" =(77/^X21+1)11-^, 

4I) = (77/^2X21+i)(1-IsiIz), 

o“» = (2,r/**)(2/+l)(l- re Si). 

The value Si = 1 corresponds to the complete absence of scattering (with 

a given /). The case St = 0 corresponds to total “absorption” of particles 

with angular momentum l (there is no outgoing partial wave with this / in 

(142.1)); the cross-sections for elastic and inelastic scattering are then equal: 

of = c<rl) = {nlk*){2l+1), (142.8) 

(142.7) 
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Although elastic scattering can occur without inelastic scattering (when 

|»S/| = 1), the opposite situation is impossible: the presence of inelastic 

scattering necessarily implies the simultaneous presence of elastic scattering. 

For a given value of <7r((), the elastic scattering cross-section must be in the 

range 

V°o—V("o- c(?) < < V*o+ V(oa- Sr1). (142.9) 

where cto = (2l+\)v/k2. 

Taking the value off(6) from (142.2) for 6 = 0 and comparing with (142.5), 

we find 

im/(0) = Aat/47r, (142.10) 

which is a generalization of the optical theorem (125.9). Here/ (0) is again 

the amplitude of elastic scattering through zero angle, but the total cross- 

section <71 includes the inelastic component. 

The imaginary parts of the partial amplitudes fi are related to the partial 

cross-section by 

im/j = A_Zl_ 
477 2Z+1 

(142.11) 

which follows directly from (142.6) and (142.7). 

The fact that the coefficients Si in the asymptotic expression for the wave 

function are not of unit modulus does not affect the conclusions of §128 

concerning the singular points of the elastic scattering amplitude as a function 

of complex E. These conclusions remain valid when inelastic processes 

occur. The analytical properties of the amplitude are, however, changed in 

that it is no longer real on the negative real axis (E < 0), and its values on the 

upper and lower sides of the cut for E > 0 are not complexconjugate quantities 

(and accordingly its values at all points in the upper and lower half-planes 

symmetrical about the real axis are not complex conjugate quantities). 

When we go from the upper edge of the cut to the lower edge by passing 

round the point E = 0, the quantity y/E changes sign, i.e. this process 

changes the sign of the quantity k, which is real (for E > 0). The ingoing 

and outgoing waves in (142.1) are interchanged, and so the coefficient St is 

replaced by its reciprocal 1/Sj (which is not equal to Si*). The amplitudes 

fi on the upper and lower edges of the cut may be denoted by ft(k) and fi( — k) 

(only/*(£) is a physical amplitude, of course). According to (142.6) we have 

Si-1 1/Sj-l 

2 ik 

Eliminating Si from these two equations gives 

fi(k)-fi(-k) = nkftkW-ky, (142.12) 

in the absence of inelastic processes,/( — k)= f*(k), and the relations (142.11) 
and (142.12) are the same. 
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Writing (142.12) in the form 

/«(*) 

1 

M-k) 
= - 2ik. 

§142 

we see that the sum 1 /fi(k) + ik must be an even function of k, and if this is 

denoted by gi{k2), then 

m = 
i 

gik2)-ik 
(142.13) 

The even functiongi(k2), however, is aot now real as it was in (125.15).f 

When a beam of particles passes through a scattering medium consisting 

of a large number of scatterers, it is gradually attenuated owing to the re¬ 

moval of particles from it which undergo various collision processes. This 

attenuation is entirely determined by the amplitude of elastic scattering 

through zero angle and, under certain conditions (see below), can be described 

by the following formal method.J 

Let f{0,E) be the amplitude of scattering through angle zero by each 

individual particle of the medium. We shall suppose that / is small in com¬ 

parison with the mean distance d ~ (V/N)* between the particles. Then the 

scattering by each particle may be considered separately. We use as an 

auxiliary quantity an “effective field’’ L/err of a fixed centre, so defined that 

the Born scattering amplitude for scattering through angle zero' in this field 

is equal to the actual amplitude f(0,E); this does not mean, ofi course, that 

the Born approximation can be used to calculate f(0,E) from the actual 

interaction of the particles. Then, by definition, we have (see (126.4)) 

r 2nh2 
J UejjdV =-—/(0,£), (142.14) 

where m is the mass of the scattered particle. The field thus defined is, like 

the amplitude /, complex. The relation between its range of action a and 

the quantity £/en is obtained from an estimate of the two sides of equation 

(142.14): 

a3Lett ~ ffifjm. (142.15) 

The definition (142.14) is, of course, not unique. We shall impose the 

further condition that the field f7erf satisfies the condition for perturbation 

theory to be applicable: 

\Uerl\<h2lma2, (142.16) 

f The foregoing arguments, and the conclusion that the function gi is even, assume that the 
interaction decreases sufficiently rapidly as r ~>cc, so that there are no cuts in the left half-plane 
of E and a complete circuit round the point E = 0 is possible. 

I The following treatment can be used, in particular, for the description of scattering of fast 
neutrons (with energies of the order of hundreds of MeVj by nuclei, the wavelengths of such 
neutrons being so small that the nucleus may be regarded as an inhomogeneous macroscopic 
medium. 
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with | /1 < a. It is easy to see that the attenuation of the scattered beam can 

then be described as the propagation of a plane wave in a homogeneous 

medium in which the particle has a constant potential energy given by 

_ Nr 
Uen =-J UeBdV 

Nlnh2 
= /(0 ,E), (142.17) 

which is obtained by averaging the effective fields of all N particles in the 

medium over its volume V. This becomes evident if we first consider 

scattering by a region of the medium which contains many scattering centres 

but for which the scattering effect is still small; the possibility of selecting 

such regions is ensured by the condition (142.16). The attenuation of the 

beam on passing through such a region is determined by the amplitude of 

scattering through angle zero, which in turn is determined, in the Born 

approximation, by the integral of the scattering field over the volume of the 

scattering region. This means that, the scattering properties of interest here 

are entirely determined by the field (142.17) averaged over the volume of the 

medium. 

Thus the beam of particles passing through the medium can be described 

by a plane wave ~ eikz with wave number 

A = 1V[2 m(E-TQ)l 

In terms of the wave number k0 = -\/(2mE)lh of the incident particles, we 

can write k in the form nk0, where the quantity 

t/efl 
" = V(1-Ir) 

NlrrW 
= Vd+-— f(0,E)) 

V mE 
(142.18) 

plays the part of a “refractive index” of the medium with respect to the 

beam of particles passing through it. It is in general complex (the amplitude 

/ being complex) and its imaginary part gives the attenuation of the beam 

intensity. If E> |£/eff|, then (142.18) gives, as it should, 

N -nk2 

_Nat 

~~V2k' 
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where at is the total scattering cross-section, and we have used the optical 

theorem (142.10). This expression corresponds to the obvious result that the 

intensity of the wave is damped according to the law 

|eikz|2 ^ g—NtriZ/V' 

As well as the absorption, the refractive index (142.18) also determines (by 

its real part) the law of refraction of the beam on entering and leaving the 

scattering medium.| 

PROBLEM 

Neutrons are scattered by a heavy nucleus whose radius a is large compared with the wave¬ 
length of the neutrons (ka 1). It is assumed that all neutrons incident with orbital angular 
momentum l < ka = Zo (i.e. with impact parameter p = kl/mv = lfk < a) are absorbed 
by the nucleus, while those with l > Zo do not interact with it at all. Determine the cross- 
section for elastic scattering through small angles. 

Solution. Under the conditions stated, the motion of the neutrons is mainly quasi- 
classical, and elastic scattering results from a slight deflection entirely analogous to Fraun¬ 
hofer diffraction of light by a black sphere. The required cross-section can therefore be 
written immediately from the known solution of the diffraction problem :J 

.^(*<20) 

The same result can also be derived from (142.3). According to the conditions of the 
problem, we have Si = 0 for l < lti and Si = 1 for / > l„. The elastic scattering amplitude is 
therefore 

m= -^2(2z+1)P,(cose)- 

The chief pan in the sum is played by the terms with large l. We therefore write 21 in place 
of 2/+1, use the approximate expression (49.6) for Pi (cos 6) with 8 small, and change from 
summation to' integration: 

f(6) =-^J lJ0(6l)dl 

= -Ui(ei0) 

t An interesting example of the application of (142.17) is the displacement of the highei 
levels of an alkali-metal atom in a gas. In a highly excited state, the valency electron is at a 
mean distance f from the centre of the atom that is large compared with the dimensions a of 
both the rest of the atom and the neutral gas atoms. The latter atoms within a sphere of 
radius ~f act as scattering centres for the valency electron and shift its energy level by an 
amount (142.17). Since the de Broglie wavelength of the excited valency electron is also large 
in comparison with a, the amplitude /(0, E) «r —a, where a is the scattering length; cf. 
(132.9). Thus this effect displaces the levels by a constant amount 2wli2ae/m, where m is the 
electron mass and v the number density of the gas particles (E. Fermi 1934). 

t See Fields, §61, Problem 3 (the problem of diffraction from a black sphere is equivalent 
to that of diffraction from a circular aperture cut in an opaque screen). The cross-section is 
obtained bv dividing the intensity of the diffracted waves by the incident flux density. 
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= (ial8)J,(ka6), 

601 

as it should be.f 
The total elastic scattering 

the integration can be extended to infinity because of the rapid convergence. This is the 
result to be expected under the conditions stated (cf. (142.8)), and is the same as the 
absorption cross-section, simply the geometrical cross-section of the sphere. The total cross- 

§143. Inelastic scattering of slow particles 

The derivation of the limiting law of elastic scattering at low energies given 

in §132 can easily be generalized to the case where inelastic processes are 

involved. 

As before, the scattering with / = 0 is the most important at low energies. 

According to the results of §132, the corresponding element of the 5-matrix is 

50 = eZiSa « 14- 2z’80 = 1 — like.. 

The properties of the wave function described in §132 are changed only in 

that the condition imposed on it at infinity (the asymptotic form (142.1)) is 

now complex, instead of the real stationary wave which occurs in the case 

of purely elastic scattering. The constant a = —czjci is therefore complex 

also. The modulus | 5o | is no longer equal to unity; the condition |5o | < 1 

means that the imaginary part of a = a' + fa" must be negative (a" < 0). 

Substituting 5o in (142.7), we find the cross-sections for elastic and in¬ 

elastic scattering: 
ffe = 47T|a|2, (143.1) 

ffr = 477|a'| Ik. (143.2) 

Thus the elastic scattering cross-section is again independent of velocity, but 

the inelastic cross-section is inversely proportional to the particle velocity— 

the \fv law (H. A. Bethe 1935). Consequently, as the velocity diminishes, 

inelastic processes become more and more important in comparison with 
elastic scattering.! 
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The limiting laws (143.1) and (143.2) are, of course, only the first terms 

of expansions of the cross-sections in powers of k. It is interesting to note that 

the next term in the expansion for each cross-section contains no constants 

other than those which appear in (143.1) and (143.2) (F. L. Shapiro 1958). 

This result is due to the fact that the function£0(£2), in the expression (142.13) 

m = 
1 

gom-ik 

for the partial scattering amplitude (/ = 0), is even. For small k this function 

can therefore be expanded in even powers of k, and the term following 

go s; — 1/a is ~A2. If we neglect this term, we can still write two terms of 

the expansion in fo(k): 

fo(k) ~ — a(l — ika). 

Correspondingly we can retain the next terms of the expansions in the cross- 

sections, for which the following expressions are easily obtained: 

«*e = 47r|a|2(l — 2A|a"|), (143.3) 

«xr = <H«'|(l-2A|a'| )lk. (143.4) 

These results assume a sufficiently rapid decrease of the interaction at 

large distances. We have seen in §132 that the elastic scattering amplitude 

tends to a constant limit as k 0 if the field U(r) decreases more rapidly 

than r-3. This is a necessary condition also for the validity of the analogous 

result (143.1) when inelastic channels are present.f 

The \/v law for the reaction cross-section is subject to a weaker condition: 

the field must decrease more rapidly than r~2, as is clear from the following 

intuitive derivation of the 1/v law. 

The probability that a reaction will occur in a collision is proportional to 

the squared modulus of the wave function of the incident particle in the 

“reaction zone” (in the region r ~ a). Physically, this statement expresses 

the fact that, for example, a slow neutron colliding with a nucleus can bring 

about a reaction only if it “penetrates” into the nucleus. If the interaction 

decreases more rapidly than r~2, it does not change the order of magnitude 

of the wave function between large r and r ~ a; in other words, the ratio 

I I2 tends to a finite limit as k -> 0 (this is seen from the fact that 

the term Up in Schrodinger’s equation is small compared with A0). The 

reaction cross-section is obtained by dividing \p\2 by the current density. 

If p is taken as a plane wave normalized to unit current density, we have 

\p\2~~llv, the required result. 

In collisions of charged nuclear particles, there is a slowly decreasing 

Coulomb field in addition to the short-range nuclear forces. The Coulomb 

field may considerably alter the magnitude of the incident wave in the 

reaction zone. The reaction cross-section is found by multiplying l/v by 

t The formula (143.3), which takes into account the next term 
k, requires that U should decrease more rapidly than r-4. 

in the expansion in powers of 
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the ratio of the squared moduli of the Coulomb and free wave functions as 

r->0. This ratio is given by formulae (136.10), (136.11). The result is 

(in Coulomb units) 

2nA 
(143.5) 

the plus sign in the exponent corresponds to repulsion and the minus sign to 

attraction. 

The coefficient A is the constant in the 1 jv law; it the velocity is large 

compared with the Coulomb unit (k$> 1), the Coulomb interaction plays no 

part and we return to the law or = Aik. 

If the velocity is small compared with the Coulomb unit (& < 1, or in 

ordinary units ZiZze^fhv > 1, where Z\e, Zie are the charges of the colliding 

particles), the Coulomb interaction is predominant in determining the magni¬ 

tude of the wave function in the reaction zone. Then for a collision between 

attractive particles 

aT = IrrA/k2, 

and for a collision between repulsive particles 

(143.6) 

<7r = (IrrAlk^e-2*/fc. (143.7) 

In the latter case, the cross-section tends to zero as k ->0. The exponential 

factor by which (143.6) and (143.7) differ is the probability of passage through 

the Coulomb potential barrier; in ordinary units it is exp( — InZiZze^lhv). 

Note that the limiting law (143.6) applies not only to the total cross- 

section but also to the partial cross-sections with each angular momentum Z.f 

This is seen from the fact that in the expansion (136.1) of the functions 

(which appear in the formulae (136.10) and (136.11) used above) the functions 

Rid in every term of the sum have the same limiting dependence on k: in the 

limit k —>0, the radial functions (for the case of attraction) are given by the 

expressions (36.25), and near the centre we have R/ci~\/krl. The contri¬ 

butions of the individual angular momenta to the square of the wave function 

in the reaction zone are ~a~ljk, i.e. all depend on k in the same way, although 

they are reduced by the small factor (a/ac)21, where ac = h2jmZiZo,e2 is the 

Coulomb unit of length. 

§144. The scattering matrix in the presence of reactions 

The cross-section or considered in §§142 and 143 was the total cross- 

section for all possible inelastic scattering channels. We shall now describe 

the derivation of the general theory of inelastic collisions, in which each 
channel can be considered separately. 

We shall suppose that, as a result of the collision of two particles, two 

e same is true of (143.7). t The 
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particles (which may be the same or different ones) are formed. We number 

all possible reaction channels (for a given energy), and denote quantities 

pertaining to them by appropriate suffixes. 

Let channel i be the input channel. The wave function of the relative 

motion of the colliding particles (in the centre-of-mass system) in this 

channel is given by the sum already mentioned of the incident plane wave 

and the elastically scattered outgoing wave: 

H = e«V+/«(0)^. (144.1) 

The square of the amplitude fa gives the cross-section for elastic scattering 

in channel i: 

dff«=|/«|ado. (144.2) 

In other channels (suffix/) the wave functions of the relative motion of the 

particles represent outgoing waves. As explained above, these waves are 

conveniently represented in the formf 

*t=ffi{e) p—, (144.3) 
V mi r 

where k/ is the wave vector of the relative motion of the reaction products in 

channel /, 6 the angle between it and the 2-axis, and mu nif the reduced 

masses of the two initial and two final particles. The scattered flux in the 

solid angle do is obtained by multiplying the square | ff |z by v/r2do, and the 

cross-section for the corresponding reaction is found by dividing this flux by 

the incident flux density, which is vu Thus 

dff/t = |//i|2—do/, (144.4) 
Pi 

where the momenta pi = m{Vi, pf = mfVf. 

In §125 we have defined the scattering operator §, which converts an in¬ 

going wave into an outgoing one. When several channels are present, this 

operator has matrix elements for transitions between different channels. 

The elements which are “diagonal” with respect to the channels correspond 

to elastic scattering, and the non-diagonal elements correspond to various 

inelastic processes. All these elements remain operators with respect to the 

other variables. They are determined as follows. 

Similarly to the method used in §125, we define operators fiuffi related 

to the amplitudes ftufft, by 

§fi = Sfi + 2iV(kikf)ffi. (144.5) 

It is easily seen that with this definition we obtain an 5-matrix which must 

t Here we again denote the initial state of the svstem by the suffix f and the final state by/(cf. 
the first footnote to §41). In the scattering amplitude, the suffix for the final state is written 
to the left of that for the initial state, in accordance with the placing of the suffixes in the matrix 
elements. For uniformity, the suffixes in the cross-sections will be put in the same order. 
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satisfy the unitaritv condition. For we can write the wave function in the 

input channel as a set of ingoing and outgoing waves, as in §125: 

ft = F(- n')e—f- - (1 + 2ikifil)F(n')f—— 
r\/v, ryvi 

= F(-n')^—Lr - §uF(n')—. (144.6) 
ry/vt ry/vt 

Here, for convenience, we have introduced a further factor 1/V®i in com¬ 

parison with (125.3). Then, with the amplitudes as defined above, the wave 

function in channel / is 

ff = 2ikt l^-ffiF(n')^f 
v m ry/Vi 

* eikfr 
= £fiF(»')-—. (144.7) 

ry/Vf 

The flux in the ingoing waves must be equal to the sum of the fluxes in 

the outgoing waves in all channels. This requirement expresses the obvious 

condition that the sum of the probabilities of all processes (elastic and in¬ 

elastic) which can occur in the collision must be unity. On account of the 

factor y/v in the denominators of the spherical waves, the velocity does not 

appear in the flux densities in these waves. The above condition therefore 

means simply that the normalizations of the ingoing wave and the assembly of 

outgoing waves must be the same. 11 is consequently again expressed by the 

condition of unitarity of the scattering operator, regarded as a matrix, with 

respect to (in particular) the channel numbers. For the operator //4 this 

condition becomes 

hi-fi! = 2 i^nffnk, (144.8) 

which is analogous to (125.7). The index + denotes taking the complex 

conjugate and transposing with respect to all the matrix suffixes except the 

channel number. 

The 5-matrix is diagonal with respect to states having definite values of 

the orbital angular momentum Z; the corresponding matrix elements are 

distinguished by the index (/). By applying the operators fa and f{i to the 

function (125.17), we obtain the amp litudes for elastic and inelastic scattering 
processes in the form 

fit ~ ^ - 1 )P;(cos 8), 

ffi = 2eV(U/)2 (2/+ ^""^(cos 6). 

(144.9) 
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The corresponding integral cross-sections are 

§144 

(144.10) 

The former is the same as (142.3). The total reaction cross-section or (from 

input channel i) is 

or = 2 °fi 

taken over all / ^ i. Since the 5-matrix is unitary, we have 

2'|S/i|2 = l-|S«l8. 

which gives formula (142.4) for or. 

The symmetry of the scattering process with respect to time reversal (the 

reciprocity theorem) is given by the equation 

Sfi = Si.f., (144.11) 

or, what is the same thing, 

/ft = /w- (144.12) 

The symbols i* and / * denote states which differ from i and / by a change 

in the signs of the momenta and spin components of the particles;! they are 

said to be time-reversed relative to the states i and /. The relations (144.11) 

and (144.12) generalize formulae (125.11) and (125.12) for elastic scattering.! 

Equation (144.12) leads to the following relation for the reaction cross- 

sections: 

dofilpf2dof = doi.f.'pi^dci., (144.13) 

This expresses the principle of detailed balancing. 

t For complex particles (atoms and nuclei) the “spin” is here to be taken as the total 
intrinsic angular momentum, consisting of the spins and the orbital angular momenta of the 
internal motions of the constituent parts. 

J Here we omit the factor — 1 which may appear in collisions of particles having spin (cf. 
(140.11)). This, of course, does not affect formula (144.13) for the cross-sections. 
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It has been mentioned in §126 that, if perturbation theory is applicable, 

then in the first approximation we have not only the reciprocity theorem but 

also a further relation between the amplitudes of the direct and reverse 

processes (in the literal sense), t'->/ and This property, expressed 

by the equation fft = fa*, holds good for inelastic processes (in the same 

approximation). The corresponding cross-sections are then related by 

dQfi _ &ojf 

pf^dof pi2doi 
(144.14) 

The difference between the transitions i-*-f and i* -*■ f* no longer exists 

if we consider the cross-sections integrated over directions of p/and summed 

over directions of the spins s\f, s2/ of the resulting particles and averaged over 

the directions of the momentum p* and spins sij, s2i of the initial particles. 

Let this cross-section be 

°fi 4^2*1,+1)(2*« +1)2 Jd‘7,<d°<: 
the sum is taken over the spin components of all particles, and the factor 

before the sum and integral is due to the fact that we average, not sum, over 

quantities pertaining to the initial particles. Writing (144.13) in the form 

pi2d<jfidoi. = pf2d<Ji.f.dof 

and effecting the integrations and summations, we obtain 

gipi2°Ti = gfPrWf■ (144.15) 

Here 

gi = (2*H+l)(2i2i+l), gf = (2n/+l)(2s2/+l); (144.16) 

these determine the numbers of possible spin orientations of the initial pair or 

the final pair of the particles, and are called the statistical weights of the states 

i and /. 

Finally, we may note the following property of the amplitudes //j. We 

have seen in §140 that the cross-section ofi varies as l//q when (if 

the interaction decreases sufficiently rapidly at large distances). According to 

formula (144.4), this means that ffi -> constant as pt^O. Hence it follows 

from the symmetry property (144.12) that ffi tends to a constant limit as 
pf -*■ 0 also. We shall return to this result in §147. 

§145. Breit and Wigner’s formulae 

In §134 we have introduced the concept of quasi-stationary states as being 
those which have a finite but relatively long lifetime. A wide class of such 
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states arises in the field of nuclear reactions at not too high energies which pass 

through the stage of formation of a compound nucleus.f 

An intuitive physical picture of the processes occurring is that the particle 

incident on the nucleus interacts with the nucleons in the nucleus and 

“coalesces” with them, forming a compound system in which the energy 

contributed by the particle is distributed between many nucleons. The 

resonance energies correspond to the quasi-discrete levels of this compound 

system. The long lifetime of the quasi-stationary states (compared with the 

periods of the motion of the nucleons in the nucleus) is due to the fact that 

for the greater part of the time the energy is distributed between many 

particles, so that none of them has sufficient energy to overcome the attraction 

of the other particles and leave the nucleus. Sufficient energy for this purpose 

is only comparatively rarely concentrated on one particle. The disintegration 

of the compound nucleus can then take place in various ways corresponding 

to the various possible reaction channels. J 

This description of such collisions shows that the possibility of inelastic 

processes does not affect the potential part of the elastic scattering amplitude, 

which is not related to the properties of the compound nucleus (see §134); 

inelastic processes change only the resonance part of the elastic scattering 

amplitude. For the same reason the amplitudes of inelastic scattering pro¬ 

cesses which pass through the stage of formation of the compound nucleus 

are purely resonance in character. The resonance denominators of all ampli¬ 

tudes which relate to the vanishing of the coefficient of the ingoing wave for 

E = Eq — £zT retain their form (E— Eo + ^iT), T being again the total proba¬ 

bility of decay of any given quasi-stationary state of the compound nucleus. 

These arguments, together with the unitarfiy condition which must be 

satisfied by the scattering amplitudes, are sufficient to establish the form of 

these amplitudes. 

The calculations may conveniently be made in a symmetrical form by 

numbering all possible channels of disintegration of the compound nucleus 

and not specifying beforehand which of them is the input channel for the 

reaction concerned. The suffixes denoting the channel numbers will be 

represented by a, b, c, ... . We shall also consider the partial scattering 

amplitudes corresponding to the value of l for the quasi-stationary state in 

question.,|| We accordingly seek these amplitudes in the form 

/afc(1, = —'(e2«— l)Safc- 
2 tka 2 V(kakb) E-Eo+li? 

(145.1) 

(the index (l) to the constants Sa and Mat is omitted for simplicity). The 

t The concept of the compound nucleus is due to N. Bohr (1936). 
t The competing reactions include also radiative capture of the incident particle, in which 

the compound nucleus goes from an excited state to its ground state with the emission of a 
y-quantum. This process is also “slow”, owing to the relatively low probability of the 
transition with emission. 

I) We shall-at first ignore the complications which ar 
involved in the process. 

rise from the spins of the 
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first term appears only if a = b, and represents the amplitude of potential 

elastic scattering in channel a\ the constants §a are the same as the phases 

S;(0) which appear in (134.12). The second term in (145.1) corresponds to 

resonance processes. The form of the coefficient of the resonance factor in 

this term is chosen so as to simplify the result of applying the unitarity 

conditions (see below). 

Since we are considering scattering for a given value of the absolute 

magnitude of the orbital angular momentum, a quantity which does not 

change sign under time reversal, the reciprocity theorem (symmetry with 

respect to time reversal) is expressed simply by the symmetry of the ampli¬ 

tudes /a6w with respect to the suffixes a and b. Hence it follows that the 

coefficients Mab must also be symmetrical (Mab = Mba)- 

The unitarity conditions for the amplitudes fab(l) are 

im/a6(i> = ZkcfacWfbcW*-, (145.2) 

cf. (144.8). Substituting the expressions (145.1), we find after a straight¬ 

forward calculation 

Mab* Mab tTXMacMbc* 

E-Eo-iir ~ E-Eo + itT = (£-£0)2 + jr2' 

If this equation is satisfied identically for all energies E, we must have first 

of all Mab = Mab*, i-e. the quantities Mab are real. We then find 

Mab = ZMacMbc, (145.3) 

i.e. the matrix of coefficients Mab must be equal to its own square. 

The real symmetrical matrix Mab can be brought to diagonal form by a 

suitable orthogonal linear transformation 0. Denoting the diagonal elements 

(eigenvalues) of the matrix by M<“>, we can write this transformation in the 

form 

Z UaaUfibMab = M<“>Sa/J, 

where the transformation coefficients satisfy the orthogonality relations 

XUacUfic = K/>- (145.4) 

Conversely 

Mab=XUaaUabMi«'. (145.5) 

The relations (145.3) give the conditions A/<*> = (AfW)2 for the eigen¬ 
values M<a), so that these must be zero or unity. If only one of the M(a) is 
different from zero (say A/U) = l), then (145.5) gives 

(145.6) 
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i.e. all the matrix elements Mab are expressed in terms of the set of quantities 

Uia, a = 1,2, ... . If several of the M{a) are non-zero, then the elements 

Mab are sums expressed in terms of several sets of quantities Uia, Uza, , 

these quantities being related only by the orthogonality relations and other¬ 

wise independent. This case would correspond to accidental degeneracy, 

where several different quasi-stationarv states of the compound nucleus 

correspond to the same quasi-discrete energy level, f Ignoring these un¬ 

important cases, i.e. considering non-degenerate levels, we therefore conclude 

that the matrix elements Mab are products of quantities each depending on 

the number of only one channel. 

With the notation 

I Uia\ = V(ra/r), 

we can write formula (145.6) as 

Mab= ±V(r«r6)/r; (145.7) 

the sign of Mab depends on those of L\a and L\b, and remains indeterminate. 

On account of the equation 'LUicUic = 1, the quantities ra thus defined 

satisfy the relation 

Zra=r. (145.8) 

They are called the partial widths of the various channels. Formulae (145.1), 

(145.7) and (145.8) give the required general form of the scattering amplitudes. 

Let us now rewrite the final formulae, taking some definite channel as the 

input channel.^ The partial width of this channel will be denoted by Te 

(the elastic width) and the widths of channels corresponding to various reac¬ 

tions by rri, rr2. 
The total elastic scattering amplitude is 

m =/<°w- 21 2k1 E^+ilrWinPl{cose)’ (145'9) 

where k is the wave number of the incident particle and/<°> the potential scat¬ 

tering amplitude. This formula differs from the expression (134.12) in that 

T in the numerator of the resonance term is replaced by the smaller, quantity 

IV 
The amplitudes of inelastic processes are, as already mentioned, of purely 

resonance type. The differential cross-sections are 

dor 
(2/+1)* 

4*2 

rerro 
(£-£o)2+*r2 

[Pj(cos 6)f do, (145.10) 

t This is particularly clear in (he case where all the M<“> = 1. It follows from (145.4) and 
(145.5) that then Mat = Sab, i.e. there are no transitions between different chsnnels. In 
other words, this case would correspond to a number of independent quasi-discrete states, 
each occurring in elastic scattering in one channel. 

J These formulae were first obtained by G. Breit and E. W igner (1936;. 
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and the integral cross-sections are 

77 rerra 
Ora = (21+1)-. 

A* (£-£0)2+ir2 

The total cross-section for all possible inelastic processes is 

(145.11) 

Or = (21 + 1) 
*2 (£-£0)2+ir2 

(145.12) 

where Tr = T — Te is the total inelastic width of the level. 

It is also of interest to know the value of the reaction cross-section inte¬ 

grated over the range of energy near the resonance value E = Eq. Since <jr 

decreases rapidly away from the resonance, the integration with respect to 

E-Eq can be extended from — oo to +oo, giving 

r i-rfl rerr 
Jord£=(2/+l)— — . (145.13) 

In the scattering of slow neutrons (for which the wavelength is large 

compared with the dimensions of the nucleus), only r-wave scattering is 

important, and the potential scattering amplitude is a real constant — a. 

Then (134.14) becomes 

/,= -< 
re 

2k(E-E0 + iiT)' 
(145.14) 

The total elastic scattering cross-section is 

„ 77 re2+4«*re(£-£0) 
oe = 47ra2 -|-. 

*2 (£-£0)2+jr2 
(145.15) 

The term 47ra2 may be called the potential scattering cross-section. We see 

that in the resonance region there is interference between the potential 

scattering and the resonance scattering. The amplitude a can be negligible 

only in the immediate neighbourhood of the level (E—Eq ~ T) (we recall 

that | ak | 1), and the formula for the slow neutron elastic scattering cross- 

section then becomes 

_ _ 77 re2 

*2“(£_£0)2 + ir2 ' 

The total cross-section for elastic and inelastic scattering is 

Of oe+Or 
> (£_£0)2 + ir2 • 

(145.16) 

(145.17) 

When potential scattering is negligible, the cross-sections oe, aTa be 
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put in the form 

Oe = ajyr, Ora = CtTra/T. 

The quantity ot is the sum of the cross-sections for all possible resonance 

processes, and may be regarded as the cross-section for the formation of the 

compound nucleus. The cross-sections for the various elastic and inelastic 

processes are obtained by multiplying at by the relative probabilities of 

particular types of disintegration of the compound nucleus, which are given 

by the ratios of the corresponding partial widths to the total width of the 

level. The possibility of this representation of the cross-sections is the result 

of the factorization of the coefficients Mab in the numerators of the scattering 

amplitudes. It corresponds to the physical picture of the collision process 

as occurring in two stages: the formation of the compound nucleus in a 

certain quasi-stationary state, and its disintegration through one or another 

channel.f 

As already mentioned in §1.34, the range of applicability of the formulae 

considered here is limited only by the requirement that the difference 

| E—Eo | should be small compared with the distance D between neighbour¬ 

ing quasi-discrete levels of the compound nucleus (with equal values of the 

angular momentum). It was also mentioned, however, that the formulae 

as written do not allow the passage to the limit E -»■ 0, which is relevant if 

the value E = 0 lies in the resonance region. In this case the formulae must 

be modified by replacing the energy Eo by some related constant eo, and the 

elastic width Te by yeVE; the inelastic width Tr must again be regarded as 

constant (H. A. Bethe and G. Placzek 1937).J This change causes the 

inelastic cross-section (145.12) to increase as 1 / y/E when E -*■ 0, in accordance 

with the general theory of the inelastic scattering of slow particles (§143). 

When the spins of the colliding particles are taken into account, the form¬ 

ulae are in general very complicated. We shall consider only the simplest, 

though important, case of the scattering of slow neutrons, when only orbital 

angular momenta 1=0 are involved in the scattering. The spin of the com¬ 

pound nucleus is obtained by adding the spin i of the target nucleus to the 

spin s = £ of the neutron, i.e. it can take the values j = z ± £ (we assume that 

x ^ 0, since otherwise the formulae are unchanged). Each quasi-discrete 

level of the compound nucleus relates to a definite value of j. The reaction 

cross-section is therefore obtained by multiplying the expression (145.12) 

(with l = 0) by the probability' g(j) that the system of nucleus + neutron 

will have the necessary value of j for which there is a resonance level. 

We shall suppose that the spins of the neutrons and of the target nuclei 

t All the above calculations have been based on a reaction of the form a + X = 6+ F, in 
which two initial particles (the nucleus and the incident particle) give rise to two particles. 
This assumption is not, however, of fundamental importance, as is clear from the physical 
nature of the results obtained. Formulae of the type (145.11) for the integral cross-sections 
are valid also for reactions where more than one particle leaves the nucleus. 

J It is important to note that, for inelastic processes which are possible at small energies 
(for example, radiative capture), the value E = 0 is not a threshold value. A change in the 
partial widths Fra similar to that specified for Te would be necessary for energies close to the 
threshold of the reaction in question, below which it cannot occur at all. 
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are oriented at random. There are altogether (2i+ 1)(2j+ 1) = 2(2i + 1) 

possible orientations of the pair of spins i and s. Of these, 2; +1 correspond 

to a given value j of the total angular momentum. Assuming that all orientations 

are equally probable, we find that the probability of a given value; is 

s(i) = 
2J + 1 

2(2*+1) 
(145.18) 

The formula for the elastic scattering cross-section must be modified 

similarly. Here it must be borne in mind that, in potential scattering, both 

values of ; are involved. The factor^;) (with; corresponding to the resonance 

level) must therefore be included in the second term in (145.15), while the 

term 4ira2 must be replaced by the sum 

X£(;).M«°>]2- 

The fact that resonance reactions go through the stage of formation of a 

compound nucleus in a definite quasi-stationary state leads to some general 

conclusions concerning the angular distribution of the products of these re¬ 

actions. Each quasi-stationary state has a certain parity (in addition to its 

other characteristics). The system of particles b+Y formed in the dis¬ 

integration of the compound nucleus will therefore have the same parity. 

This means that the wave function of this system, and therefore the reaction 

amplitudes, can only be multiplied by + 1 when the coordinate system is 

inverted; the squared amplitudes, i.e. the cross-sections, therefore remain 

unchanged. Inversion of the co-ordinates signifies (in the centre-of-mass 

system) the changes 8 -> 7r-0, -> + for the polar angle and the azimuth 

which determine the direction of scattering. The angular distribution of the 

reaction products must therefore be invariant under this change. In par¬ 

ticular, after averaging with respect to the directions of the spins of all the 

particles participating in the reaction, the cross-section depends only on the 

scattering angle 8, and the distribution with respect to this angle must be 

symmetrical with respect to the change 6 — i.e. the angular distri¬ 

bution (in the centre-of-mass system) is symmetrical about a plane per¬ 

pendicular to the direction of collision of the particles.f 

Owing to the very large number of closely-packed levels of the compound 

nucleus, the detailed variation with energy of the cross-sections for various 

scattering processes is extremely complex. This complexity makes difficult, 

in particular, the discovery of any systematic changes in the properties of the 

cross-sections from one nucleus to another. It is therefore reasonable to 

consider the behaviour of the cross-sections apart from the details of the 

resonance structure, i.e. averaged over energy ranges which are large 

compared with the distances between levels. With this treatment we also 

make no distinction between the various types of inelastic process, but 

t For particles without spin, the differential reaction cross-section would be s 
proportional to [P; (cos 6)]2, and the symmetry is obvious. 
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divide the scattering only into “elastic” and “inelastic” (in the sense defined 

below).f 

To demonstrate the significance of the averaging processes, we again omit 

the complexities associated with spin, and consider the partial cross-sections 

for scattering with 1=0. 

According to formulae (142.7), 

ae = -|S-l|2, ar = -(l-|S|2), 

et = -.2(l-reS), 

(145.19) 

the elastic and inelastic scattering cross-sections, and therefore the total 

cross-section, are expressed in terms of the same quantity S (the index (0) 

is omitted for brevity). In averaging over the energy interval, the total cross- 

section, which depends linearly on S, is given in terms of the mean value of 

S by 
5t = (tt/A2) . 2(1 — rtS); (145.20) 

the factor 1 /k2, which varies only slowly, is unaffected by the averaging. The 

averaged “elastic” cross-section is defined as 

5eopt = (7T//I2)|5_i|2> (145.21) 

which is not in general equal to the mean value de■ In other words, we define 

the elastic scattering by first averaging the amplitude in the outgoing wave 

SeikTlr. With this definition the elastic scattering of a wave packet leaves it 

unchanged in form; we can say that the cross-section (145.21) relates to the 

“coherent” part of the scattering. This means that the part of the elastic 

scattering which occurs through the formation of a compound nucleus is 

excluded: when a long-lived compound nucleus is formed and then dis¬ 

integrates, the specific features of the incident wave packet are, of course, 

lost. The “inelastic” scattering in the averaged model is now naturally 

defined as the difference caopt = 6t-ceopt, i.e. 

5a°pt = (ff/*2)(l-|S|*). (145.22) 

This includes, therefore, not only the various inelastic processes but also that 

part of the elastic scattering which occurs with the formation of an inter¬ 

mediate compound nucleus. 

It is easy to see that this interpretation gives a correct account of the limit¬ 

ing cases, and therefore serves as a reasonable interpolation. 

In the region of low energies, where the resonances are well resolved 

(r D), S is given near each level by the formula 

S=e2«<°> /i-ll-V 
V E-Eo+itT) 

t The following method of averaging (for proceeding to what is called the optical nwdel of 
nuclear scattering) was proposed by V. F. Weisskopf, C. E. Porter and H. Feshbach (1954). 
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Averaging gives 

S=e^\\—^TejD), (145.23) 

where Te and D are the elastic width and the mean distance between the levels, 

averaged over the levels occurring in the energy range concerned; the slowly 

varying function SW\E) may be regarded as constant in the averaging. 

Hence we find 

IttF, 

k2 D ' 
(145.24) 

where small terms ~ TjD have been omitted.f This expression in fact 

coincides with the mean value of the cross-section (145.17), which, as pre¬ 

viously mentioned, corresponds to the formation of a compound nucleus. 

As the excitation energy of the compound nucleus increases, the distances 

between its levels decrease, and the disintegration probabilities (and so also 

the total widths of the levels) increase, so that the levels begin to overlap 

(in which case the concept of quasi-discrete levels loses much of its signific¬ 

ance). The irregularities of the function S(E) are then smoothed out, so that 

the difference between the exact and the averaged functions becomes small, 

and the cross-section (145.22) is the same as oT given by (145.19). This is in 

accordance with the fact that at high energies the disintegration of the com¬ 

pound nucleus through the input channel is unimportant in comparison with 

the numerous other modes of disintegration possible at such energies. In 

this range, therefore, all processes which involve the formation of a com¬ 

pound nucleus may be regarded as inelastic. 

Thus in the averaged model the scattering is again determined by a single 

quantity S, which is now a smooth function of energy. In the optical model, 

in order to calculate this function, the scattering properties of the nucleus 

are approximated by a field of force with a complex potential. The imaginary 

part of the potential has the result that absorption of particles occurs as well 

as elastic scattering. This absorption, the cross-section for which is given by 

the expression (145.22), is identified with “inelastic” scattering in the 

averaged model. 

§146. Interaction in the final state in reactions 

The interaction between particles formed as a result of a reaction may have 

a considerable effect on their distribution in energy and angle. This effect 

will naturally be particularly marked when the relative velocity of the inter¬ 

acting particles is small. Such a phenomenon occurs, for example, in nuclear 

reactions accompanied by the emission of two or more nucleons, the effect 

here being due to the nuclear forces which act between free nucleons.J 

Let p0 be the momentum of the centre of mass of a pair of emergent 

t Terms arising in the region of a level owing to the presence of other levels would be of the 
same order of magnitude. 

t The results given below were obtained first by A. B. Migdal (1950) and indetjendentlv 
by K. M. Watson (1952). . F y. 
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nucleons, and p the momentum of their relative motion. We shall suppose 

that p < po, and so the relative energy E = p2jm (m being the nucleon 

mass) is small compared with the energy Eg = p02/4w of the motion of the 

centre of mass. We also suppose that the energy Eg is large compared with the 

energy e of the level (real or virtual) belonging to the system of two nucleons. 

That is, only the relative motion of the nucleons is assumed “slow”, while the 

nucleons themselves are “fast”. 

The probability of reaction is proportional to the squared modulus of the 

wave function of the particles formed when they are in the “reaction zone”, 

i.e. at a distance apart which is of the order of the range a of action of nuclear 

forces (cf. the similar discussion in §143 relating to primary particles). In 

the present case our object is to determine the dependence of the reaction 

probability only on the characteristics of the relative motion of one pair of 

nucleons. It is therefore sufficient to consider only the wave function 

i//p(r) of this motion, so that the probability of the formation of a pair of 

nucleons with relative momentum in the range d3/> is 

dzjjp = constant x \ipP(a)\2dzp. (146.1) 

It has been shown in §136 that, in order to find the probability that a 

system will enter, through scattering, a state with a definite direction of 

motion, we must take as the wave functions of the final state functions 

tfip- which contain (at infinity) only an ingoing wave together with a plane 

wave; these functions must be normalized by the delta function of momen¬ 

tum. The functions ^j,-) are also obtained directly (by taking the complex 

conjugate and changing the sign of p) from the functions which contain 

(at infinity) outgoing spherical w’aves, i.e. those which correspond to the 

mutual scattering of two particles. On substitution in (146.1) this difference 

is not significant, so that </ip in (146.1) may be taken to be the functions ip{p+\ 

and the problem is therefore reduced to that of the resonance scattering of 

slow particles, which has already been discussed. 

Although the actual form of the function ipp in the region r ~ a is unknown, 

in order to find the dependence of the probability on the energy E it is 

sufficient to consider this function at distances r > 1 jk^> a (where k = p/h; 

it is assumed that ka < 1), and then continue it in order of magnitude to 

distances r ~ c.f The main contribution to >pp comes from the spherical 

wave (containing the factor 1 /r). This wave is an assembly of partial waves 

with various values of l, whose amplitudes are the corresponding scattering 

amplitudes. To determine the square | i//p(a) |2 it is sufficient to consider the 

r-wave alone, since at low energies the scattering amplitudes with / A 0 are 

relatively small. According to formula (133.7) we therefore have 
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where k = -\/(m\e\)/H and e is the energy of the bound (or virtual) state 

of the two-nucleon system.f Substituting this expression in (146.1), we obtain 

dzjjp = constant x-. (146.3) 
£+M 

Thus the distribution with respect to direction of the momentum (in the 

centre-of-mass system of the two nucleons) is isotropic. The distribution with 

respect to energy of the relative motion is given by 

VEdE 
dwe = constant x-. (146.4) 

£+M 

We see that the interaction of the nucleons leads to the appearance of a 

maximum in the distribution in the range of small E, at E ~ | « |.J 

In the laboratory system of coordinates, small angles 8 between the 

momenta of the two nucleons correspond to small values of the relative 

momentum (p < p0). Thus in this system an angular correlation between the 

directions of emission of the nucleons corresponds to the maximum in the 

distribution with respect to E, and leads to an increased probability of small 

values of 6. 

Let pj and p2 be the momenta of the nucleons in the laboratory system. 

Then 

Po = Pi + P2, P = £(P2-Pi) 

(the reduced mass of two equal particles is \m). The vector product of these 

equations gives po x p = pi x p2, and so if p < po we have 

PoPj. = P1P2 sin 8 « %Po28, 

or 8 = 4-pJpo, where p± is the component of the vector p transverse with 

respect to the direction of po, and 8 is the small angle between the directions 

of pj and p2. Rewriting formula (146.3) in the form 

dzvp = constant 
2rrp±dp±dpt 

iPS+Pt2)lm + M 

and integrating with respect to />„, we find the probability distribution as a 

function of the angle 8. Owing to the rapid convergence of the integral, the 

integration can be extended from - oo to + oo, and the final result is 

dwg = constant x - 
V(82 + M4IEo) 

(146.5) 

t We are here considering an np pair with parallel or antiparallel spins, or an nn pair with 
antiparallel spins. For a pp pair the situation is complicated by the Coulomb repulsion, and 
this case must be treated by means of the theory given in §138. 

I Strictly speaking, the constant coefficients in formulae (146.3) and (146 4) may also 
depend on E through the remaining parts of the wave function for the whole system of reaction 
products. This dependence is only slight, however: the coefficient varies appreciably as a 
function of E. only over the whole energy range (~£0) available to the nucleon pair in the 
reaction considered. Thus this dependence may be neglected, as regards the distribution 
in the range E < E0, in comparison with the strong dependence given by formula (146.4). 
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The angular distribution relative to the solid angle element do % 2n6 d6 has 

a maximum at 6 ~ \/(| e |/E0)- 

§147. Behaviour of cross-sections near the reaction threshold 

If the sum of the internal energies of the reaction products exceeds the 

corresponding sum for the original particles, the reaction has a threshold.-. 

it can occur only when the kinetic energy E of the colliding particles (in 

the centre-of-mass system) is greater than a certain “threshold” value £(. 

Let us examine the nature of the energy dependence of the reaction cross- 

section near the threshold. We shall assume that the reaction produces only 

two particles (type A+B = A' + B'). 

Near the threshold, the relative velocity v of the particles formed is small. 

Such a reaction is the opposite of one in which the velocity of the colliding 

particles is small. The dependence of its cross-section on v is therefore 

easily found by means of the principle of detailed balancing (144.13) and 

the known energy dependence of the reaction where v is the velocity in the 

input channel (§143). In a wide class of reactions where there is no Coulomb 

interaction between the particles A' and B' (such as nuclear reactions in 

which a slow neutron is formed), we therefore find that the reaction cross- 

section is proportional to v'2 (1/a'), i-e-t 

sr~a'. (147.1) 

Similarly we find the dependence of the cross-section on the energy of the 

colliding particles: the velocity a', and therefore the reaction cross-section, 

are proportional to the square root of the difference E—Et‘. 

or = AV(E-Et). (147.2) 

The scattering amplitudes in different channels are related by the unitarity 

conditions. The opening of a new channel therefore leads to the appearance 

of certain singularities in the energy dependence of the cross-sections for 

other processes also, including the elastic scattering cross-section (E. P. 

Wigner 1948; A. I. Baz’ 1957; G. Breit 1957). To elucidate the origin and 

nature of this phenomenon, let us consider the simple case where only elastic 

scattering is possible below the reaction threshold. 

Near the threshold, the particles A' and B' arc formed in a state with 

orbital angular momentum / = 0 (corresponding to (147.2)). If the reacting 

particles have no spin, the orbital angular momentum is conserved, and the 

system of particles A + B is also in the r-state. According to (142.7), the 

partial reaction cross-section for / = 0 is related to the S-matrix element 

for elastic scattering by 

CTr(o> = -l(i_|S0|2), (147.3) 
k2 

t This result corresponds to the constant limit of the amplitude ffi as p, -rO derived at the 
end of §144. The cross-section (144.4) is proportional to p,. 
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where k is the wave number of the colliding particles. Equating (147.2) and 

(147.3) , we find that just above the reaction threshold the modulus |50| is 

given, to within quantities of higher order than \/(E—Et), by 

kt2 
\S0\ = \-—AV(E-Et) (£>£)), (147.4) 

where kt = y(2mEt)jh, and m is the reduced mass of the particles A and B. 

Below the threshold we have only elastic scattering, so that 

|S„| = 1 (£<£))■ (147.5) 

The scattering amplitude, and therefore So, must be analytic functions 

for all values of the energy. The function concerned, which takes the values 

(147.4) and (147.5) above and below the threshold, is given to the same 

accuracy by the formula 

So = e2«oj^i_ (147.6) 

where So is constant; for E < Et the root becomes imaginary, and the 

modulus of the expression in the brackets differs from unity only by a quantity 

of a higher order of smallness. 

For all / ^ 0 there is no inelastic scattering, so that 

S, = (// 0), (147.7) 

and in the region near the threshold the phases S, must be taken equal to 

their values for E = £,.t 

Substituting the values obtained for Si in (142.2), we find the following 

expression for the scattering amplitude near the reaction threshold: 

f(8,E) =m- ~Av/(E~Ety-<\ (147.8) 
\nl 

where/,(0) is the scattering amplitude for E = Et. The differential scattering 

cross-section is therefore 

^ = l/W + |^V(E-Et) im {ft{6)e-2U'} for E>Et, 

= \ft{S)\2-j-Ay(E-Et)re{ft(6)e'2ii,} for£<Et. 

Writing the amplitude/, in the form [ ft\e^\ we can finally put this result in 
the form 

^ = l/^)l2-^|/^)|V(|£-£,|)xsin(2So-a)- E>Zf 
do 2tt cos (2So-a), E<Et. 

t Since the functions Si(E) are real both for E > E, and for E < £,. they ca 
series of integral powers of the difference E — Ec. 

(147.9) 

>e expanded as a 
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Depending on whether the angle 2S0 - a is in the first, second, third or 

fourth quadrant, the energy dependence of the cross-section described by 

this formula has the forms shown in Fig. 50a, b, c, d. In every case there are 

two branches lying on either side of a common vertical tangent. 

(d) 

Fig. 50 

In the integration of the expressions (147.9) with respect to o, the integrals 

of the second terms contain a non-zero contribution only from the isotropic 

part of the amplitude /«(#), the 5-wave partial elastic scattering amplitude 

(e2ii„- l)/2ikt. We thus obtain for the total elastic scattering cross-section 

near the threshold 

a = ot-2AV(\E-Et\) 
sin2 S0 for E > Et, 

sin So cos S0 for E > Et. 
(147.10) 

This has the form (a) or (b) in Fig. 50, for positive and negative sin S0 cos S0 

respectively. 
Thus the existence of a reaction threshold leads to a characteristic singu¬ 

larity in the energy dependence of the elastic scattering cross-section. If 
the particles have spin, of course, the formulae are quantitatively different, 
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but the general nature of the effect remains the same.f If other reactions as 

well as elastic scattering are possible below the threshold, then corresponding 

singularities will appear in the cross-sections for such reactions. They all 

have a singularity at E = Et near which they are linear functions of the root 

■y/(\E—Et\) with different slopes above and below the threshold. 

In nuclear reactions with emission of a positively charged particle, we 

have a case where Coulomb repulsion forces act between the reaction products 

(the particles A' and B'). In this case the reaction cross-section, together with 

all its derivatives with respect to energy, tends exponentially to zero as v -*■ 0 

(i.e. as E -> Et), and there is no singularity in the cross-sections for other 

processes. 

Finally, let us consider reactions in which two oppositely charged slow 

particles are formed, so that Coulomb attraction forces act between them. 

The cross-section for such a reaction is related by the principle of detailed 

balancing to the cross-section (143.6) for the opposite reaction between two 

slow attracting particles. Thus we find that as v 0 the cross-section tends 

to a constant limit: 

cr = constant as v' -> 0, (147.11) 

i.e. the reaction begins suddenly with a finite cross-section as the threshold 

is passed. 

We may elucidate the nature of the singularity of the elastic scattering 

cross-section near the threshold for such a reaction (A. I. Baz’ 1959). This 

cannot, however, be done directly from the known law (147.11) above the 

threshold by the simple method used previously for uncharged particles. In 

comparison with the latter case the situation is now complicated by the fact 

that the system of particles A’ + B’ has bound states in the region near the 

threshold (with E < Et), corresponding to discrete energy levels in the 

Coulomb attraction field. These states can be formed, so far as energy is 

concerned, in a collision of particles A and B, but owing to the possibility 

of elastic scattering they are only quasi-stationary states. Their existence 

must nevertheless cause resonance effects in the elastic scattering below the 

threshold, analogous to the Breit-Wigner resonances. 

To solve the foregoing problem, let us consider the structure of the wave 

functions which describe the collision process. In accordance with the 

presence of two channels, Schrodinger’s equation for the system of inter¬ 

acting particles has two independent solutions finite in all configuration space. 

Let two such solutions, arbitrarily selected and arbitrarily normalized, be 

denoted by ip\ and </r2. From these functions we can construct linear com¬ 

binations which describe the scattering in the case where one or other of the 

channels is the input channel. Let the channels corresponding to the pairs 
of particles A, B, A', B', be denoted by a and b, and let the sum f + 

+ a202 correspond to the case of input channel a -, it describes elastic scattering 

t For non-zero spins, the svstem of particles A' + B' in the s state may have a non-zero 
total angular momentum, and there can therefore be different orbital states of the system 
A+B. 
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of particles A and B and the reaction A + B ->A' + B'. Near the reaction 

threshold, the coefficients aj and cc2 depend considerably on the small momen¬ 

tum fa, while the arbitrarily chosen functions fa and fa do not have singu¬ 

larities at kb = 0. 

At large distances, the function 0 must represent the sum of two terms 

corresponding to the motion of pairs of particles in the channels a and b. 

These terms are the products of the “internal” functions of the particles and 

the wave function of their relative motion.f In channel a the latter function 

has the form Ra- — SaaRa+, and in channel b it is — SabRb+, where R+ and 

R~ are the outgoing and ingoing waves in the corresponding channels. At 

distances ro which are large compared with the range of action of the short- 

range forces and small in comparison with 1/fa, these functions (and their 

derivatives) must join on to the values calculated from the wave function ip in 

the “reaction zone”. These conditions are expressed by equations of the 

form 

aifli + = [Aa“ — SaaRa+]r„ ai&i + 01262 = [— SabRb+]rc, 

alal' + 3-202' — [Ra- — SaaRa+]'rt, O-ifa' + 01262' = [ — SabRb+]'rt, 

where a\, , fa, fa', ... are quantities calculated from the functions fa and 

fa; according to the above discussion, they may be regarded as constants 

independent of kb near the threshold. Dividing these two pairs of equations, 

we obtain two linear equations for two unknowns (aj/a2 and Saa), the coeffi¬ 

cients in these equations involving only one quantity which depends “critic¬ 

ally” on fa, namely the logarithmic derivative of the outgoing wave in channel 

b. We define this as 

A = 
1 r(rRfc+)'l 

2ttL rRb+ Jr“r° 
There is no need to derive the actual solution of these equations; it is suffi¬ 

cient to note that the quantity Saa of interest here (which determines the 

elastic scattering amplitude) is a fractional-linear function of A. Below the 

threshold the quantity A is real, since the wave function Rb+ is real, being the 

solution of a real Schrodinger’s equation with a real condition at infinity 

(decrease as e~K»r, where Kb = \/[2mb{Et — E)]/h). Below the threshold we 

must have |Saa| = 1, whence it follows that the fractional-linear function 

Sao(A) must have the form 

Saa — 
1+JSA 

(147.12) 

where 77 is a real constant and jS a complex constant. 

Let us determine the value of A as a function of the momentum fa. Since 

+ The law (147.11) holds not only for the total cross-section but also for the partial cross- 
sections with various values of /; cf. the end of §143. The singularity discussed below there¬ 
fore occurs also for all the partial scattering cross-sections. Its nature is entirely evident from 
the treatment, for the case l = 0 given below. The index 0 will be omitted, for simplicity, 
from the corresponding partial amplitudes. 



623 §147 Behaviour of cross-sections near the reaction threshold 

Coulomb attraction forces act between the particles A and B, rRb+ is the 

Coulomb wave function which is asymptotically proportional to eik‘r at 

infinity. In a Coulomb repulsion field this function is given by the sum 

G0+iFo, with Go andFo as in (138.4) and (138.7). The change to an attractive 

field is effected by simultaneously reversing the signs of k and r.f Making 

this change and calculating the logarithmic derivative (see §138), we have]; 

A - rdssir - 7H+*D(i)+{-£)])■ <147-13> 
Here kb is assumed real, so that the formula pertains to the region above the 

threshold. For &{,-> 0, the first term in (147.13) tends to i, and the second 

tends to zero (see the fourth footnote to §138). Thus we have above the thresh¬ 

old 

A = i(E>Et). (147.14) 

The passage to the region below the threshold is achieved by replacing k by z'k, 

which gives from (147.13) with k-> Oil 

A=-cot(7r/,<e) (E<Et). (147.15) 

These formulae solve the problem under consideration. The elastic 

scattering cross-section is 

oe = rrka-*\Saa-\\*. 

Above the threshold we have 

Sa 
+ if 
--f&U (E > Et); 
+ ip* 

(147.16) 

like the reaction cross-section, the scattering cross-section is constant in this 

region. The condition |Saa| < 1 signifies that im f > 0. 

Below the threshold 

Saa = 
jS*-tan(7rlKb) 

(147.17) 

This expression has an infinite number of resonances whose density increases 

towards the point E = Et. The resonance energies are the roots of the 
expression 

Saa = -1, i.e. ree^-tan (7r/K6)] = 0; 

+ In what follows we use Coulomb units. The change in sign of k and r corresponds 
formally to a change in sign of the Coulomb unit of length. 

X To simplify the subsequent formulae, we omit from the expression in the braces the real 
constant -log 2r„-2C, which is independent of kb- this amounts to an unimportant re¬ 
definition of the complex quantity f3 and the real quantity n in (147.12). 

II The first term in (147.13) gives — J cot ("/*!>) + Ji, and the expression in the braces tends 
to \-n cot(w/«b) + ii-n. Here we have used the formula 4>(x)— 0(—x) = —ir cot -nx — llx 
which can be obtained by logarithmic differentiation of the well-known relation T(x)r(— x) = 
—nix sin ttx, and the limiting expression </i(x) log x — 1 /2x as x oo. 
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Fig. 51 

they are somewhat displaced relative to the purely Coulomb levels (the roots 

of tan(7r/«:b) = 0) owing to the short-range forces. As the energy £ approaches 

the threshold, the elastic scattering cross-section oscillates between zero and 

47rjka2, as shown diagrammatically in Fig. 51. The width of the entire sub¬ 

threshold region in which the resonance structure occurs is determined by 

the energy of the first Coulomb level.f 

§148. Inelastic collisions between fast electrons and atoms 

Inelastic collisions between fast electrons and atoms can be considered 

by means of the Born approximation in the same way as elastic collisions in 

§139.1 The condition for the Born approximation to be applicable is, as 

before, that the velocity of the incident electron should be large compared 

with those of the atomic electrons. The energy loss in the collision may have 

any value. If the electron loses a considerable part of its energy, the atom 

is ionized, the energy being transferred to one of its electrons. However, 

we can always regard as the scattered electron that which has the greater 

velocity after the collision; thus, if the velocity of the incident electron is 

large, that of the scattered electron is large also. 

In a collision between an electron and an atom, the coordinate system in 

which their centre of mass is at rest may, as already remarked, be identified 

with that in which the atom is at rest; this latter system will in fact be used 

below. 

An inelastic collision is accompanied by a change in the internal state of 

the atom. The atom may g6 from the normal state into an excited state of the 

discrete or continuous spectrum; the latter case signifies an ionization of the 
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atom. In deriving the general formulae, we can consider these two cases 

together. 

We start (as in §126) from the general formula for the transition probability 

between states of the continuous spectrum, and apply it to the system 

consisting of the incident electron and the atom. Let p, p' be the momenta 

of the incident electron before and after the collision, and E0, En the cor¬ 

responding energies of the atom. For the transition probability, we have 

instead of (126.9) the expression 

d„„ - £,<», P'MO, P>p s(fc£-2+£w„) J2£l, (148.1) 

where the matrix element is that of the energy of interaction between the 

incident electron and the atom, 

U = Ze2/r- L*/|r—r«|; 

here r is the radius vector of the incident electron, ra those of the atomic 

electrons; the origin is at the nucleus of the atom, and m is the mass of the 

electron. 

The wave functions <pp, fp. of the electron are determined by the previous 

formulae (126.10), (126.11); then dw is the cross-section dcr for the collision. 

The wave functions of the atom in the initial and final states we denote 

by fo, ifin- If the final state of the atom belongs to the discrete spectrum, 

then (like <po) is normalized to unity in the usual manner. If, on the other 

hand, the atom enters a state of the continuous spectrum, the wave function 

is normalized by the delta function of the parameters v which determine these 

states (these parameters may be, for instance, the energy of the atom, and the 

momentum components of the electron which leaves the atom in the ioniza¬ 

tion), The cross-sections thus obtained give the probability of a collision 

in which the atom enters states of the continuous spectrum lying in the range 

of parameters between v and v + dv. 

Integration of (148.1) over the absolute magnitude/)' gives 

d<7" = 4^l<wP'lt/l°P>l2do'’ 

where p is determined from the law of conservation of energy: 

(P2-P'z)l2m = En-E0. (148.2) 

Substituting in the matrix element the wave functions of the electron from 
(126.10), (126.11), we obtain 

(148.3) 
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where dr = dF2 ... dVz is the element of configuration space of the Z 

electrons in the atom, and we omit the prime to do.-j- For n = 0 andp = p\ 

(148.3) becomes the formula for the elastic scattering cross-section. 

Since the functions i//n and <//0 are orthogonal, the term in U which contains 

the interaction Ze2/r with the nucleus vanishes on integration over r, and 

so we have for inelastic collisions 

is?7 isj/j^r<h!4> 

The integration over V can be effected as in §139. The integral 

*,(r.) = \ e-*.'6VI\r-ra\ 

is formally the same as the Fourier component of the potential at the point r 

due to charges distributed in space with density p = 8(r-ra). Formula 

(139.1) therefore gives 

<Mfa) = (47r/92)e-‘-i-r-. (148.5) 

Substituting this expression in (148.4), we finally obtain the following 

general expression for the inelastic collision cross-section: 

(148-6) 

here the matrix element is taken with respect to the wave functions of the 

atom, and we have introduced, in place of the momenta, the wave vectors 

k' = p'/h, k = p/h. This formula gives the probability of a collision in 

which the electron is scattered into an element of solid angle do and the atom 

enters the nth excited state. The vector — hq is the momentum given to the 

atom by the electron in the collision. 
In effecting the calculations, it is more convenient to refer the cross- 

section, not to the element of solid angle, but to the element d9 of the absolute 

magnitudes of the vector q. The vector q is defined by q = k' -k; for its 

absolute magnitude we have 

92 = k*+k'*-2kk' cosft. (148.7) 

Flence, for given k, k', i.e. for a given loss of energy by the electron, 

9d9 = kk' sin ft dft = (kk'12-n) do. (148.8) 

t In this form, it is a general result of perturbation theory, applicable not only to collisions 
of electrons with an atom but also to any inelastic collisions of two particles, and determines 
the scattering cross-section in a system of coordinates where the centre of mass of the particles 
is at rest (m being then the reduced mass of the two particles). 
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Formula (148.6) may therefore be written 

do* = 8*(£)2^|<n| £ e-q-r*|0>|2. (148.9) 

The vector q plays an important part in the following calculations. 

Let us examine more closely its relation to the scattering angle & and to 

the energy En—E0 transferred in the collision. We shall see below that the 

most important collisions are those which cause scattering through small 

angles (& 1), with a transfer of energy which is small in comparison with 

the energy E = \mv2 of the incident electron: En—E0 E. The difference 

k — k' is in this case also small (k—k'<^ k), and 

En-E0= tP(ki-k'Z)l2m Kh^k(k-k')lm= hv(k-k'). 

Since i? is small, we have from (148.7) 

qz ~ (k-k'Y+(k§f, 

and finally 

q = V[{(En-E0)lhv}z+(k&n (148.10) 

The minimum value of q is 

<?min = {En-Eb)!hv. (148.11) 

In the region of small angles we can further distinguish between different 

regions depending on the relation between the small quantities & and 

vo/v, where is of the order of the velocity of the atomic electrons. If we 

consider energy transfers of the order of the energy eo of the atomic electrons 

(En — Eo ~ eo ~ mzf), then for {v0/v)2 < ■& < 1 we have 

q=kb = (mvlh)§\ (148.12) 

the first term under the radical in (148.10) can be neglected in comparison 

with the second. In this range of angles, therefore, q is independent of the 

energy transfer. For $ < 1, q may be either large or small in comparison with 

l/ao (where a0 is a quantity of the order of atomic dimensions). On the same 

assumption regarding the energy transfer we have 

qao~ 1 for & ~ vo/v. (148.13) 

Let us now apply the general formula (148.9) for small q (qa0 1, 

i.e. & <. vo/v). In this case we can expand the exponential factors as series of 
powers of q: 

e~iq' r° * 1 — *’q • r0 = 1 - iqxa; 

we choose a coordinate system with the *-axis along the vector q. On 

substituting this expansion in (148.9), the terms containing 1 give zero, by 
the orthogonality of the wave functions <J>0 and 0B, and we obtain 

d°* - Ks) i?|<’,|‘'*|o>1, - (!y|<’,|‘y°>|ii <i48-u> 
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where dx = e Z xa is the component of the dipole moment of the atom. 

We see that the cross-section (for small q) is given by the squared modulus 

of the matrix element of the dipole moment for the transition which corres¬ 

ponds to the change in state of the atom.-j- 

It may happen, however, that the matrix element of the dipole moment 

vanishes identically for the transition considered, on account of the selection 

rules (a forbidden transition). Then the expansion of e_iq'r« must be continued 

to the next term, and we obtain 

do„ = 2^£)2|<n|(£ *a*)|0>|*9 dq. (148.15) 

Let us now consider the opposite limiting case of large q (qa0 >1). If q 

is large, this means that the atom receives a momentum which is large com¬ 

pared with the original intrinsic momentum of the atomic electrons. It is 

evident from physical considerations that, in this case, we can regard the 

atomic electrons as free, and the collision with the atom as an elastic col¬ 

lision between the incident electron and the atomic electrons, the latter 

being originally at rest. This can also be seen from the general formula 

(148.9). For large q, the integrand in the matrix element contains rapidly 

oscillating factors e_fq'ro, and the integral is almost zero if does not contain 

a similar factor. Such a function corresponds to an ionized atom, with the 

electron emitted from it with momentum —hq = p — p' given by the law of 

conservation of momentum, as it would be in a collision of two free electrons 

In a collision with a large transfer of momentum, the incident electron 

and the atomic electron may have final velocities that are comparable in 

magnitude. The exchange effect arising from the identity of the colliding 

particles therefore becomes important, although it was not taken into account 

in the general formula (148.9). The scattering cross-section for fast electrons 

when exchange is allowed for is given by formula (137.9); this formula relates 

to a coordinate system in which one of the electrons is at rest before the 

collision. For a fast electron the cosine in the last term in (137.9) may be put 

equal to unity. Multiplying by the number of electrons in the atom, Z, we 

obtain the cross-section for the collision of an electron with an atom, in the 

form 

da = 4 z( -l—-jcos » do. (148.16) 
\mv2/ |_sin4F cos4F sin2F cos2FJ 

In this formula it is convenient to express the scattering angle in terms of 

the energy which the electrons have after the collision. As is well known, 

when a particle of energy E = ^mv2 collides with one of the same mass at 

+ The cross-section don, summed o\ 
in the final state and averaged over the 
i^ what is usually of physical intere! 
|<«|rfi|0>|* is independent of the direc 

rections of the angular momentum of the atom 
is of the angular momentum in the initial state, 
r this summation and averaging, the square 
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rest, the energy of the particles after the collision is 

« = E sin2{f, E—t — E cos2#. 

In order to find the cross-section referred to the interval de, we express do in 

terms of de by the relation cos & do = 277 sin & cos & d & = (tt/E) de. Sub¬ 

stituting in (148.16), we obtain the final formula 

r 1 1 1 “lde 
der, = -nZe^i —\-—. (148 17) 

L2 (£-c)2 e(£-e)_U 1 ' 

If one of the energies e and E — e is small compared with the other, only one 

of the three terms in this formula (the first or the second) is important. This 

is as it should be, since, for a great difference between the energies of the 

two electrons, the exchange effect becomes insignificant, and we then return 

to the familiar Rutherford’s formula.f 

The integration of the differential cross-section over all angles (or, what 

is the same thing, over q) gives the total cross-section on for a collision in which 

the atom is excited to the state in question. The dependence of on on the 

velocity of the incident electron is closely related to the existence or otherwise 

of the matrix element, for the corresponding transition, of the dipole moment 

of the atom. Let us first suppose that this matrix element is not zero. Then, 

for small q, don is given by formula (148.14), and we see that, as q diminishes, 

the integral over q diverges logarithmically. In the region of large q, on the 

other hand, the cross-section (for a given energy transfer En — Eo) decreases 

exponentially as q increases, because of the presence (already pointed out) of a 

rapidly oscillating factor in the integrand of the matrix element in (148.9). 

Thus the region of small q plays the principal part in the integral over q, and 

we can restrict ourselves to an integration from the minimum value (148.11) 

to some value of the order of 1/ao- 

As a result we obtain 

On = 877(e/fc)2|<n|d*|0>|2 logOS^/e2), (148.18) 

where is a dimensionless constant, which cannot be calculated in a general 

form.t 

If, on the other hand, the matrix element of the dipole moment vanishes for 

the transition in question, the integral over q converges rapidly both for 

small q (as we see from (148.15)) and for large q. The most important range 

in the integral is in this case q ~ 1 ja0. No general quantitative formula 

t F°r a collision of a positron with 
formula 

there is no exchange effect, and Rutherford’s 

holds for all q §> 1/a 
t We suppose that 

energy transfers (E„ 
since the matrix eler 
take only the first tei 

da, = [nZS'E) de 

n — £0 is of the order of the energy e„ of the atomic electrons. For larger 
e„), the formulae (148.14), (148.18) are still inapplicable, 

nt of the dipole moment becomes very small, and it is not possible to 
i of the expansion in powers of q. 
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can be obtained, and we can deduce only that o„ is inversely proportional to 

the square of the velocity: 

o„ = constant jv2. (148.19) 

This follows at once from the general formula (148.9), according to which 

d<7n is proportional to 1 jv2 for g ~ l/a0. 

Let us determine the cross-section do, for inelastic scattering into a 

given element of solid angle regardless of the state entered by the atom. 

To do this, we have to sum the expression (148.9) for all n ^ 0, i.e. over all 

the states of the atom (of both the discrete and the continuous spectrum) 

except the normal state. We omit from consideration the ranges of large 

and small angles, and suppose that 1 > & > (vojv)2. Then, by (148.12), 

q is independent of the amount of energy' transferred.! 

The latter circumstance makes it easy to calculate the total inelastic collision 

cross-section, i.e. the sum 

^-2^- *i£)2 K-l? ‘"W* 

x n#o 

To do so, we note that, for any quantity/, we have by the multiplication rule 

for matrices 

SIM* = S/on/on* = £/0n(/+)n0 = (//+) 00- 

The summation here is over all n, including n — 0. Hence 

„J0l/o»|2 = \ |/on!2-|/oo|2 = (//+)oo-|/oo|2. (148.21) 

Applying this relation for/ = 2 e~iQra, we have 

d°r - (^d)2 {<|2 (148.22) 

where <...) denotes averaging with respect to the normal state of the atom 

(i.e. taking the diagonal matrix element 00). The mean value <2 e_iq'r°> is, 

by definition, the atomic form factor F(q) for the atom in the normal state. 

In the first term in th£ braces we can write 

I £ e-tq.r.l = Z+ £ etq.(ra-rP. 
I o-l I 0*6 

■f The summation in (148.9) is taken ov< 
does not hold. However, the effective cros< 
is relatively small, and these terms in thi 
imposed so that the exchange effects need 

with £■„-£„ > *0 also, for which (148.12) 
1 for transitions with a large energy transfer 
re unimportant. The condition & 1 is 
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Thus we find the general formula 

dcrr = {Z-F2{q) + ( I ^ (148.23) 

This formula is much simplified for small q, when we can expand in powers 

of q (vjv <^qa0 1, corresponding to angles {vjv)2 vjv). Instead 

of effecting the expansion from formula (148.23), it is more convenient to 

sum again over n, using for dcr„ the expression (148.14). Summing with 

the aid of the relation (148.21) with/ = dx, and recalling that (dxy = 0, we 

have 

dcrr = (2e/fe)2<42>do/&2. (148.24) 

It is of interest to compare this expression with the cross-section (139.5) 

for elastic scattering through small angles; whereas the latter is independent 

of S-, the cross-section for inelastic scattering into the solid angle element do 

increases as 1/S2 when S decreases. 

For angles S such that 1 > S > vjv (so that qa0 > 1), the second and 

third terms in the braces in (148.23) are small, and we have simply 

doy = Z(2e2lmv2)2dol S4, (148.25) 

i.e. Rutherford scattering from the Z atomic electrons (without allowance for 

exchange). We recall that, for elastic scattering, we had the result (139.6), 

which is proportional to Z2 and not to Z. 

Finally, integrating over angles, we have the total cross-section crr for 

inelastic scattering at all angles and with any excitation of the atom. In an 

exactly similar manner to the calculation of on (148.18), we obtain 

CTr = 877(e/te)2<dJ2>log(^/e2). (148.26) 

PROBLEMS! 

Problem 1. Determine the angular distribution for 1 v~- from the inelastic 
scattering of fast electrons by a hydrogen atom (in the normal state). 

Solution. For the hydrogen atom, the third term in the braces in (148.23) vanishes, 
while the atomic form factor F(q) has been calculated in §139, Problem. Substituting, we 
find 

do_4 (l+t;2»2/4)1-l 

(l+r,2»2/4)<d° 

Problem 2. Determine the differential 
hydrogen atom in the normal state, the latt 
spectrum (where n is the principal quantum 

Solution. The matrix elements are co 
We take the 2-axis in the direction of the vt 

ross-section for collisions of electrons with a 
r being excited to the nth level of the discrete 
lumber). 

veniently calculated in parabolic coordinates, 
tor q; then 

t We use a atomic units in all the Problems 
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The wave function of the normal state is 

§148 

i/'ooo = 

The matrix elements are non-zero only for transitions to states with m = 0. The wave 
functions of these states are the functions 

o = (l/V^2)f-"^’”;n^(-"l,l,tln)F(-r2, l.Tj/r?) 

(n = n, +«,, + !). The required matrix elements are the integrals 

O^Ok'-'IOOO) = |Je<»«->/z^ooo^a,B,o^2ndfdt,. 

The integration is effected by means of the formulae of §f in the Mathematical Appendices. 
The result is 

|<rin20|e<-'|000>k = 2«nvff”.~ jf + - ”2? + W2]- 
[(" + lr + (9«)-J" 3 

All states with the same = n — 1 have the same energy. Summing over all possible 
values of n,— n2 for the given n, and substituting the result in (148.9), we obtain the required 
cross-section: 

dc„ = 2>>7,-n’[Kns-l)-(-(?t 
^ [(r,-ip + (gr,)2]n-3dg 

’ Wl)2+M2]"+3 g 

Problem 3. Determine the total cross-section for the excitation of the first excited state 
of the hydrogen atom. 

Solution. We have to integrate 

1 d{ 
do = 2Sn--- 

c* {({2+9/4)5 

over all g froir. {min = (£,—E,)/v = 3/8i> to {max = 2t-> only the terms of the highest degree 
in ti being retained. The integration is elementary, and the result isf 

o = log (4t-’) - —1 = — 0-555 log —. 
3«vt ’ 24J r* 8 0-50 

Problem 4. Determine the cross-section for the ionization of a hydrogen atom (in the 
normal state), with the emission of a secondary electron in a given direction; the energy of the 
secondary electron is small in comparison with that of the primary, and so exchange effects 
are unimportant (H. S. W. Massey and C. B. O. Mohr 1933). 

Solution. The wave function of the atom in the initial state is = «“r/VIn the 
final state, the atom is ionized, and the secondary electron emitted from it has a wave vector 
which we denote by x (and energy c = J*8). This state is described by a function 

t The cross-section can also be calculated for arbitrary n. By numerical calculation, we can 
obtain also the total cross-section for inelastic scattering by a hydrogen atom: 

°r = 5 log(t'2/0160) 

This includes the following contributions from collisions in which states of the discrete 
spectrum are excited, and from those in which the atom is ionized : 

ar = Zl log(v2/0160). 

: 0-285 log(v2/0-0l2). 
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(136.9), in which the outgoing part consists (at infinity) only of a plane wave propagated in 
the direction of «. The function is normalized by the delta function in «/2tr-space; 
hence the cross-section calculated from it will relate to dV/(2.y)3 or to x2 dx doK/(2Jt)3, where 
do* is an element of solid angle about the direction of the secondary electron. Thus 

—1< «|e~*,',|0>|2 dodo* dx. 

where do is an element of solid angle about the direction of the scattered electron, and 

<.|e-«'|0> = jV-> dV = 

r 3 r dF-i 

We effect the integration in parabolic coordinates, with the z-axis in the direction of « and 
the angle 4> measured from the (q, a) plane: 

I = i —j J J exp{-i>?(f-,;)cosy+i{v/(f’?)siny cos^-JA(f+,)-JiV(f-n)}X 

where y is the angle between a and q. The integration over <f> and q is easily performed by sub¬ 
stituting Vrj cos = u, %/t] sin $ — v, which gives 

- - T- f ex |-^sin2H-*2+(« + ?c°sr)2 1 x W«.hixe)d(-1 
2n L2A J Pl 2[i(x+g cosy)—A] I i(x+{ cosy)—AJa-i 

The integral here is found from the formula (f.3) with y = 1, n = 0. The subsequent cal¬ 
culations, though lengthy, are elementary, and give as a result the following expression for the 
cross-section: 

d(j  _2*k'x[q2 + 2qx cosy+(^+l) cos^y]_ 

^[«2+2?acosy+l + K^[(«+a)3+l][(?-a)3+l](l-e-2»/r)>< 

X*-<2 /«»■n-'(2*/<fl* -«»+l» d0 do, d*r. 

The integration over all angles of emission of the secondary electron is elementary, and gives 
the distribution of scattering over directions, for a given energy Jk* of the emitted electron: 

2i0k'x [52-bJ(l+»f2)]e-(2^,r,“"-'(2*/(«,-«‘+i)1 

V [(« + *)2+1 H(9- «?+1 P(1 -e-2"') 

For q > 1, this expression has a sharp maximum a ir the maximum, 

3^" (1+(9_K)2]3 

Integrating over o. with do = 2-nq dq/k1 as {Iwxlk^q-x), we obtain the expression 
8* dx/AV3; this is the same as the first term in formula (148.17), as it should be. 

§149. The effective retardation 

In applications of collision theory, the calculation of the mean energy 
lost by a colliding particle is of great importance. This energy loss is con- 
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venientlv characterized by the quantity 

§149 

d* = X (En-E0) dcn, (149.1) 

which we shall call the (differential) effective retardation; the summation 

is taken, of course, over states of both the discrete and the continuous spec¬ 

trum. d« relates to scattering into a given element of solid angle.f 

The general formula for the effective retardation of fast electrons is 

d* = 8 X (£„-£o)|<n|E e10>|^, (149.2) 
\hvj " q2 

where d<7„ has been taken from (148.9). As in the derivation of (148.23), we 

exclude from consideration the region of very small angles, and suppose that 

1 > & > (vq/v)2. Then q is independent of the amount of energy transferred, 

and the sum over n can therefore be calculated in a general form. 

This is done by means of a summation theorem derived as follows. The 

matrix elements of some quantity /, a function of the coordinates, and of 

its derivative / with respect to time are related by 

(/)on = -WXE»-Eo)fo» (149.3) 

Hence we have 

S (En—E0)\fon\2 = X (En-Eo)fonfon* 

= X (£„-£o)/o»(/+)no = ih S (/)on(/+)„0 = ih(ff+)00. 

The wave functions of the stationary states of the atom can be taken real. 

Then the matrix elements of the function / of the coordinates are related 

by /on = /no. and for the matrix elements (149.3) we accordingly have 

if) On = (J)n0- Thus we can also write the sum in question as 

—ih X (/+)o»(/)no = —ih{f+f)oo- 

Taking half the sum of these two equations, we have the required theorem: 

X (En-EoW = 00. (149.4) 

We apply it to the quantity 

/ = Xr'i.', 
J a 

According to (19.2), its derivative with respect to time is represented by the 

operator 

} = - (Hftm) X [e-*«-r*(q. Vo)+(q* Vn)f~<Q‘r*]- 

A direct calculation gives 

//+-/+/ = -(ihlm)q2Z. 
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Substituting in (149.4), we obtain the formula 

*-q-r‘|0>l2 = Z. (149.5) 

which effects the summation required.f 

Thus we find for the differential effective retardation the formula 

Zei dq 2 Ze* do 

mv2 q mv2 &2 
(149.6) 

The range of applicability of this formula is given by the inequality 

(vo/v)2 <§& < 1, i.e. vo/v a0q <4 v/v0. 

Next, let us determine the total effective retardation K(qx) for all collisions 

in which the transfer of momentum does not exceed some value such 

that v0jv vjv0: 

*(?i) = S J (En—Eo) dc„; (149.7) 

9min is given by (148.11). The integration and summation signs cannot be 

transposed, since qmin depends on n. 

We divide the range of integration into two parts, from jmin to q0 and 

from q0 to qx, where q0 is some value of q such that v0/v q0a0 1. Then, 

over the whole range of integration from qmin to q0, we can use for dan 

the expression (148.14): 

*(?«>) = 8^^)22l<«l^0>12^-^) J y. 

whence 

*(?o) = ^(021 <«l^l0>!2(^-^ i°g^r. (149.8) 

In the range from q0 to qu on the other hand, we can first sum over n, which 

gives the expression (149.6) for dfc, and then on integrating over q we have 

*(?i)-K(?o) = ^(Ze*lmv2) logfei/ffo). (149.9) 

To transform the above expressions, we use the summation theorem 
obtained from formula (149.4) by putting there 

/ = dx/e = I*», / = (1/m) Epxa. 

■f In deriving this re 
suffix 0 is the normal 

i we ha\ lowhere used the fact that the state denoted by the 
n. The relation therefore holds for any initial state. 



636 Inelastic Collisions §149 

Commuting/+ and/gives (in the present case,/- is the sa me as/)//+ - f~f = 

— ihZIm, so thatf 

S Ar0n s 2 (27«/e2fi2)(£„-£o)|<n|^|0>|2 = Z. (149.10) 

The quantities ATon are called the oscillator strengths for the corresponding 

transitions. 

We introduce some mean energy I of the atom, defined by the formula 

log/ = 2 W0„ log(£n-£„)/Z Wo„ 

= (1/Z) 2 W0nlog(£n-E0). (149.11) 

Then, using (149.10), we can rewrite formula (149.8) in the form x(qo) = 

(faZe^/mv2) log(q0hv/I). Adding this to (149.9), we have finally 

K(ffl) = (^nZ^mv2) logfofa//). (149.12) 

Only one constant characterizing the atom concerned appears in this 
formula.}; 

Expressing q1 in terms of the scattering angle^ by means of ql — tnv&Jh, 

we obtain the effective retardation in scattering through all angles 

ic(D-i) = {^nZe^jmv2) log(149.13) 

If q^a0 > 1 (i.e. 9-j > vjv), we can express k as a function of the greatest 

amount of energy that can be transferred from the incident electron to 

the atom. We have shown in the previous section that, for qa0 > 1, the atom 

is ionized, almost all the momentum hq and energy being given to one atomic 

electron. Hence hq and e are related by being the momentum and energy 

of an electron, i.e. by e = h2q2j2m. Substituting in (149.12) q\2 = 2wiei/fi2, 

we obtain the effective retardation in collisions where the energy transfer is 

#c(«i) =(2tt Z^lmu2)\ogl2m€lv2II2). (149.14) 

In conclusion, we may make the following remark. The energy levels of the 

discrete spectrum of an atom mainly involve excitations of a single 

(outer) electron; t|ie excitation of even two electrons usually requires an 

‘t The remark made concerning (149.5) applies Co this relation also. 
J For hydrogen, I = 0-5Sme,lh1 = 14-9 eV. For heavy atoms we should expect to get good 

accuracy on calculating the constant I by the Thomas-Fermi method. It is easy to establish 
how the values of / thus calculated will depend on Z. In the quasi-classical case, the eigen- 
frequencies of the system of particles correspond to the differences of the energy levels. The 
mean eigenfrequency of the atom is of the order of p0/fl0; hence we can deduce that / ~ hvja^. 
The velocities of the atomic electrons in the Thomas-Fermi model depend on Z as Z3'3, 
while the dimensions of the atom vary as Z-1'3. Thus we find that / should be proportional 
to Z: 1 = constant X Z. From experimental results it can be found that the constant is of the 
order of magnitude of 10 eV. 
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energy sufficient to ionize the atom. Hence, in the sum of oscillator strengths, 

the transitions to states of the discrete spectrum form only a part, of the 

order of unity, while those which involve ionization form a part of the order 

of Z. Hence it follows that the main part in retardation (by heavy atoms) 

is played by those collisions which are accompanied by ionization. 

PROBLEM 

Determine the total effective retardation of an electron by a hydrogen atom (1 = 0-55 
atomic units); for large energy transfers, the faster of the two colliding electrons is taken to 
be the primary. 

Solution. When the primary and secondary electrons have comparable energies after 
the collision, the exchange effect must be taken into account. Hence, for retardation with 
an energy transfer between some value e, (1 ^ f, <§ v2) and the maximum value em„ 
= JE = Jo2 (by our definition of the primary electron), we must use the effective cross- 
section (148.17): 

iE 

*(w)-*(*i) - - J t[j+(£_t)2-£(£_t)] d‘ 

= ^[log(£/8,i)+l]. 

Adding this to (149.14), we obtainf 

4tt rv2 -i 4tt 1)2 
^%Tlog[-V(H] = -.og- 

§150. Inelastic collisions between heavy particles and atoms 

The condition for the Bom approximation to be applicable to collisions 

between heavy particles and atoms, expressed in terms of the velocity of a 

particle, remains the same as for electrons: 

This follows immediately from the general condition (126.2) for perturbation 

theory to be applicable (Uajhv 4 1), if we notice that the mass of the particle 

does not appear there, while Uajh is of the order of magnitude of the velocity 
of the atomic electrons. 

In a system of coordinates in which the centre of mass of the atom and 

the particle is at rest, the cross-section is given by the general formula 

(148.3), in which m is now the reduced mass of the particle and the atom. It is 

more convenient, however, to consider the collision in a system of co- 

ordinates in which the scattering atom is at rest before the collision. To do 

t For collisions between a positron and a hydrogen 
total retardation is obtained by simply substituting er 

there is no exchange effect, and the 
= E = io2 in place of r, in (149.14): 

* = (4Wv2) log(t)2/0 55). 



638 Inelastic Collisu §150 

this, we start from formula (148.1); in a system of coordinates in which the 

atom is at rest before the collision, the argument of the delta function which 

expresses the law of conservation of energy is of the form 

WW-\PW+W-V?IMa+En-E0, (150.1) 

where M is the mass of the incident particle and Ma that of the atom. The 

third term is the kinetic recoil energy of the atom (and could be entirely 

neglected when considering a collision between an atom and an electron). 

For a collision of a fast heavy particle with an atom, the change in the 

momentum of the particle is almost always small in comparison with its 

original momentum. If this condition holds, we can neglect the recoil energy 

of the atom in the argument of the delta function, and we then arrive at 

exactly the same formula (148.3), except that m in the latter must be replaced 

by the mass M of the incident particle (and not by the reduced mass of the 

particle and the atom). Bearing in mind that the transfer of momentum is 

supposed small in comparison with the original momentum, we putp » p'; 

then the cross-section in a system of coordinates in which the atom is at rest 

before the collision is 

dc„ = (Afs/4rrW)| JJ drdF|2 do. (150.2) 

Taking into account the fact that the charge on the particle may differ from 

that on the electron, we write ze2 in place of e2, where ze is the charge on 

the incident particle. The general formula for inelastic scattering, written 

in the form (148.9): 

d'- - k"i? ej"'-|o>|27' <iso'3) 

does not contain the mass of the particle. Hence it follows that all the formulae 

derived from it remain applicable to collisions with heavy particles, provided 

that these formulae are expressed in terms of v and q. 

It is easy to see how the formulae must be modified when they are expressed 

in terms of the scattering angled (the angle of deviation of the heavy particle 

on colliding with the atom). To see this, we notice first of all that the angle 

d is always small in an inelastic collision with a heavy particle. For, when 

the momentum transfer is large (compared with the momenta of the atomic 

electrons), we can regard the inelastic collision with the atom as an elastic 

collision with free electrons; when a heavy particle collides with a light one 

(the electron), however, the heavy particle hardly deviates at all. In other 

words, the transfer of momentum from the heavy particle to the atom is 

small in comparison with the original momentum of the particle; an excep¬ 

tion is formed by elastic scattering through large angles, but this is extremely 

improbable. 
Thus, over the whole range of angles, we can put 

q = V{[{En - £o)/v]2+(Med)*}/*, (150.4) 
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which in practice reduces to 

qh ss Mv& (150.5) 

everywhere except for very small angles. On the other hand, when consider¬ 

ing the collisions of electrons with an atom, we had (for small angles) 

q = v'{[(En-E0)lvf+(rnv^}lh. 

Hence we can deduce that the formulae which we obtained for collisions be¬ 

tween electrons and atoms, if expressed in terms of the velocity and the angle 

of deviation, become formulae for the collision of heavy particles if we 

everywhere make the substitution 

9->M9/™ (150.6) 

(including the element of solid angle do = 2-rr sin 9 d9 a 2r-9 d9), the 

velocity of the incident particle remaining unchanged. Qualitatively, this 

means that the whole picture of small-angle scattering is (for a given velocity) 

compressed in the ratio m/M. 

The rules obtained above relate also to elastic scattering through small 

angles. Making the transformation (150.6) in formula (139.4) with ft <| 1, 

we have the cross-section 

dce = 8tT{ze*IMv*f[Z-F{Mvblh)Y d9/93. (150.7) 

The elastic scattering of heavy particles through angles 9 ~ 1 reduces to 

Rutherford scattering at the nucleus of the atom. 

Inelastic scattering in which the atom is ionized with a large transfer of 

momentum requires special consideration. Unlike the situation for ionization 

by an electron, there are of course no exchange effects. For heavy particles 

it is characteristic that a large momentum transfer (qaD >1) does not mean 

a deviation through a large angle; 9 always remains small. The cross-section 

for ionization with the emission of an electron of energy between e and e + de 

is found immediately from formula (148.25), which we write in the form 

dar = 87r(ze2jkv)2 Z dqjq3, 

putting k2q2l2m = e (the whole of the momentum /zq is given to a single 

atomic electron). This gives 

da, = (27rZz2e*lmv2) dt/e2. (150.8) 

In collisions of heavy particles with atoms, the total cross-section and effec¬ 

tive retardation are of particular interest. The total inelastic scattering cross- 

section is given by the previous formula (148.26). The total effective retarda¬ 

tion is obtained by substituting the maximum possible momentum transfer 
?max in place of ^ in (149.12). ^nmx is easily expressed in terms of the velocity of 
the particle as follows. Since even hqm&x is small compared with the original 
momentum Mv of the particle, the change in its energy is related to the 
change in momentum by LE = v . hq. On the other hand, for a large 
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momentum transfer nearly all this energy is given to one atomic electron, so 

that we can write 

£ = /z252/2m = kv . q < hvq. 

Hence we have hq < 2mv, i.e. 

liq,na* = Into, elnix = 2mo2. (150.9) 

We may notice that the maximum angle of deviation of the particle in an 

inelastic collision is 

= hq^Mv = 2mjM. 

Substituting (150.9) in (149.12), we obtain the total effective retardation 

of a heavy particle: 

K = (A-rrZz^jmv2) log(2mt>2//). (150.10) 

§151. Scattering of neutrons 

In various physical problems of collision theory it is necessary to consider 

how the scattering process is affected by the motion of the scattering centres. 

Under certain conditions we can solve such problems by means of a type of 

perturbation theory devised by E. Fermi (1936), even if perturbation theory 

is not applicable to scattering by each centre individually. These problems 

include, in particular, that of the scattering of slow neutrons by a system of 

atoms, such as a molecule. We shall refer to this specific problem. 

Neutrons are scarcely scattered by electrons, so that practically all the 

scattering takes place at the nuclei.f We shall suppose that the amplitude for 

scattering by an individual nucleus is small in comparison with the distances 

between the atoms. Then the amplitude of the wave scattered by each 

nucleus in the molecule is small even at the positions of the other nuclei. 

Under these conditions the amplitude for scattering by the molecule is the 

sum of those for scattering by the individual nuclei. 

Perturbation theory is not in general applicable to a collision between a 

neutron and a nucleus: although the range of nuclear forces is small, they are 

very strong within that range. It is important, however, that the amplitude 

for scattering of a slow neutron (whose wavelength is large compared with the 

dimensions of the nucleus) is a constant independent of the velocity. Let fa 

be the amplitude for scattering by the ath nucleus; |/0|2 do is the differential 

cross-section for elastic scattering of the neutron by a free nucleus (in their 

centre-of-mass system). 
The constant amplitude can be formally obtained from perturbation theory 

t It is also assumed that the molecule has no magnetic moment. Otherwise, there is a 
further specific scattering effect due to the interaction of the magnetic moments of the 
molecule and the neutron. 
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if we describe the interaction of the neutron with the nucleus by a “point” 

potential energy 

U{r) = -^/S(r), (151.1) 

where M is the reduced mass of the neutron and the nucleus; when this 

expression is substituted in Born’s formula (126.4), the delta function makes 

the integral a constant independent of q. The “field” U(r) thus defined is 

called a pseudo-potential. It should be emphasized that the possibility of 

defining this is due to the fact that/ is constant. In the general case of an 

arbitrary neutron energy, the scattering amplitude depends on the initial and 

final momenta p and p' separately, and not only on their difference q, whereas 

the amplitude given by the Born approximation can depend only on q.f 

If the scattering nucleus executes a given motion (for example, vibrations 

in a molecule), and we average over this motion, then the interaction (151.1) 

is “smeared” over a region of dimensions in general large compared with the 

scattering amplitude /. For such a “smeared” interaction the condition 

(126.1) for the Born approximation to be valid is satisfied. 

Thus we can describe the neutron-molecule interaction by the pseudo¬ 

potential 

U(r) = — 2^22^-/aS(r-Ra), (151.2) 

where the summation is over all the nuclei in the molecule, Ra are their 

radius vectors, and r that of the neutron. Substituting this expression in 

formula (148.3), with Mm in place of m, Mm being the reduced mass of the 

molecule and the neutron, we obtain the following formula for the cross- 

section for scattering of a neutron by a molecule, in the centre-of-mass 

system: 

da„ = Mlt 1 2 ^/a<w|e-'q-Ra|0>'2do; (151.3) 

the matrix elements are taken with respect to the wave functions of the 

stationary states of motion of the nuclei with energies Eq and En, and the 

momenta/) and/> are related by the law of conservation of energy: 

(P2-P'*)l2Mm = En - Eq. 

Formula (151.3) describes an inelastic collision with a definite change of 

t Although the pseudo-potential gives the correct value of the sc: 
perturbation theory is formally applied, this does not mean that pertu 
applicable to this field For a potential well of depth f/„ which tends 
that U0a3 = constant (where a is the radius of the well, tending 
(126.1), (126 2) are certainly not satisfied 

ering amplitude when 
ition theory is actually 
infinitv in such a way 
zero), the conditions 
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state of the motion of the nuclei in the molecule (transition 0 -* n), and is the 

solution of the problem stated: from the amplitudes (assumed known) for 

scattering of neutrons by free nuclei, it determines the cross-section for 

scattering by the molecule, taking account of the intrinsic motion of the nuclei 

and interference effects due to scattering by different nuclei. 

If the nuclei have non-zero spin, the fact must also be taken into account 

that the scattering amplitudes fa depend on the total spin of the scattering 

nucleus and the neutron. This can be done as follows. 

The total spin of the nucleus and the neutron can take two values, 

ja = ia ± i, where ia is the spin of the nucleus; we denote the corresponding 

scattering amplitudes by andf~. We form a spin operator whose eigen¬ 

values for definite values of ja zrzfa and/~ respectively. This operator is 

fa = Oa+baS.ia, (151.4) 

where i0 and s are the spin operators of the nucleus and the neutron, and the 

coefficients aa and ba are given by the formulae 

This is easily seen if we note that, for a given value of j, the eigenvalue of 

the operator s.i is 

s.i = *[;'(;+ i)-#+i)-i]- 

The operators (151.4) must replace ja in formula (151.3), and their matrix 

elements corresponding to the transition considered must be taken. If the 

incident neutrons and the target nuclei are unpolarized, then the scattering 

cross-section must be appropriately averaged. 
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This gives the following expression for the averaged cross-section: 

d'" - ^,^[!^.<«|e--«H0>|2 + 

+ ^is%fr^[,2|<”ie"',R“i0>|2]do- 

Problem 2 Apply formula (151.3) to the scattering of slow neutrons by parahydrogen 
and orthohydrogen (J. Schwinger and E. Teller 1937). 

Solution. Before the matrix elements of the spin operators are taken, the expression 
(151.3) for the scattering by a hydrogen molecule is 

d<T" = ^|a<«|e--'2 + e--'/2|0>] + 

+ 61. <7i|I1e---"2 + I2e«-/2|0>|2 do, (1) 

« = i(3/ + +/i, *=/—/“, 

± r/2 being the radius vectors of the two nuclei in the molecule relative to their centre of mass. 
The rotational and vibrational states of the molecule are defined by the quantum numbers 

K, Mk, v (which are together-represented by n in (1)). In the electron ground state of the 
Hs molecule, even values of K are possible only for a total nuclear spin 7 = 0 (parahydrogen), 
and odd values of K only for 7=1 (orthohydrogen) (see §86). We must therefore distin¬ 
guish two cases: (1) transitions between rotational states with values of K of the same parity, 
which are possible only for unchanged 7 (ortho-ortho and para-para transitions), (2) tran¬ 
sitions between states with values of K of different parity, which are possible only when 7 
changes (ortho-para and para-ortho transitions). In the first case we have 

<n|e-‘-'/-2|0> = (n|e*q-r''2|0> = <*|cos iq . r|0>. 

it should be remembered that the rotational wave function is multiplied by ( — 1)* when the 
sign of r is changed. The spin operator in (1) then becomes 2a 4-6$.I, where I = Ii + is. 
This operator is diagonal with respect to 7, in accordance with the above discussion. The 
square (2a + 6s.I)2 is averaged, as in Problem 1, giving 

4a2 + £627(7 + 1) 
The result is 

dc„ = l^KHcosiq. r|0>i2[(3/-+/ )2 + 7(/+l)(/*+/-)2]do (2) 

In the second case 
<n|e‘q-r/2|0> = - <«|e-i-'/210> = i<n|sin Iq . r|0>, 

and the spin operator in (1) becomes s.(ii —i2); it has only matrix elements which are non¬ 
diagonal with respect to 7. The squared moduli of these elements, summed over all possible 
values of the component of the total spin I' in the final state, are calculated as the mean values 
(diagonal elements) of the square [s.(i, -i,)]a (see the first footnote to §140): 

[8.(i,-i2)]2=y(TT=^ 

= ±(2iiz -f- 2i2* —Iz) 

= i[3-7(7+1)]. 
The result is 

dc„ =(l)(3)^|<«]siniq.r|0>|2(/--/^do, (3) 

where the coefficient 1 appears for ortho-para transitions and the coefficient 3 for para-ortho 

If the neutrons are so slow that their wavelength is large even compared with the size of 
the molecule, then we can put cos(iq.r) = 1, sin(iq.r) = 0 in the matrix elements in (2) 
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and (3), so that they are all zero except the diagonal element 00; in these conditions, of 
course, only elastic scattering is possible. The elastic scattering cross-section in this case is 

dce = -i[(3/* +/-)2 + /(/+ l)(/+-/-)2]do. 

Problem 3. Determine the cross-section for the scattering of neutrons by a bound 
proton, regarded as an isotropic three-dimensional oscillator of frequency ui (E. Fernn 1936). 

Solution. Considering the proton as oscillating about a point fixed in space, we must 
put in formula (151.3), from its derivation, Mm = M and Ma = \M (M being the mass of the 
proton). Then 

den - —— 2|j£-‘*i-r^ooo(r)^«ln1«1(r)dF|2do1 
P 77 

where oo = 4w|/|2 is the cross-section for scattering by a free proton, and are the 
eigenfunctions of the three-dimensional oscillator corresponding to the energy levels En — 
h w(n + 3/2); the summation is over all values of n\, m and m whose sum has a given value n. 
The functions ^n,n2n3 are products of the wave functions of three linear oscillators (see §33, 
Problem 4). The required integral therefore falls into the product of three integrals of the 
form 

J e-ia,*i2e~o**»/2£-««x*/2//iii(<0()(ja; 

(a = V(Muilh)), which are found by substituting Hny(x) in the form (a.4) and integrating 
m times by parts. The result is 

i0 = 1 °0 y qz2nlqy2n*q2n> 

77 v 2na2n 4-7 ni!rt2!n3l 

The summation is effected by the binomial theorem, and the final result is 

In particular, the elastic scattering cross-s ' = E') is 

as E!hm-+ 0, a, -^4oc. 

§152. Inelastic scattering at high energies 

The eikonal approximation used in §131 for the problem of mutual 

scattering of two particles can be generalized to cover also processes (including 

inelastic ones) in the collision of a fast particle with a system of particles, or 

“target” (R. J. Glauber 1958). 

In this generalization, the principal assumptions made are as before. The 
energy £ of the incident particle is assumed so large that £ P \U\zndka P 1, 

where U is the energy of interaction between this particle and the target 

particles, and a the range of this interaction. We consider scattering with a 

relatively small momentum transfer: the change /iq in the momentum of the 

incident particle is small in comparison with its original value hk (q 4 k). 

This condition, however, now implies not only that the angle of scattering is 

small but also that the energy transferred is relatively small. 
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We shall also suppose that the velocity v of the incident particle is large 

compared with the velocities vo of the particles within the target: 

v > v0. (152.1) 

For the scattering of charged particles by atoms, this condition is equivalent 

to the validity of the Born approximation (cf. §§148 and 150): if v vq, it 

necessarily follows that \ U\ajhv 1. There is therefore no need for the 

present theory in that case. The situation is different, however, for nuclear 

targets, where the particles are held by nuclear and not Coulomb forces. In 

the following we shall discuss the particular case of the scattering of a fast 

particle by a nucleus.f 

The condition (152.1) enables us to consider the motion of the incident 

particle for fixed positions of the nucleons in the nucleus. J That is, the wave 

function of the particle-target system may be written 

<P{t, Ru R2, ...) = 4>{r; Rlt R2, ...)$i(Ri, «2, ...)• (152.2) 

Here dh(Ri, R2, ...) is the wave function of the ith internal state of the 

nucleus; Ri, R2, ... are the radius vectors of the nucleons in it. The factor 

4>{t\ Ri, R2, ...) is the wave function of the particle undergoing scattering (r 

being its radius vector) forgiven values of Rt, R2, ..., which act as parameters 

in Schrodinger’s equation 

[-£a+ 2 Ua(T-Ra)y = (152.3) 

where t/a(r — Ra) is the energy of interaction of the particle with the ath 

nucleon, and /zk the momentum of the particle at infinity.|| 

If we find a solution of (152.3) with the asymptotic form 

4, = eik-I + F{ri, n; R^ R2, ...)e^/r> (152.4) 

where n' = rlr, n = k/&, then the wave function (152.2) 

4> = e‘k-I<I>i + FOie(krlt (152.5) 

will describe scattering by a nucleus that is in its fth state before the collision: 

the incident wave e‘k r appears in (152.5) as a product with dh. The second 

t The condition (152.1) gives 
here the formalism in non-relati 
bility to any particular scattering problems. 

t This approximation is analogous to the one 
in which the electron state is considered for fixed 

!| In (152.3) it is assumed that the interaction of the particle w: 
sura of binary interactions with the individual nucleons. 

its practical applica- 

ich the theory of molecules is based. 



646 Inelastic Collisions §152 

term in (152.5) represents the scattered wave. This expression, however, is 

appropriate for determining the scattering amplitude only if the change in 

the energy of the incident particle is sufficiently small, i.e. if the change in the 

internal energy of the nucleus is sufficiently small; thus, by considering the 

motion of the particle in the constant field of “rigidly fixed” nucleons 

(corresponding to equation (152.3)), we neglect a possible change in the 

energy of this motion. 

To separate the scattering amplitude with a definite change of the internal 

state of the nucleus, we must put </> in the form 

i/< _ eik.rQ.+ Eyy^n', n)0/eifcr/r, (152.6) 

where the summation is over various states of the nucleus; //t(n', n) then 

gives the required scattering amplitude with a particular transition i -* / of 

the nucleus, as a function of the scattering angle (the angle between n and 

n'). Comparison of (152.6) and (152.5) shows that 

//((n', n) = J <b*F<S>t dr, (152.7) 

where dr = d3/?id3/?2 ... is the volume element in the configuration space 

of the nucleus. We must again emphasize that this formula is valid only when 

the energies of the states i and / have a relatively slight difference. 

The solution (152.4) itself of equation (152.3) is found by the method 

described in §131.f Similarly to (131,7) we have 

"K,n; Ri, *2, -.) = ^ J [S(p, Ri, r2, ...)-i>-'-'d2P, 

where 

S(p, Ri, R2, ...) = exp[2i’S(p, Ri, R2, ...)], \ 

8(p, Rlt R2, ...) = S S0(p-R0i), I 

Sa(P-Rai) 
2hv\ 

Ua(r-Ra)dz. 

(152.8) 

(152.9) 

It will be recalled that p is the component of the radius vector r in the 

xy-plane (perpendicular to k), and Rci is the corresponding component of 

the radius vector R0; /zq = p' — p is the change in momentum of the 

t It has been noted in §131 that the initial expression (131.4) for the wave function is valid 
only at distances z « ka‘. This was not important in the further derivation in §131, but for 
scattering bv a system of particles (such as a nucleus) it leads to another limitation: the 
expression (131.4) must be valid throughout the volume occupied by the scattering system, 
i.e. we must have R0 < kaz, where R0 is the radius of the nucleus and a the range of the 
potentials U. 
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scattered particle, and only its transverse components appear in (152.8). The 

functions 80 determine the amplitudes for elastic scattering of the particle 

by the individual free nucleons: 

f{a) = 2^7 J dZp- (152.10) 

When i = /, (152.7) and (152.8) give the amplitude for elastic scattering by 

the nucleus: 

Mn‘> n) = ^ J [5(p)- 1>-^ d^, (152.11) 

where the bar denotes averaging with respect to the internal state of the 

nucleus: 

S(p) = f S(p, Rlf R2, ...)|<E>*(Ri, Ra, -)|2 dr. (152.12) 

This formula generalizes the previous formula (131.7). 

Putting in (152.11) n' = n and using the optical theorem (142.10), we 

obtain the total scattering cross-section: 

ae = 2 f(l-reS)d*p. (152.13) 

The integrated elastic scattering cross-section ae is obtained by integrating 

| fu\2 over the directions of n'. For small scattering angles 6, we have q » k6 

and the solid-angle element do ^ d2qjk2. Hence 

= J \M2 dW- 

Writing/*/^, with/fi from (152.11), as a double integral over d2pd2'p', we 

can carry out the integration with respect to d2q by means of the formula 

J d2q = (2rr)28(p — p'), 

and the delta function is then eliminated by integration over d2p'. The 
result is 

= J|s-i|2dv (152.14) 

The total reaction cross-section is 

°r = at — i = J (1-|S|S) dV. (152.15) 
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Note that (152.13)—(152.15) are in agreement with the general formulae 

(142.3)—(142.5): on changing, in the latter, from summation (over large l) to 

integration over d2p with p = l/k, and replacing Si by the function S(p), we 

obtain (152.13)—(152.15). 

PROBLEMS 

Problem 1. Express the amplitude for elastic scattering of a fast particle by a deuteron 
in terms of those for the proton and the neutron (R. J. Glauber 1955). 

Solution. According to (152.11), the amplitude for elastic scattering by a deuteron is 

f'dK 1) = lMR)|2{expt2.'5n(p - JR,) + 2iSrfp + JRJ] - 1} * «d3* &P (1) 

Here ^d(R) is the wave function of the relative motion of the neutron (n) and the proton (p) 
in the deuteron; R = Rn—Rp, and R, is the component of R in the plane perpendicular to 
the wave vector k of the incident particle. The difference in the braces in (1) may be written 

exp(2i8„ + 2i6p)-l = (*«*■ - l) + (e2i*„- 1) + (,*«„_ l)(e2.->p_ i). 

The integrals can then be transformed, using the definition of the scattering amplitudes for 
the neutron/1"> and the proton / {p), according to (152.10) and the converse formulae 

exp[2iSa(rt]-l - ^J/‘°’(q)<i,, 'd2?/(2*)2. 

The result is 

/«t>(q) = /«»>(q)F(q)+/W(q)F(-q) 

" | ^(2q')/lB,(lq + q')/W(k-q')d2?'. (2) 

F[q) = J IMR)!* d»* 

is the deuteron form factor. 
Putting in (2) q = 0 (with F(0) = 1) and using the optical theorem (142.10), we find the 

total deuteron scattering cross-section: 

- °‘{n) + + |^| ^(2q)/<n,(q)/<p,( - q) d2?. P) 

Problem 2. Determine the cross-section for disintegration of a fast deuteron into a 
separate neutron and proton in scattering by a heavy absorbing nucleus whose radius R0 is 
large compared with the deuteron wavelength (kR„ 1, where hk is the deuteron momentum) 
and the deuteron radius (E. L. Feinberg 1954; R. J. Glauber 1955; A. I. Akhiezer and 
A. G. Sitenko 1955). 

Solution. With regard to the incident deuteron plane wave, the large (kR„ 1) ab¬ 
sorbing nucleus acts as an opaque screen at which the wave is diffracted. The wave function 
of the incident deuterons is eiu-ripd{R). where vWR) is the internal wave function of the 
deuteron (R = R„—Rp is the radius vector between the neutron and the proton in it, r = 
f(Rn +Rp) that of their centre of mass). The presence of the absorbing nucleus removes a 
part of this function corresponding to transverse coordinates of the neutron and the proton 
(p„ and pp) that lie in the “shadow” of the nucleus, i.e. within a circle of radius R«. Thus the 
wave function becomes 

t = «,k‘rS(Pn. Pp)41d{R), 

where S = 1 for p„, pr > R„ and S' = 0 if either pn or pr is less than Ro t This function, 

t The Coulomb interaction of the deuteron with the nucleus is neglected. 
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without the factor 1/1 d, corresponds to the expression for the incident wave in the form (131.5) 
(it neglects the curvature of the rays by diffraction), and the factor 5 therefore has the same 
significance as in §§131 and 152. 

Analogously to (152.13) and (152.14), the total deuteron scattering cross-section- at 
(including all inelastic processes) and the elastic scattering cross-section ae are 

a, -2/(l-5)d*p, o. -J(S-l)*d*p, 

where p = J(pn + Pv) and we have used the fact that S is real; the averaging of S is with 
respect to the ground state of the deuteron, 

For ipd, it is sufficient 

S(p) = | Sipd2 d3R. 

the function 

d Jztt R ' 

which is valid for distances R beyond the range of the nuclear forces between the neutron and 
the proton (cf. (133.14); k = \/{m\(\)jti, where ]c| is the deuteron binding energy and m the 
nucleon mass). From the definition of S, 1 — S is not zero if one or both of the nucleons come 
within the circle of radius R<, and are absorbed by the nucleus; hence 

-/(1-S)d*p=ia, (1) 

is the cross-section for the capture of one or both nucleons. On the other hand, ot = acapt + 
°e + <Mis, where edis is the required cross-section for “diffractive” disintegration of the 
deuteron. Hence 

/ -5(1-5) dV (2) 

When R0k 1, the important distances from the edge of-the nucleus are those which are 
small and ~ 1 /x; then the integration along the edge gives a factor 27rR„, and the integration 
in the perpendicular direction can be carried out as if the shadow region were bounded by a 
straight line. Taking the latter as the y-axis, and the x-axis outwards from the shadow, we 

Vd„ = 2TrRoj 5(*)[l-5(*)] Ax, 

with the integral 

■§(*)=/ / / <l>d2{R) AXAYAZ, R = V(X2+Y*+Z% 

taken over the region Xn, Xp S 0 for a given x = J(An + Aj>) or, what is the same thing, 
over the region |A" | = \Xn—Xv\ ^ 2x. The integral is transformed by changing to the 
variables X and R and to the polar angle in the FZ-plane (with dKdZ-*27rR dR), becoming 

S(x) = l-e-^ + 4,cx J Y^df (3) 

The integral (2) with this function S(x) is calculated by repeated integration by parts, using 

J (e-e-e 2{)^ = log 2. 



650 

The result ist 
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= £-Ro(log2-‘). 

t With the same condition kR„ 1, the capture cross-section is 

= ^oz + ’t^o/4k; 

the integral (1) over the region p>Rc is calculated by means of (3), and that over the region 
p<R0 gives 7tR02. This cross-section includes both capture of the whole deuteron and 
capture of one nucleon with release of the other (stripping reaction). The cross-section for 
the latter reaction is calculated as the impact area (averaged with respect to ipd1) corresponding 
to the incidence of only one nucleon on the shadow region, and is 

(R. Serber 1947). 



MATHEMATICAL APPENDICES 

§a. Hermite polynomials 

The equation 

y"-2xy'+2ny = 0 (a.l) 

belongs to a class which can be solved by what is called Laplace's method.f 

This method is applicable to any linear equation of the form 

v- dmy 

whose coefficients are of degree in x not higher than the first, and consists 

in the following procedure. We form the polynomials 

P{t) = £ amtm, Q[t) = £ bmtm, 

and from them the function 

Z{t) = (1 IQ)eS^l<3^tt 

which is determined to within a constant factor! Then the solution of the 

equation under consideration can be expressed as a complex integral: 

y = j Z(t)ext dr, 

c 

where the path of integration C is taken so that the integral is finite and non¬ 

zero, and the function 

V = e*tQZ 

returns to its original value when t describes the contour C (which may be 
either closed or open). 

In the case of equation (a.l) we have 

P = fi+2n, Q = — 2f, Z =-Le-t»/4 y = 
2f»+i tn 

so that its solution is 

y = | e*'-™ dr/r»+i. (a>2) 

f See, for instance, E. Go\ 
Paris; V. I. Smirnov. Course c 

ursat, Cours d'Analyse Mathematique, Vol. II, Gauthier-Villars, 
of Higher Mathematics, Vol. Ill, Part 2. Pergamon, Oxford, 1964.’ 
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For physical applications we need only consider values n > — For 

these values the contour of integration can be taken as Ci or C2 (Fig. 52); 

these satisfy the required conditions!, since the function V vanishes at their 

ends (f = + 00 or / = — 00). 

4- 

Let us find the values of the parameter n for which equation (a.l) has 

solutions finite for all finite x, which tend to infinity, as x -> ± 00, not more 

rapidly than every finite power of x. First, we consider non-integral values 

of n. The integrals (a.2) along C\ and C2 then give two independent solutions 

of equation (a.l). We transform the integral along Q by introducing the 

variable u such that t — 2(x—u). Omitting a constant factor, we find 

y = e*' J e-“‘dtt/(tt-*)»+i, (a.3) 

where the integration is taken over the contour Cx' in the complex plane of 

u, as shown in Fig. 53. 

0^- 

As x -*• +00, the whole path of integration Q' moves to infinity, and 

the integral in (a.3) tends to zero as e~x\ As * -+ —00, however, the path 

of integration extends along the whole of the real axis, and the integral in 

(a.3) does not tend exponentially to zero, so that the function jy(x) becomes 

infinite essentially as ex‘. Similarly, it is easy to see that the integral (a.2) 

along the contour C2 diverges exponentially ass:-* + 00. 

t These paths will not serve for negative integral n. since the integral (a.2) along them then 
vanishes identically. 
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For positive integral n (including zero), on the other hand, the integrals 

along the straight parts of the path of integration cancel, and the two integrals 

(a.3), along Cx' and C2', reduce to an integral along a closed path round the 

point u = x. Thus we have the solution 

y(x) = ex' j> c-“* du/(w—x)n+1, 

which satisfies the conditions stated. According to Cauchy’s well-known 

formula for the derivatives of an analytic function, 

/'”>(*) = — 
m 

d t. 

y(x) is, apart from a constant factor, an Hermite polynomial: 

H„(x) = (-!)"«* 
. d" 

dxn 
(a.4) 

The polynomial Hn, expanded in decreasing powers of x, has the open 

form 

Hn(x) = (2 xy 
n(n-l) 

-(2*)"-2+ 
n(n- l)(«-2)(H-3) 

1.2 
(2x)-4- (a.5) 

It contains only powers of x which are of the same parity as n. We may write 

out here the first few Hermite polynomials: 

H0 = 1, Hi = 2x, Hz = 4x2-2, H3 = 8x3-12x, Hi = 16x4-48x2+12. 

(a.6) 

To calculate the normalization integral, we replace e~x' Hn by its expres¬ 

sion in (a.4) and integrate n times by parts: 

J e~*'Hn2(x) dx = J (-l)nHn(x)^-e-*'dx 

i dxn 

But dnHnjdxn is a constant, 2"ri!. Thus 
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§b. The Airy function 

§b 

The equation 

y"-*y = 0 (b.i) 

is of Laplace’s type (see §a). Following the general method, we form the 

functions 

p — 12j Q = — 1, Z = — g-»*/3> v — ext~t3ls, 

so that the solution can be represented in the form 

y(x) = constant x J ext-‘’/3 At. (b.2) 

c 

The path of integration C must be chosen so that the function V vanishes 

at both ends of it. These ends must therefore go to infinity in the regions 

of the complex plane of t in which re t3 > 0 (the shaded regions in Fig. 54). 

Fig. 54 

A solution finite for all jc is obtained by taking the path C as shown in the 

figure. It can be displaced in any manner provided that the ends of it go to 

infinity in the same two shaded sectors (I and III in Fig. 54). We notice that, 

by taking a path which lay in sectors III and II (say), we should obtain a 

solution which becomes infinite as x -*■ co. 
Deforming the path C so that it goes along the imaginary axis, w'e obtain 

the function (b.2) in the form (substituting t = iu) 

(x) = — f cos(u*+i«3) du. 
V* J 
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The constant in (b.2) has been put equal to —t'/2vX and we have denoted 

the function thus obtained by <D(x); it is called the Airy function.f 

The asymptotic expression for C>(x) for large values of x is obtained by 

calculating the integral (b.2) by the saddle-point method. For x > Q, the 

exponent in the integrand has an extremum for t = ± \/x, and the "direction 

of steepest descent” of the integrand is parallel to the imaginary axis. 

Accordingly, to obtain the asymptotic expression for large positive x, we 

expand the exponent in powers of t + \/x and integrate along the line Cx 

(Fig. 54), which is parallel to the imaginary axis; the distance OA = y-'x. 

Making the substitution t = —\/x + iu, we have 

<D(x) a -yVlT J e-(2/3)x*l>-liWx fa, 

whence 
<D(x) * £x-i/4e-<2/3>z’'*. (b.4) 

Thus, for large positive x, the function <D(x) diminishes exponentially. 

To obtain the asymptotic expression for large negative values of x, we 

notice that, for x < 0, the exponent has an extremum for t = iyj|x| and 

t = — iVM. and the direction of steepest descent at these points is along 

lines at angies —and £7t respectively to the real axis. Taking as the path 

of integration the broken line C3 (the distance OB = \/|*|), we have, after 

some simple transformations, 

<D(x) =|x|-*/4sin(J|x|3/3+^). . (b.5) 

Thus, in the region of large negative x, the function <D(x) is oscillatory. 

We may mention that the first (and highest) maximum of the function <F(x) 

is <D( —1-02) — 0-95. 

The Airy function can be expressed in terms of Bessel functions of order £. 

The equation (b.l), as can easily be seen, has the solution 

V*.Z1/3(§*3/2), 

where Zll3(x) is any solution of Bessel’s equation of order J. The solution 

which is the same as (b.3) is 

®(*) = iV(^)[/-l/3(!^2)-/l/3(|x3/2)] | 

S V(xI3tt)Ki/3{$x312) for x >0, J (b.6) 

<D(x) = iVn^lKZ-i/sakl^+yt/adkl3/2)] for x < 0, I 

where 

W = Kfx) = _^_[/_v(x)-/v(x)]. 

, t We follow the definition proposed by V. A. Fok; see G. D. Yakovleva, Tablitsy funktsii 
ETri (Tables of Airy Functions), Nauka, Moscow, 1969. The function is one of two 
defined by Fok, who denotes it by V(x) In the literature, another definition of the Airy 
function is also found, which differs from (b.3) by a constant factor: Ai(x) = <$(*)/v"". 
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Using the recurrence relations 

§c 

K^x)-K^{x) = ~KJix\ 

2 Kv'{x) = -Xv-!(*)-X.+10c). 

we easily find for the derivative of the Airy function 

When x = 0, 

$'(*) = -——Km(ixW)forx>Q. 
W*) 

(D(0) = V* . 

32/3r(f) 

<D'(0) = - 31/6-r-(i) = -0-459. 
V 2V* 

(b.7) 

Figure 55 shows a graph of the Airy function. 

Fig. 55 

§c. Legendre polynomials! 

The Legendre polynomials Pi{cos 8) are defined by the formula 

Pi{cos 6) = 
J_ 

2'/! (d 
—(cos2 8— 1)!. (c.l) 

are in the mathemat.cal literature many good accounts of the theory of spherical 
Here we shall give, for reference, only a few basic relations, and make no attempt 

atic discussion of the theory of these functions. 



§c Legendre polynomials 

They satisfy the differential equation 

657 

-±- sin e +/(/+i)p, = o. 
sin 8 d#\ d8 / 

The associated Legendre polynomials are defined by 

Pftcos 8) = sinm 8 dmPKC0S 6) 
(d cos 8)m 

1 = — sinm 8— 
2W (d cos ey- 

_(cos2fl-iy, 

(c.2) 

(c.3) 

or, equivalently, 

PT(cos 8) = (-1 sin -» 8-—-(cos2 8 -1V, (c.4) 
n K ’ {i-m)\2n\ (decs ey-™K ’’ 1 ] 

withm = 0, 1, The associated polynomials satisfy the equation 

—-i/'sinfl^^ + f^+l)-—~|PT = 0. (c.5) 
sm8d8\ d8 J L sin2 ' 1 ’ 

The normalization integral 

(/a = cos 8) for the Legendre polynomials is calculated by substituting (c.l) 

and integrating / times by parts, which gives 

t-iy r 
22l(it)2J (p2~1)d^('i8~1),d/i 

(2Q! f 

22l(l!)2 J (1 -P2)1 cV- 

Substitution of u = i(l — fj.) reduces this integral to Euler’s beta function, 
and the result is 

<«*> 

Similarly, it is easily seen that the functions P,(/x) with different / are 
orthogonal: 

J P,0*)P,.0*) dM = 0, / + (c.7) 



658 Mathematical Appendices §c 

The calculation of the normalization integral for the associated Legendre 

polynomials is easily effected by a similar method. We write [Pj”(/n)]2 as a 

product of the expressions (c.3) and (c.4), and integrate l—m times by parts; 

the result is 

-i 

It is also easily seen that the functions Pf with different / (and the same m) are 

orthogonal: 

/ PTMPrM = 0, (c.9) 

The calculation of the integrals of products of three Legendre polynomials is 

discussed in §107. 

The following addition theorem holds for Legendre polynomials. Let y be 

the angle between two directions defined by the spherical angles 8, <f> and 

8', <f>': cos y = cos 6 cos 8' + sin 8 sin 8‘ cos (<f> — Then 

Pi{cos y) = Pi{cos 8)Pi{cos 8’) 

S 2(7+^]iP'm(c°S 6"> cos 
(c.10) 

This theorem can also be written in terms of the spherical harmonic functions 

defined by (28.7): 

Pi{n • n') = 2 <c-n> 

Here n and n' are two unit vectors, and Yim(n) denotes the spherical har¬ 

monic function of the polar angle and azimuth of the direction of n relative to 

a fixed system of coordinates. 
If equation (c. 10) is multiplied by Pi(cos 8) and integrated over do = 

sin 8 d8 d<f>, the integration with respect to <)> gives zero for all "terms on 

the right that contain factors cos — \ using (c.6) and (c.7), we obtain 

J P^cos y)Pi\cos 8)do = 8u.^-^Pi{cos 8'). 
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This result may be written in the symmetrical form 

j"Pi{ni • n2)Pj-(n1. n3)d0l = Sn.-^-P,(n2 . n3), (c.l2) 

where ni, n2, n3 are three unit vectors and the integration is with respect to 

the direction of ni. 

Finally, we give the first few normalized spherical harmonics Ytm: 

Too = 1/veM; 

Yw = tV(3/4rr)cos6, Yll±i = + iV(3/8w)sin 6 . e** ■ 

F2o — V(S/16ir)(l -3 cos20), 

Y2,±i = + V(15/8*r) cos 6 sin 6 . e***, 

Fa,±2 = — V(15/32w) sin20 . e±2^; 

Yzo = -iV(7/16jt) cos 6(5 coS20-3), 

y3,±i = ±»V(21/64w) sin6(5 cos20-l)e±^, 

F3,±2 = -iV(10S/32w) cos 6 sin26 . 

F3>±3 = ± iV(3S/6+tt) sin36 . e±»*. 

§d. The confluent hypergeometric function 

The confluent hyper geometric function is defined by the series 

P(“,y.*) = i+- 
y i! 

*(*+i)*2 - 

y{y+1) 2! ’ 
(d.l) 

which converges for all finite z; the parameter a is arbitrary, while the 

parameter y is supposed not zero or a negative integer. If a is a negative 

integer (or zero), F(a, y, z) reduces to a polynomial of degree |a|. 

The function F(a, y, z) satisfies the differential equation 

zu" + (y—z)u'—au = 0, (d.2) 

as is easily seen by direct verification.! By the substitution u = z1_rui, 

this equation is transformed into another of the same form, 

^mi"+(2—y — z)ui— (a—y+l)tti =0. (d.3) 

Hence we see that, for non-integral y, equation (d.2) has also the particular 

integral z1-v F(a—y + 1, 2—y, z), which is linearly independent of (d.l), 
so that the general solution of equation (d.2) is of the form 

u = CiF(a.,y,z)+c2zi-rF(a-y+l,2-y,z). (d.4) 

t The equation (d 2) with a negative integral y does not require special discussion since it 
can be reduced to a case of pos.tive integral y by the transformation which gives equation (d.3). 
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The second term, unlike the first, has a singular point at z = 0. 

Equation (d.2) is of Laplace’s type, and its solutions can be represented 

as contour integrals. Following the general method, we form the functions 

P(t) = yt a, Q(t) = t(t-1), Z(t) = l)r-a-i, 

so that 

u = j fa. (d.5) 

The path of integration must be chosen so that the function V{t) 

= e'*/“(/ — l)v_a returns to its original value on traversing the path. Applying 

the same method to equation (d.3), we can obtain for u a contour integral of 

another form: 

u = zi-r J e“t°-y(t-l)-° dt. 

The substitution tz -> t reduces this integral to the convenient form 

u(z) = fe‘(t-z)-°t°-rdt, (d.6) 

and the corresponding function V to 

V(t) = eHa-y+1(t-zy~a. 

The integrand in (d.6) has in general two singular points, at t = z and 

t = 0. We take a contour of integration C which passes from infinity 

(re / -> — oo) round the two singular points in the positive direction and back 

to infinity (Fig. 56). This contour satisfies the required conditions, since 

V(t) vanishes at its ends. The integral (d.6), taken along the contour C, 

has no singular point for z = 0; hence it must be the same, apart from a 

THDc 
Fig. 56 

constant factor, as the function F(a, y, z), which also has no singularity. 

For z = 0 the two singular points of the integrand coincide; according to a 

well-known formula in the theory of the gamma function, 

eH~y dt = l/r(y). (d.7) 



§d The confluent hypergeometric function 

Since F(a, y, 0) = 1, it is evident that 

T(y) r 

F{a’y’Z) = 2^\ et(t~z^aia-ydt- (d.8) 
c 

The integrand in (d.5) has singular points at t = 0 and f = 1. If re(y_a) 

> 0, and y is not a positive integer, the path of integration can be taken as a 

contour C' starting from the point t = 1, passing round the point t = 0 

in the positive direction, and returning to t = 1 (Fig. 57); for re(y — a) > 0, 

the function V(t) returns to its original value of zero on passing round such a 

contour.f The integral thus defined again has no singularity for z = 0, 

and is related to F(a, y, z) by 

1 r(l-a)r(y) r 
F(a,y,z) = -------<b 1 d*. (d.9) 

2m r(y—a) J 
C' 

The following remark should be made concerning the integrals (d.8), (d.9). 

For non-integral a and y, the integrands are not one-valued functions. 

Their values at each point are supposed chosen in accordance with the con¬ 

dition that the complex quantity which is raised to a power is taken with the 

argument whose absolute value is least. 

We may notice the useful relation 

F{a.,y,z) = e*F(y—a,y,— z), (d.10) 

which is obtained at once by substituting t -*■ t+z in the integral (d.8). 

We have already remarked that, if a = —n, where n is a positive integer, 

the function F(a, y, z) reduces to a polynomial. A concise formula can be 

obtained for these polynomials. Making in the integral (d.9) the substitution 

t~* l — t/z and applying Cauchy’s formula to the resulting integral, we find 

^ 1 d" 
F(-n,y,z) =---— -zi-ri*-(e-**r+»-1). (d.ll) 

y(y+i)-(y+H-i) d*n ' v ' 

If also y = a positive integer m, we have the formula 

F{-n,m,z) = 
(-l)m-i ^ d"+"-i ^ 

m(m+1) ...(m + n— 1) d2rm+"-1^ ^ 

can be any contour which passes round 

(d-12) 

both the points t = 0 
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This formula is obtained by applying Cauchy’s formula to the integral derived 

from (d.8) by the substitution t -> z—t. 

The polynomials F(—n,m,z), 0 <»«<«, are (apart from a constant 

factor) the generalized Laguerre polynomials 

Lnn{z) = (-1)’ 

(«- 

= (-ir- 

m\(n— m)! 

d" 
(e-lzn-m) 

-F{-[n-mlm+\,z) 

i)! dz" 

nl 
ezz~m-(e~zzn). 

(n—m)\ dz"'m 
(d.13) 

The polynomials Lnm for m = 0 are denoted by Ln(z) and are called simply 

Laguerre polynomials-, from (d.13) we have 

The integral representation (d.8) is convenient for obtaining the asymptotic 

expansion of the confluent hypergeometric function for large z. We deform 

the contour into two contours C\ and C2 (Fig. 56), which pass round the points 

t = 0 and t = z respectively; the lower branch of C2 and the upper branch of 

Cx are supposed to join at infinity. To obtain an expansion in inverse powers 

of z, we take (—z)-0 outside the parenthesis in the integrand. In the integral 

along the contour C2, we make the substitution t -*■ t+z\ the contour C% 

is thereby transformed into Cv We thus represent the formula (d.8) as 

F{a,y,z) = —^-,)-G(«t«-y+l, -*)+ 
r(y-a) 

T(y) 
+7—«**“-»G(y-a, 1-a,*), (d.14) 

T(a) 

c, 

(d.15) 

In racing —z and z to powers in the formula (d.14) we must take the argu¬ 

ments which have the smallest absolute value. Finally, expanding (1 +tlz)~a 

in the integrand in powers of tjz and applying formula (d.7), we have for 

G(a, /3, z) the asymptotic series 

G(a,/3,*) = 1+- 
1 \z 

t(q+l)/3Q3+l) 

2!z2 
(d.161 

Formulae (d.14) and (d.16) give the asymptotic expansion of the function 

F( a, y. *). 
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For positive integral y, the second term in the general solution (d.4) 

of equation (d.2) is either the same as the first term (if y = 1) or meaningless 

(if y > 1). In this case we can take, as a set of two linearly independent 

solutions, the two terms in formula (d.14), i.e. the integrals (d.8) taken along 

the contours Cx and C2 (these contours, like C, satisfy the required conditions, 

so that the integrals along them are solutions of equation (d.2)). The asymp¬ 

totic form of these solutions is given by the formulae already obtained; it 

remains for us to find their expansion in ascending powers of z. To do this, 

we start from equation (d.14) and the analogous equation for the function 

zi-y ^(a—y-\-1, 2—y, z). From these two equations we express 

G(a,a—y+1, —z) in terms of F(a, y, z) and F(a—y+1, 2—y, z); we then 

put y=p+e (p being a positive integer), and pass to the limit e -> 0, 

resolving the indeterminacy by L’Hospital’s rule. A fairly lengthy calcula¬ 

tion gives the following expansion: 

sinmc. r(p—a) 
G(a, a—/>+1, —z) =----zaX 

-r (p) 

L , ^r(p)r(a+s)Ma+s)-<Kp+s)-tts+l)] 
X\\ozz.F(a.,p,z)+ > -z‘+ 

1 8 t'o r(«)r(*+p)r(I+i) 

+ 
v-l 

2(-ds+i 

r(or(«-or(p)_ 
r(«)r(p-o 2 

(d-17) 

where ip denotes the logarithmic derivative of the gamma function: </,(a) 

= r'(a)/r(a). 

§e. The hypergeometric function 

The hypergeometric function is defined in the circle \z\ < 1 by the series 

F(a.,fi,y,z) — 1H ~ ~ h‘ 
y 11 

z a(a+1)009+1 )z* 

V(V+1) 2! 
(e.l) 

and for |z| > 1 it is obtained by analytical continuation of this series (see 

(e.6)). The hypergeometric function is a particular integral of the differential 

equation 

z(l—z)u"+[y—(cL+P+l)z]u'—aPu == 0. (e.2) 

The parameters a and 0 are arbitrary, while y # 0, — 1, —2,.... The 

function F(a, 0, y, z) is evidently symmetrical with respect to the parameters 
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a and /3.f The second independent solution of equation (e.2) is 

y +1, a— y +1, 2—y, z); 

it has a singular point at z = 0. 

We shall give here for reference a number of relations obeyed by the hyper¬ 

geometric function. 

The function F(a, y, z) can be represented for all z, if re(y — a) > 0, 

as an integral: 

F(*,p,y,z) 
1 r(l-a)r(y) r 

~2rd r(y—a) J 
C' (e.3) 

taken along the contour C’ shown in Fig. 57. That this integral in fact 

satisfies equation (e.2) is easily seen by direct substitution; the constant 

factor is chosen so as to give unity for z — 0. 

The substitution u = {\—z)y~a~^ul in equation (e.2) leads to an equation 

of the same form, with parameters y — a, y—jS, y in place of a, /3, y respec¬ 

tively. Hence we have 

F(a,0,y,a) = (1— z)y~a fiF(y—a.,y—P,y,z)-t (e.4) 

both sides of this equation satisfy the same equation, and they have the same 

value for z = 0. 

The substitution t -> f/(l — z+zt) in the integral (e.3) leads to the fol¬ 

lowing relation between hypergeometric functions with variables z and 

*/(*-!): 

F(*,fi,y,z) = (l-z)-*F(a,y-p,y,zl{z-l)). (e.5) 

The value of the many-valued expression (1—ar)“° in this formula (and of 

similar expressions in all the following formulae) is determined by the con¬ 

dition that the complex quantity which is raised to a power is taken with the 

argument whose absolute value is least. 

Next we shall give, without proof, an important formula relating hyper¬ 

geometric functions with variables z and 1/a: 

r(y)r(/3—a) 
n*,P.y,*) = s-z)-aF(«>“+1-y.“+1i/*)+ 

IWXy-«) 
, r(y)r(a-j3) 

r(a)r(y-/3) 
~(—z)~fiF(J},f}+l—ytf}+1 -a, 1/a). (e.6) 

t The confluent hypergeometric function is obtained from F(a, fi, y, z) by taking the limit 

F(a,y,z) =lim F{a.,fS,y,zlfS). 

The notation ^.(a, j3, y, z) for the hypergeometric function and iF^a, y, z) for the confluent 
hvpergeometnc function is also used in the literature. The subscripts to the left and right ot t 
show the numbers of parameters in the numerators and denominators respectively of the 
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This formula expresses F(a, /3, y, z) as a series which converges for \z\ > 1, 

i.e. it is the analytical continuation of the original series (e.l). 

The formula 

ffofcy,*) 
IXy)r(y-«-j3) 

= r(y-«)r(y-/S)‘ 

r(y)r{«+f}-y) 

r(«ra 

-F(a,i9Ia+i9+l-y>l-*)+ 

(1 -z)r-<r-*F(y-a, y-/S, y+1 - a-/3,1 - *) 

(e.7) 

relates hypergeometric functions of £ and I — z\ again, the proof will not 

be given here. Combining (e.7) with (e.6), we obtain the relations 

r(y)ros-a) 
F(a,/3,y,2) = -y'* (1 -z)~*F{a, y-/3, a+1 -/3.1/(1 -z))+ 

r(y)r(a-^) 

' r{a)r(y-f) 
(1 —z)-tF(fi, y-a.)3+1 -a, 1/(1 -*) ), (e.8) 

r(y)r(y—a—/}) / *-l\ 

T(y)r(a+^-y) 

r(a)ros) 
(1 — zy-a-PzP-tF ^ 1 —/!, y—/3, y+1 -a-/S, —^. (e.9) 

Each of the terms in the sums on the right of equations (e.6)-(e.9) is itself 

a solution of the hypergeometric equation. 

If a (or jS) is a negative integer or zero, a = —n, the hypergeometric 

function reduces to a polynomial of the nth degree, and can be represented 

in the form 

z1-y(l—z)r+n-f d" 
F{-n,f,y,z) = [zy+n-1{l_z)fi-y]. (e.10) 

y(y+l)...(y+ti—l)dz* 

These polynomials are the same, apart from a constant factor, as the Jacobi 

polynomials, defined by 

*.<■•"(*) - ia+1Xa+n?>-Aa + nM-,°+b + ', + l.a + l.t-W 

“ --I""*1 +*r‘ £) [0 ~=r*"(i (e.n) 

For a = b = 0, the Jacobi polynomials are the Legendre polynomials For 
n = 0, P0<a*6) = 1- 
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§f. The calculation of integrals containing confluent hypergeometric 

functions 

Let us consider an integral of the form 

Jay' = J e~^z>F[a,y,kz)dz. (f.l) 

o 

We assume that it converges. If this is so we must have rev > —1 and 

re A > |re k\; if a is a negative integer, the latter condition can be replaced 

by re A > 0. Using for F[a, y, kz) the integral representation (d.9) and 

effecting the integration over z under the contour integral, we have 

Ja 
i r(i-«)r(y) rr 

'2m r(y—a) jJ 
C'C 

dtdz 

1 r(l a)r(y) 

2rri r(y a) 
■A--ir(v+i)x 

X <j> At. 

c> 

Using (e.3), we have finally 

Jay = r(v+l)A--lf(«,v+l,y,A/A). [1.2) 

In the cases where the function F[a, v+1, y, k/X) reduces to a polynomial, 

we have for the integral J^* an expression in terms of elementary functions: 

Jay(f 3) 

/-".y* 

r(v+l)(A-ft)r+*-*-i d» 

= ^""TTn—rr—rr —(f.4) 
y(H-l) — (y+«—1) dA» 

Ja*nn ~ 
( l)m 

r,-1(l a)(2—a)... (m—1 a) 

d» 
-(«-!)!-(A»-i(A-*)"“*^]+ 

+n! [m—n— 1)... (m- l)A“-»-i(A-k)~'+ .[Am-«-i(A—A)“-l]j; (f-5) 

here m, it are integers, with 0 < n < m—2. 

Next, let us calculate the integral 

(f.6) J„ = I e-kzzo-^\F[—n,y,kz)¥Az, 
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where n is an integer and re v > 0. To calculate this, we begin with a more 

general integral having e~Xz instead of e~kz in the integrand. We write one 

of the functions F( — n, y, kz) as a contour integral (d.9), and then integrate 

over z, using formula (f.3): 

J e-**z'-i[F{-n,y,kz)]*dz 

o 

i r(i+w)r(y) w 

2m r(y+n) 

xjf -t)r+»-ie-<*--to*z’’-iF{-n,y,kz) d<ds 

i , 1N„r(i+n)r2(y)r(v) 
-(—1)»- 
2m T2(y+n) 

X 

xf (X-kt-k)7+”-'’(-t)-”--L(l-t)r+n-'-—[(\-kt)-"(A-kt-k)'-r] dt. 
J dA" 

The nth derivative with respect to A can evidently be replaced by a derivative 

of the same order with respect to t; we then put A = k, and thereby return 

to the integral Jv: 

i r(n+i)i»r2(y) 

2m r2(y+n)£- 
X ^ (_0r--d*. 

C' 

By integrating n times by parts, we transfer the operator d"/dtn to the expres¬ 

sion (—t)7-”-1 (1— t)v+n_1, and then expand the derivative by Leibniz’ 

formula. As a result, we obtain a sum of integrals, each of which reduces 

to Euler’s well-known integral. We finally have the following expression 

for the integral required: 

!»*! 

Jr ^y(y+l)...(y-l-M_l) X 

f1 + (w-j)(y-v-r-l)(y-y-r) ••• (y-v + j)] ,{ 7) 

1 [(r+i)!]V(y + i)-(y+^) J 

It is easy to see that the integrals /„ are related by 

(y-p-\){y-p)...(Y+p-\) 

J^P--Jr*~» 

where p is any integer. 

We similarly calculate the integral 

J = J e-^1zy-1F{a., y, kz)F(a.', y, k'z) dz. 

(f-8) 
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We represent the function F(a', y, k'z) as a contour integral (d.9), and 

integrate over z, using formula (f.3) with n = 0: 

1 r(l-a')r(y) rr 
J = -T-T-TT -tF 9 (-tV-Kl-tyr-'-We^-raFia.y.kz) d*d* 

2m T(y—a ) J J V 0 
1 r(l-a')r2(y) f 

= w -,x~ 9 dt. 
2m r(y—a) J 

c' 

By the substitution t -+ \tftk't + X—k'), this integral is brought to the form 

(e.3), giving 

1 - (OO, 

If a (or a') is a negative integer, a = — n, this expression can be rewritten, 

using (e.7), as 

r2(y)r(y+n-«Qv 

r(y+n)r(y-«') 
•' “^(A—A)"(A—k') X 

xF^- 
X(X—k—k') \ 

■y’(A-A)(A-A')/ 
(f 11) 

Finidiy, let us consider integrals of the form 

//*>(«,«') = J e-<fc+«W2xr-i+sF(a,y,kz)F(a\y-p,k'z) dz. (f.12) 

o 

The values of the parameters are supposed such that the integral converges 

absolutely; s and p are positive integers. The simplest of these integrals, 

/y00(a, a'), is, by (f.10), 

/ 4kk' \ 
Jy°°(«.« ) = 2rr(y)(A+F)“---r(F-A)-(A-F)-“-F^«,«',y, (f.13) 

if a (or a') is a negative integer, a = — n, we can also write, by (f-11), 

r co(_n a, = 
Jy 1 ’ y(y+l)...(y+n-l) 

X(-l)»(A+F)-»+“'-n^-^)n-“'F[-n,a',a'+l-«-y,(J^7) ]• (fl4> 
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The general formula for Jytv(jx, a') can be derived, but it is so complex that 

it cannot be used conveniently. It is more convenient to use recurrence 

formulae, which enable us to reduce the integrals //”(<*, “') to the integral 

with s = p = 0. The formula 

//*(«.«') = V-^Jy~ l’ a')> (f.15) 

enables us to reduce Jysv(a., a') to the integral with p = 0. The formula 

J/+1-°(«,«') = «')+ 

+i(y_ 1 + s 2cl)J7s -1,0(a, a ')+2a'r/y*-l-0(a,«'+1)} (f.16) 

then makes possible the final reduction to the integral with r = p = O.f 

t See W. Gordon, Annalen der Physik [5] 2, 1031, 1929. 
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Acceleration, in quantum mechanics 56 
Accidental degeneracy 119, 125, 256 
Action 20, 165 n. 
Adiabatic invariant 171 
Adiabatic perturbations 148, 195-8 
Airy function 75, 654 - 6 
Alternation of functions 235 
Angular momentum (IV) 82 ff. 

addition of 99 - 101, (XIV) 433 ff. 
commutation relations 83 - 5, 93. 97 
eigenfunctions 89 - 92 

orbital 200 
total 202 

spin 200 
vibrational 422 

Annihilation operator 243 
Anticommuting operators 98 
Anti-Hermitian operator 15 
Antisymmetric term 332 
Antisymmetric unit tensor 84 
Apparatus 2-3,21-4 
Atom (X) 251 ff. 

in magnetic field 463 - 70 
interaction at large distances 341 - 4 

Atomic energy levels 251-2 
Atomic units 118 n. 
Auger effect 280 - 1 
Axial vector 98 
Azimuthal quantum number 104 

Barrier, potential 79-81 
in quasi-classical case 179 - 85, 191 - 5 

Bilateral axis 363 
Binary transformations 207 n. 
Bohr and Sommerfeld’s quantization rule 

171 
Bohr magneton 455 
Bohr radius 118 n. 
Born approximation 516 - 19 
Bose ( - Einstein) statistics 228 

second quantization 242 - 7 
Bosons 228 
Bound state 29 
Breit and Wigner's formula 607- 15 

Centrallv symmetric field, motion in (V) 
102 ff. 

quasi-classical 175-9 
Centrifugal energy 104 
Channel of reaction 595 

input 595 
widths 610-11 

Charge symmetry 474 
Class of group 361 
Classically inaccessible 166 
Clebsch - Gordan coefficients 436 
Closed set of functions 8 
Closed shell 253 
Coherent states 71 n. 
Collision of the second kind 345, 353 
Collisions, see Elastic collisions; Inelastic 

collisions 
Commutation relations 43, 46, 83 - 5, 93, 

97, 200, 413, 457 
Commutative operators 14 
Commutator of operators 15 
Commuting operators 14 
Complete description 4, 5 
Complete set 

of functions 8 
of quantities 5 

Complex compounds 314 
Complex time 189 
Compound nucleus 608 
Compound system 562 
Configuration space 6 
Conservation of 

angular momentum 82 
energy 27 
momentum 42 
parity 98 

Conserved quantity 27 
in Coulomb field 124 

Continuous spectrum 8, 15 - 19, 567 - 71 
Contravariant spinor components 207 
Coordinate representation 44 
Coriolis interaction 424 
Coset 361 
Coulomb degeneracy 119, 124-6 
Coulomb field, motion in 117 ff 

scattering in 564 - 7 
Coulomb functions 575 n. 
Coulomb units 117 
Covariant spinor components 208 
Creation operator 244 
Cross-section 

partial 507 
reaction 596 
scattering 505, 611 
transport 519, 581 

Current density 57 
in magnetic field 472 - 3 

De Broglie wav 

671 

✓elength 51 



Index 672 

Degeneracy of energy levels 28, 88, 251 
accidental 119,125,256 
Coulomb 119, 124-6 
permutational 237 
removal of 139 

Delta function 17, 43 n., 152, 510 n. 
Density matrix 38-41 
Derivative, in quantum mechanics 26, 31 
Detailed balancing, principle of 606 
Deuteron disintegration 193-4, 648 - 50 
Diatomic molecule (XI) 300 ff 
Dimension of representation 199 n., 371 
Dipole moment 281 
Discrete spectrum 8-15 
Dispersion relation 532 - 5 
Doublets (ree also Multiple!) 

levels 252 n. 
relativistic 279 
screening 280 

Dummy indices 208 

Eigenfunctions 8 
Eigenvalues 8 

complex 560 
Eikonal approximation 541 n., 644 
Elastic collisions (XVII) 504 ff. 

with inelastic processes 595 - 9 
Electron 

configuration 253,274-7 
diffraction experiment 1 - 2 
states in the atom 252 ff. 
terms in the diatomic molecule 300 ff 

intersection of 302 - 5 
Element of group, see Group, element of 
Energy 21 

levels 28 
atomic 251-2 
complex 560 
degenerate 28, 88, 251 
hydrogen-like 256 - 7 
of linear oscillator 68 

anharmonic 136 
in magnetic field 459 
in potential well 65 
in quasi-classical case 173-5 
vibrational 405 - 7 
virtual 554 
width of 159. 559, 6l0 

representation 33 n. 
Equivalent 

axes 363 
planes 363 
states 253 

Eulerian angles 216 
Even - even nuclei 486 
Even states 97 

of molecules 301 
Exchange 

integral 233 
interaction 232, 572 

“Fall” to the centre 54, 114-17 
Fermi( - Dirac) statistics 228 

second quantization 247 - 50 
Fermions 228 
Fine structure 252, 322 

of atomic levels 267 - 71 
Finite-displacement operator 45 
Finite motion 29 
Finite-rotation matrix 217 
Forbidden transition 101 
Form factor, atomic 580 
Franck and Condon’s principle 346 
Free motion 50-2 

in centrally symmetric field 105- 14 

Galileo’s relativity principle 50 
Generators of rotation group 390 n. 
Ground state 28 

Abelian 360 
class of 361 
conjugate 362 
continuous 370, 389-93 
cubic 369 n. 
cyclic 360 
direct product of 362 
double 394 
element of 360 

conjugate 361 
generating 381 
inverse of 360 
multiplication of 360 
order of 360 
period of 360 
product of 360 
unit 360 

finite 360 
icosahedron 370 
isomorphous 362 
normal divisor of 362 
octahedron 369 
order of 361 
point 362 - 70, 378 - 82, 389 - 97 
representation of 370 - 85; see also 

Representation of group 
rotation 389 
sub- 360 

conjugate 362 
tetrahedron 367 
theory 360 ff. 
unit element of 360 

Gyromagnetic factor 465, 487 

Hamiltonian (operator) 26 
of freely moving particle 50 
of interacting particles 51 
of linear oscillator 67 

Helium ^0^257 - 60 
37-8 
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Hermite polynomials 69, 651 -3 
Hermitian 

conjugate operator 11 
matrix 32 
operator 11 

Heteropolar binding 312 
High energies 

elastic scattering at 538 - 45, 579 - 83 
inelastic scattering at 624 - 33, 644 - 50 

Hole 254, 279 
Homogeneous field, motion in 74-6 
Homopolar binding 313 
Hund’s rule 253 
Hydrogen atom 256 - 7, 289 - 99, 462 - 3, 

583, 631 -3 
Hydrogen-like energy levels 256 - 7 
Hyperfine structure 

of atomic levels 498 - 501 
of molecular levels 501-3 

Hypergeometric functions 659 - 69 

Laboratory system of coordinates 504 
Laguerre polynomials 662 

generalized 120, 662 
Lambda (A)-doubling 338 - 41 
Landau levels 459 
Lande g-factor 465 
Lande’s interval rule 269 
Langevin’s formula 466 
Large distances, atoms at 341 - 4 
Legendre polynomials 656 - 9 

associated 90 - 1, 657 - 9 
Linear operator 10 n. 
Linear oscillator 67 - 74 

anharmonic 136 
Line of nodes 216 
Logarithmic accuracy 462 
Low energies 

elastic scattering at 545 - 59 
inelastic scattering at 601 - 5 

LS coupling 270 
Luminescence 526 n. 

Identical particles (IX) 227 ff. 
collisions of 571-4 

Index of sub-group 361 
Indistinguishability of similar particles 
Inelastic collisions (XVIII) 595 ff. 
Inert gases 275 
Intermediate groups 274, 275-6, 313 
Intermediate states 156 
Intersection of electron terms 302 - 5 
Invariant, adiabatic 171 
Invariant integration 390 
Invariant sub-group 362 
Inverse operator 14 
Inversion transformation 97-9 
Ionization of atoms 

in a decay 150-1 
in P decay 150 
by electric field 294 
by electrons 624, 632 - 3 
by heavy particles 639 
near threshold 624 n. 

Irreducible tensor 214 
Isobaric invariance 474 
Isospin 475 
Isotopic 

invariance 474 - 8 
shift 496 - 8 
spin 475 

Jacobi polynomials 219, 665 
Jahn-Teller theorem 225 
jj coupling 271,485 

Kernel ol operator 10 
Kramers’ theorem 225 
Kronerker product 376 



674 Index 

Momentum 42-5 

representation 44 
Multiple! 

inverted 269 

43, 46 

splitting 252, 322 
terms in diatomic molecule 321 — 

Multiplicity 252, 301 
of frequency 399 

Multipole moments 281 - 4 

Negative terms 331,425 
Neutrons, scattering of 640 - 4 
9;-symbol 449 - 50 
Nodes 59 

line ol 216 
Normal coordinates 399 

Normalisation 7, 16-17 
Notation xiv, 104, 252, 279, 300 
Nuclear forces 474 ff 

charge symmetry of 474 
saturation of 481 
spin dependence of 478 - 80 

Nuclear magneton 457 
Nuclear scattering 578 
Nuclear structure (XVI) 474 If. 
Nucleons 474 ff. 
Nuclei (see also Nuclear forces; Nuclea; 

compound 608 
non-sphcrical 491-6 

Occupation numbers 242 
Odd-odd nuclei 486 
Odd states 97 

of molecules 301 
One-dimensional motion 60-81 

quasi-classical case 162-74 
Operators 10 ff. 

addition of 13 
annihilation 243 
anticommuting 98 
anti-Hermitian 15 
commutative 14 
commutator of 15 
commuting 14 
creation 244 
differentiation of 26-7 
of finite displacement 45 
of finite rotation 215-21 
Hermitian 11 
Hermitian conjugate 11 
inverse 14 
linear 10 n. 
momentum 42-5 
multiplication of 14 
particle density 247 

Operators (coni.) 
self-conjugate 12 
spin 204 
symmetrized products of 15 
transposed 11 
unitary 36 

Optical model 614 n., 615 
Optical theorem for scattering 512, 597 
Orbital angular momentum 200 

total 202 
Orthogonal functions 10 
Orthohelium 258 n. 
Orthohydrogen 334, 643-4 
Orthonormal functions 10 
Oscillation theorem 60-1 
Oscillator 

in external field 149 
linear 67-74 

anharmonic 136 
strength 636 
three-dimensional 111 

Parabolic 
coordinates 129 
quantum numbers 131 

Parahelium 258 n. 
Parahydrogen 334, 643 - 4 
Parity 97 

addition rule for 101 
selection rules for 98 

Particle density operator 247 
Paschen - Back effect 467, 468 
Pauli matrices 204 
Pauli’s principle 230 
Periodic system 271-9 
Permutations 234 - 41 
Perturbation theory (VI) 133 ff. 
Perturbations 

adiabatic 148, 195-8 
in diatomic molecule 352 - 3 

Phase 

shift 109 
space 172, 261, 481 

Physical quantity 5 
Physical sheet 527 
Planck’s constant 20 
Plane wave, resolution of 112-14 
Point groups 362 - 70, 378 - 82, 389 - 97 

continuous 370, 389 - 93 
Poisson bracket 27 n., 36 n. 
Polar vector 98 
Polarizability 285 
Polarization of particles, partial 221-3 
Polyatomic molecules (XIII) 398 ff. 
Positive terms 331, 425 
Potential barrier 79 - 31 

in quasi-classical case 179-85, 191-5 
Potential scattering 562, 61 1 
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Potential wall 76-8, 170 
Potential well 63 - 7, 72 - 4, 110 - 11, 127 - 8 

137-8, 160, 162-3, 549 
Predictable measurements 5 
Pre-dissociation 344 - 55 
Principal groups 274-5, 31 1 - 13 
Principal quantum number 119, 252, 485 
Principle of least action 20 
Probability current density 57 
Product 

of elements of group 360 
of groups 362 
of matrices 32 
of operators 14 
of quantities 13 
of representations of groups 376 
of spinors 209 

Pseudo-potential 641 
Pseudoscalar 98 
|/t -operators 246 
Pure states 39 n. 

Quadrupole moment 281-4,496 
Quantum mechanics 2 

basic concepts of (I) 1 ff. 
and classical mechanics 2 - 3, 20 - 1, 51 - 2 

54, 97, 160, (Vll) 164 ff., 199 f., 227, 
456, 509, 521 -6 

Quantum number 
azimuthal 104 
magnetic 104, 130 
parabolic 131 
principal 119, 252, 485 
radial 104, 119 
vibrational 319 

Quasi-classicality condition 165 
Quasi-classical systems 20, 48, 114, (VII) 

164 ff., 521-6 
Quasi-discrete spectrum 559 
Quasi-stationary states 159, 559, 593, 608 

Racah coefficients 445 
Radial 

quantum number 104, 119 
wave function 103-5 

in Coulomb field 117-26 
in free motion 106-9 

Rainbow' scattering 526 n. 
Ramsauer effect 547 n. 
Range, effective 555 
Reciprocity theorem for scattering 513, 

586. 606 
Reflection above (he barrier 191-3 
Reflection amplitudes 78 
Reflection coefficient 77 

in quasi-classical case 191-3 
Regge poles 590 
Regge trajectories 590 

Representation (coni.) 

of group 370 - 85 
antisymmetric product of 377 
basis of 371 
character of 372 
dimension of 199 n., 371 
direct product of 376 
equivalent 372 
irreducible 199 n., 372-85 
Kronecker product of 376 
physically irreducible 383 
reducible 372 
regular 375 
symmetric product of 377 
total vibrational 399 
two-valued 393 - 7 
unit 374 

of matrices 33 
of operators 37 - 8, 44 
of wave functions 18 
Schrodinger 37 

Resonance 152 
scattering 552-64,574-9 

Retardation, effective 633 - 7 
Rigid body, rotation of 412-21 
Rotary-reflection axis 357 
Rotation of molecules 316- 21, 323 -31, 

421 -5 
Russell-Saunders coupling 270 
Rutherford’s formula 567 
Rydberg’s correction 256 

Saddle-point method 655 
Scattering (see also Elasti collisions; In¬ 

elastic collisions) 
amplitude 505,526-38 

nuclear 578 
partial 507 

general theory of 504 ff. 
length 547 
in magnetic field 544 - 5 
matrix 512 ff, 603-7 
operator 512 
potential 562, 611 
quasi-classical 521 - 6 
rainbow 526 n. 
resonance 552-64, 574-9 

Schrodinger representation 37 
Schrodinger’s equation 51 ff. 

in central field 102-3 
for free particle 51 
in homogeneous field 74 
for linear oscillator 69 
in magnetic field 455 - 8 
in one dimension 60, 64 
in quasi-classical case 164 

Second quantization 241 - 50 
Secular equation 139 
Selection rules 93 - 4, 98, 385 - 9, 442 
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Self-adjoint operator, see Self-conjugate 
operator 

Self-conjugate operator 12 
Self-consistent field 252, 257 - 60, 483 
Shell model of the nucleus 482-91 
Sign of terms 331 -2,425 
6/-symbols 444 - 9 
Slow particles 

elastic scattering of 545 - 59 
inelastic scattering of 601 - 3 

S-matrix 512; see also Scattering matrix 
Spectral terms 252, 300 
Spectrum 

continuous 8,15-19,567- 71 
discrete 8-15 
of eigenvalues 8 

Spherical Bessel functions 107 
Spherical harmonics 91, 656-9 
Spherical tensor 441 
Spherical top 413 
Spin (VIII) 199 ff. 

commutation relations 201 
components 200 
in magnetic field 470 - 2 
nuclear 485 
operator 204 
total 202 
variable 200 

Spin - axis interaction 321 
Spin-orbit interaction 267-70, 321, 484, 

583 - 7 
Spin - spin interaction 267, 270, 326 
Spinors 206 If. 

contraction of 209 
metric 209 
multiplication of 209 
symmetrical 209 
and tensors 210-15 
unit 209 

Spur of matrix 36 
Stability of molecules 407 - 12 
Stark effect 284 - 99 

in diatomic molecule 337 - 8 
linear 289 

Stationary states 28 
Statistical weight 333 n., 427 n., 607 
Sum of quantities 13 
Summation theorem 634 
Superposition principle 7 
r-wave scattering 546 
Symmetric term 332 
Symmetrization 

of functions 235 
of spinors 209-12 

Symmetry 

bilaieral 363 

centre of 357 
charge 474. 
groups 3-59 It. 

Symmetry (cont.) 
plane of 356 

equivalent 363 
of terms 

in diatomic molecule 300- 1, 331 -4 
in polyatomic molecules 398 ff. 

theory of (XII) 356 ff. 
transformations 356 - 9 

Tensor 
antisymmetric unit 84 
forces 479 
irreducible 214 
matrix elements of 441 - 4 
spherical 441 

Thomas - Fermi method 261 - 6, 277 - 9 
3j-symbols 433 - 40 
Threshold of reactions 618 
Time reversal 24, 55, 207 m, 223-6, 436 m, 

455 n., 512, 606 
Time-reversed states 606 
Top 412-21 

asymmetrical 415-18 
spherical 413 
symmetrical 414-15 

Trace of matrix 36 
Transition 

frequency 31 
probability, in quasi-classical case 191-5 

Transmission coefficient 77 
in quasi-classical case 182-5 

Transport cross-section 519, 581 
Transposed operator 11 
Tunnel effect 179 
Turning points 165 

Uncertainty 
principle 2 
relations 47 

for energy 157 
Unitarity condition 512 

complex 590 
Unitary operator 36 

Valency 309- 16 
Van der Waals forces .342 
Variational principle 58 - 60 
Vector addition coefficients 436 
Vector model 100 
Velocity, in quantum mechanics 4, 55 - 6, 

457 
Vibrational 

angular momentum 422 
coordinates 399 
energy levels 405 - 7 
quantum number 319 
states and rotational states in diatomic 

molecule 316-21,323-31 
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Vibrations, molecular 
anharmonic 405 
classification of 398 - 405 
interaction with rotations 421-5 

Virtual level 554 

Wall, potential 76-8.170 
Wave equation 26 
Wave function 6, 21 - 4, 57 ff. 

antisymmetrical 228 
of boson system 229 
coordinate 230 
of fermion system 229 
in magnetic field 457.458-9 
near nucleus 266 - 7 
orbital 230 
quasi-classical 164 ff. 
radial 103-5, 106-9, 117-26 
spin 230 
for arbitrary spin 210-12 
symmetrical 228 

Wave mechanics 2 
Wave number 61, 106 
Wave packet 21,47 
Well, potential, see Potential well 
Width 

of channel 610 - 11 
of level 159,559.610 

Wigner-Eckart theorem 442 
Wigner 3/-symbols 435 

X-ray terms 279 - 81 

Young diagrams 236-41 

Zeeman effect 464-70,501 
anomalous 465 n 


